MATH 559 HOMEWORK 2

DUE: MONDAY, FEBRUARY 19

All rings R are commutative with 1 , and if not otherwise noted M and N are R-modules. Warning: I don't have the most recent printing of Eisenbud - if the "name" of an exercise doesn't coincide with its number, please let me know immediately.
(1) We set $\operatorname{Spec}(R)$ to be the set of prime ideals in R. The Zariski topology on $\operatorname{Spec}(R)$ is given by setting the closed sets to be $V(I)=\{P \in R: I \subseteq$ P, P is prime $\}$ for an ideal I of R.
(a) Show that the Zariski topology is a topology. How does it relate to the example of varieties done in class?
(b) Show that if $\phi: R \rightarrow S$ is a ring homomorphism, then we get an induced map from $\operatorname{Spec}(S)$ to $\operatorname{Spec}(R)$.
(2) (a) Show that $M \otimes_{R} R \cong R \otimes_{R} M \cong M$.
(b) Show that $\mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / \operatorname{gcd}(n, m) \mathbb{Z}$.
(c) Show that if S is an R-algebra, then $S \otimes_{R} R\left[x_{1}, \ldots, x_{n}\right] \cong S\left[x_{1}, \ldots, x_{n}\right]$.
(d) Show that $k\left[x_{1}, \ldots, x_{n}\right] \otimes_{k} k\left[y_{1}, \ldots, y_{m}\right] \cong k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.
(e) Show that if R, S and T are rings, and $\phi: R \rightarrow S, \psi: S \rightarrow T$ are ring homomorphisms (making S into an R-algebra and T into an S algebra, then if M is an R-module then $\left(M \otimes_{R} S\right) \otimes_{S} T \cong M \otimes_{R} T$, where T is an R-algebra via the homomorphism $\psi \circ \phi$.
(3) In class we showed that localization has the following universal property: If $\phi: R \rightarrow S$ is a ring homomorphism which takes all elements of $U \subset R$ to units of S, then there is a unique induced ring homomorphism from $R\left[U^{-1}\right]$ to S. Show that this property defines the localization up to unique isomorphism; if T is a ring for which every ring homomorphism from R to a ring S that takes elements of U to units of S factors uniquely through T, then T is uniquely isomorphic to $R\left[U^{-1}\right]$.
(4) Eisenbud Exercise 2.3 (How to localize without admitting it).
(5) Eisenbud Exercise 2.6 (Generalized Chinese Remainder Theorem)
(6) Eisenbud Exercise 2.20 (about localizing at various f_{i}).
(7) Show that if $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is a radical ideal, then I is prime if and only if there do not exist ideals $J, K \neq I$ with $I=J \cap K$.
(8) Let G be a finitely generated abelian group. What is $\operatorname{Ass}_{\mathbb{Z}}(G)$?

