MATH 559 HOMEWORK 6

DUE: WEDNESDAY, APRIL 25

All rings R are commutative with 1 , and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately. For Eisenbud "graded" means \mathbb{Z}-graded unless otherwise stated.
(1) (Repeated, augmented, question). Let R be a \mathbb{Z}-graded ring with R_{0} a field. Many things that are true for local rings are also true for R.
(a) Let M be a graded R-module, and let $\mathfrak{m}=R_{>0}$ be the unique maximal homogeneous ideal. Then $M=0$ if and only if $M_{\mathfrak{m}}=0$. (You may assume that R is Noetherian here).
(b) (Graded Nakayama). Let M be a graded R-module, and let I be a homogeneous ideal generated by elements of positive degree. Then if $I M=M$ we have $M=0$.
(c) If M and N are graded R-modules with $M \otimes_{R} N=0$, then $M=0$ or $N=0$.
(2) Since the completion of the local ring R_{m} at m_{m} is equal to the completion of R at m, and $R \subseteq \hat{R}_{m}$ when R is Noetherian, we know that the localization of \mathbb{Z} at $p \mathbb{Z}$ (fractions with denominators not divisible by p) is contained in $\hat{\mathbb{Z}}_{p}$. Show this directly by describing $a / b \in \hat{\mathbb{Z}}_{p}$ where $\operatorname{gcd}(a, b)=1$ and p does not divide b.
(3) Give a criterion for $a \in \hat{\mathbb{Z}}_{p}$ to be a cube.
(4) Write out the next three iterates of applying Newton's method to compute $\sqrt{8}$ in $\hat{\mathbb{Z}}_{7}$ starting with $a_{0}=1$.
(5) Recall that the m-adic topology on \hat{R}_{m} has basic opens $\left\{a+\hat{m}_{i}: a \in\right.$ $\left.\hat{R}_{m}, i>0\right\}$.
(a) Show that \hat{R}_{m} is Hausdorff with this topology (so limits are unique).
(b) Verify that a polynomial $f \in R[x]$ is a continuous function from \hat{R}_{m} to \hat{R}_{m} in this topology.

