MATH 559 HOMEWORK 5

DUE: WEDNESDAY, APRIL 11

All rings R are commutative with 1 , and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately. For Eisenbud "graded" means \mathbb{Z}-graded unless otherwise stated.
(1) Let $R=k[x, y]$ and let $I=\left\langle x^{2}, x y, y^{2}\right\rangle$. Describe the blow-up algebra $R[I t]$ by generators and relations.
(2) Hilbert function and polynomial. Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ have the standard grading $\operatorname{deg}\left(x_{i}\right)=1$, and let I be a homogeneous ideal in R. The Hilbert function $H_{S / I}(t)$ is the dimension $\operatorname{dim}_{k}\left((S / I)_{t}\right)$ of the t th graded piece of S / I.
(a) Show that $H_{S / I}(t)$ equals $H_{S / \operatorname{in}(I)}(t)$ for any initial ideal in (I) of I. This means that we can reduce computing Hilbert functions of ideals to computing Hilbert functions of monomial ideals.
(b) Give a formula for the Hilbert function $H_{S}(t)$ of the polynomial ring S. Note that this is a polynomial in t.
(c) If $0 \rightarrow S / I \rightarrow S / J \rightarrow S / K \rightarrow 0$ is a short exact sequence, how are the function $H_{S / I}, H_{S / J}$, and $H_{S / K}$ related?
(d) Give an algorithm to compute the Hilbert function for a monomial ideal. Hint: Consider the short exact sequence $0 \rightarrow S /(I: x) \rightarrow$ $S / I \rightarrow S /(I, x) \rightarrow 0$, where x is a variable.
(e) Deduce that $H_{S / I}(t)$ agrees with a polynomial $P_{S / I}(t)$ for sufficiently large t. This is called the Hilbert polynomial of S / I.
(f) Compute the Hilbert function and polynomial for $I=\left\langle x^{2} y, x y^{2}\right\rangle \subset$ $k[x, y]$, and for $J=\left\langle x^{2} y-3 y z^{2}+7 z^{3}\right\rangle \subset k[x, y, z]$.
(3) Let $R=k[x, y, z]$, and let $M=R /\langle x, y, z\rangle$, and $N=R /\left\langle x^{3}+7 x z^{2}-\right.$ $\left.z^{3}, x y z\right\rangle$. Compute $\operatorname{Tor}_{i}(M, N)$ for all $i \geq 0$. You will need to use Macaulay 2, but do not use the Tor command. Illustrate that $\operatorname{Tor}_{i}(M, N)=\operatorname{Tor}_{i}(N, M)$ in this case directly from a choice of free resolution for each module.
(4) Write a oral exam question on localization, and one on primary decomposition, and answerit. A good question will be one that can be answered in real time, but illustrates some general principle (for example, asking for an example that shows that a particular theorem is sharp).

