MATH 559 HOMEWORK 3

DUE: MONDAY, MARCH 5

All rings R are commutative with 1, and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately.

- (1) Eisenbud 3.6, 3.7, 3.8. Characterize monomial ideals that are prime, irreducible, radical and primary. Give an algorithm to compute an irreducible decomposition of a monomial ideal, and one to compute a minimal primary decomposition. Illustrate your algorithms with the monomial ideal $I = \langle a^4c, abc^4, a^5b, b^3c^4, a^3c^4, ab^4c^3 \rangle \subseteq k[a, b, c, d].$
- (2) Eisenbud 3.10 a-c. Uniqueness of primary decomposition.
- (3) Eisenbud 3.17 and 3.18. Prime avoidance.
- (4) Find a primary decomposition of the ideal I = ⟨a²c²+6abc²+5b²c², 6a³b+31a²b²-25b⁴, a⁴-26a²b²+25b⁴⟩ ⊆ C[a, b, c]. Hint: You'll probably want to use a computer package. Here are some useful Macaulay 2 commands:
 i2 : I=ideal(a^3,a*b^2,b^5)

3 2 5 o2 = ideal (a , a*b , b) i3 : I:b 3 4

o3 = ideal (a*b, a , b)

- (5) Show that if I is an ideal in R, and $(I : f^n) = (I : f^{n+1})$, where $(I : g) = \{h \in R : gh \in I\}$, then $I = (I, f^n) \cap (I : f)$.
- (6) Let $K = \mathbb{Q}(\sqrt{d})$ be the extension field of \mathbb{Q} obtained by adding the square root of d for some $d \in \mathbb{N}$. Let \mathcal{O} be the integral closure of \mathbb{Z} in K. We may assume that d is squarefree (not divisible by the square of any prime). Show that $\{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathcal{O}$ if $d = 0, 2, 3 \mod 4$, and $\{a + b((1 + \sqrt{d})/2) : a, b \in \mathbb{Z}\} \subseteq \mathcal{O}$ if $d = 1 \mod 4$. Bonus: These are actually equalities (feel free to look up a proof).