MATH 559 HOMEWORK 5

DUE: WEDNESDAY, APRIL 11

All rings R are commutative with 1, and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately. For Eisenbud "graded" means \mathbb{Z} -graded unless otherwise stated.

- (1) Let R = k[x, y] and let $I = \langle x^2, xy, y^2 \rangle$. Describe the blow-up algebra R[It] by generators and relations.
- (2) Hilbert function and polynomial. Let $S = k[x_1, \ldots, x_n]$ have the standard grading deg $(x_i) = 1$, and let I be a homogeneous ideal in R. The Hilbert function $H_{S/I}(t)$ is the dimension dim_k $((S/I)_t)$ of the *t*th graded piece of S/I.
 - (a) Show that $H_{S/I}(t)$ equals $H_{S/in(I)}(t)$ for any initial ideal in(I) of I. This means that we can reduce computing Hilbert functions of ideals to computing Hilbert functions of monomial ideals.
 - (b) Give a formula for the Hilbert function $H_S(t)$ of the polynomial ring S. Note that this is a polynomial in t.
 - (c) If $0 \to S/I \to S/J \to S/K \to 0$ is a short exact sequence, how are the function $H_{S/I}$, $H_{S/J}$, and $H_{S/K}$ related?
 - (d) Give an algorithm to compute the Hilbert function for a monomial ideal. Hint: Consider the short exact sequence $0 \to S/(I : x) \to S/(I \to S/(I, x) \to 0$, where x is a variable.
 - (e) Deduce that $H_{S/I}(t)$ agrees with a polynomial $P_{S/I}(t)$ for sufficiently large t. This is called the *Hilbert polynomial* of S/I.
 - (f) Compute the Hilbert function and polynomial for $I = \langle x^2y, xy^2 \rangle \subset k[x, y]$, and for $J = \langle x^2y 3yz^2 + 7z^3 \rangle \subset k[x, y, z]$.
- (3) Let R = k[x, y, z], and let $M = R/\langle x, y, z \rangle$, and $N = R/\langle x^3 + 7xz^2 z^3, xyz \rangle$. Compute $\operatorname{Tor}_i(M, N)$ for all $i \ge 0$. You will need to use Macaulay 2, but do not use the Tor command. Illustrate that $\operatorname{Tor}_i(M, N) = \operatorname{Tor}_i(N, M)$ in this case directly from a choice of free resolution for each module.
- (4) Write a oral exam question on localization, and one on primary decomposition, and answerit. A good question will be one that can be answered in real time, but illustrates some general principle (for example, asking for an example that shows that a particular theorem is sharp).