MATH 559 HOMEWORK 1

DUE: MONDAY, FEBRUARY 5

All rings R are commutative with 1.

- (1) Recall that a ring R is Noetherian if it satisfies the *ascending* chain condition: There is no infinite properly ascending chain of ideals $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \ldots$ in R. Show that R is Noetherian if and only if every ideal I of R is finitely generated. (This is a standard result, and in the textbook - the point of this exercise is just to remind you of this result, and if you look it up it is optional to actually write down the proof.)
- (2) Let A be an abelian group. A ring R is graded by A if we can write $R = \bigoplus_{a \in A} R_a$ where if $f \in R_a$, $g \in R_b$ then $fg \in R_{a+b}$. The most standard case is $A = \mathbb{Z}$, where we also often assume that $R_i = 0$ for i < 0. A homogeneous element of R is an element of some R_i , and a homogeneous ideal is one generated by homogeneous elements.
 - (a) Show that if R is graded by A and $f \in R$ then we can write f uniquely as a sum of homogeneous elements (called the homogeneous components of f).
 - (b) If I is a homogeneous ideal in ring graded by an abelian group A, then $f \in I$ if and only if each homogeneous component of f lies in I.
- (3) The reverse lexicographic term-order was defined as: $x^u \prec x^v$ if $\deg(x^u) \prec \deg(x^v)$ or $\deg(x^u) = \deg(x^v)$ and the last nonzero entry of (v u) is negative. Why is the degree condition necessary? In other words, why can we not define an order by $x^u \prec x^v$ if the last nonzero entry of (v u) is negative?
- (4) Show that if \prec is a term order then there are no infinite descending chains $x^{u_1} \succ x^{u_2} \succ x^{u_3} \succ \dots$
- (5) **Proof of Hilbert basis theorem** The goal of this question is to prove the Hilbert basis theorem, which states that the polynomial ring is Noetherian. Let $S = k[x_1, \ldots, x_n]$.
 - (a) Let M be an ideal of S generated by monomials. Show that a monomial x^u lies in M if and only if it is divisible by some monomial generator.

DUE: MONDAY, FEBRUARY 5

- (b) Show that a monomial ideal in M must be finitely generated. (Hint: induction on n). This result is usually called "Dickson's Lemma".
- (c) Conclude that every ideal $I \subset S$ is finitely generated.
- (6) Let $S = \Bbbk[x_1, \ldots, x_n]$, and let $I \subseteq S$ be an ideal.
 - (a) Show that the monomials not in $\operatorname{in}_{\prec}(I)$ form a k-basis for S/I, where \prec is any term order.
 - (b) If R is a graded ring, then an R-module M is graded if we can write $M = \bigoplus_{a \in A} M_a$ as an abelian group, with in addition if $r \in R_a$ and $m \in M_b$ then $rm \in M_{a+b}$. Show that if I is a homogeneous ideal with respect to any abelian group grading of S for which the variables are homogeneous then the S-module S/I is graded.
 - (c) Show that in this case the monomials not in $\operatorname{in}_{\prec}(I)$ of degree *a* form a k-basis for $(S/I)_a$.
- (7) Compute a Gröbner basis for the ideal $\langle x^2y 1, xy^2 1 \rangle$ with respect to the reverse lexicographic term order with $x \succ y$.