MATH 559 HOMEWORK 6

DUE: WEDNESDAY, APRIL 25

All rings R are commutative with 1, and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately. For Eisenbud "graded" means \mathbb{Z} -graded unless otherwise stated.

- (1) (Repeated, augmented, question). Let R be a \mathbb{Z} -graded ring with R_0 a field. Many things that are true for local rings are also true for R.
 - (a) Let M be a graded R-module, and let $\mathfrak{m} = R_{>0}$ be the unique maximal homogeneous ideal. Then M = 0 if and only if $M_{\mathfrak{m}} = 0$. (You may assume that R is Noetherian here).
 - (b) (Graded Nakayama). Let M be a graded R-module, and let I be a homogeneous ideal generated by elements of positive degree. Then if IM = M we have M = 0.
 - (c) If M and N are graded R-modules with $M \otimes_R N = 0$, then M = 0 or N = 0.
- (2) Since the completion of the local ring R_m at m_m is equal to the completion of R at m, and $R \subseteq \hat{R}_m$ when R is Noetherian, we know that the localization of \mathbb{Z} at $p\mathbb{Z}$ (fractions with denominators not divisible by p) is contained in $\hat{\mathbb{Z}}_p$. Show this directly by describing $a/b \in \hat{\mathbb{Z}}_p$ where gcd(a, b) = 1 and p does not divide b.
- (3) Give a criterion for $a \in \mathbb{Z}_p$ to be a cube.
- (4) Write out the next three iterates of applying Newton's method to compute $\sqrt{8}$ in $\hat{\mathbb{Z}}_7$ starting with $a_0 = 1$.
- (5) Recall that the *m*-adic topology on \hat{R}_m has basic opens $\{a + \hat{m}_i : a \in \hat{R}_m, i > 0\}.$
 - (a) Show that \hat{R}_m is Hausdorff with this topology (so limits are unique).
 - (b) Verify that a polynomial $f \in R[x]$ is a continuous function from R_m to \hat{R}_m in this topology.