NATURAL TRANSFORMATIONS

MATH 551 NOTES - DIANE MACLAGAN

Definition 1. Let \mathcal{C} and \mathcal{D} be categories, and let S and T be covariant functors from \mathcal{C} to \mathcal{D}. A natural transformation α from S to T is a collection of morphisms $\left\{\alpha_{C}: C \in o b(\mathcal{C})\right\}$ in \mathcal{D}, where $\alpha_{C} \in \operatorname{hom}\left(S(C), T(C)\right.$) (ie α_{C} is a morphism from $S(C)$ to $T(C)$) such that if $f: C \rightarrow C^{\prime}$ is a morphism in \mathcal{C}, the following diagram commutes:

When all the maps α_{C} are equivalences (that is, $S(C)$ is equivalent to $T(C)$ for all $C \in \mathcal{C}$), then α is called a natural isomorphism, or natural equivalence.

To give an example, we need to recall some linear algebra. Let V be an n-dimensional vector space over \mathbb{R} (so $V \cong \mathbb{R}^{n}$). The dual of V, denoted V^{*} is the set of linear maps from V to \mathbb{R}.

Lemma 2. The set V^{*} is an n-dimensional vector space.
Proof. We can add two linear maps $((f+g)(v)=f(v)+g(v))$, and multiply them by a scalar $((\lambda f)(v)=\lambda f(v))$, so V^{*} is a vector space.

To calculate the dimension, let v_{1}, \ldots, v_{n} be a basis for V, and let $f: V \rightarrow \mathbb{R}$ be a linear map. Then $f\left(\sum \lambda_{i} v_{i}\right)=\sum \lambda_{i} f\left(v_{i}\right)$, so the function f is determined by its values on v_{1}, \ldots, v_{n}. Let f_{i} be the functional defined by setting $f_{i}\left(v_{j}\right)=1$ if $i=j$, and 0 otherwise. Then f_{1}, \ldots, f_{n} are linearly independent, and a general $f=\sum f\left(v_{i}\right) f_{i}$, so they span V^{*}, and thus V^{*} is n-dimensional.

Note that while the above proof gives an explicit isomorphism of V and V^{*}, given by sending v_{i} to f_{i}, this isomorphism depends on the choice of basis. However if we consider the double dual $V^{* *}$, we get a more canonical isomorphism. Let $\phi_{v} \in V^{* *}$ be defined by $\phi_{v}(f)=f(v)$ for $f \in V^{*}$. Then the map $v \mapsto \phi_{v}$ is an isomorphism from V to $V^{* *}$.

Let Vect $_{\mathbf{n}}$ be the category whose objects are all n-dimensional vector spaces, and whose morphisms are linear maps. Let 1 be the identity functor from Vect ${ }_{\mathbf{n}}$ to Vect $_{\mathbf{n}}$ (so 1 takes V to V, and a linear map f to itself). Let F be the functor from Vect $_{\mathbf{n}}$ to itself that takes a vector space V to $V^{* *}$. If $f: V \rightarrow W$ is a linear map, then the linear map $F(f): V^{* *} \rightarrow W^{* *}$ is given by setting for $\beta \in V^{* *}, F(f)(\beta)$ is the element of $W^{* *}$ that takes an element an element $\psi \in W^{*}$ to $\beta(\psi \circ f) \in \mathbb{R}$.

We claim that there is a natural transformation α that takes 1 to F. For $V \in$ Vect $_{\mathbf{n}}$ let $\alpha_{V}: V \rightarrow V^{* *}$ be the morphism in Vect $_{\mathbf{n}}$ defined by sending v to ϕ_{v} for all $v \in V$. Let $f: V \rightarrow W$ be a morphism in Vect $_{\mathbf{n}}$. Then $F(f) \circ \alpha_{V}: V \rightarrow W^{* *}$ takes $v \in V$ to the element of $W^{* *}$ that takes $\psi \in W^{*}$ to $\phi_{v}(\psi \circ f)=(\psi \circ f)(v)$. Thus $\left(F(f) \circ \alpha_{V}\right)(v)=\phi_{f(v)}$. The morphism $\alpha_{W} \circ 1(f): V \rightarrow W^{* *}$ takes $v \in V$ to $\alpha_{W}(f(v))=\phi_{f(v)}$, so the following square commutes:

Since $V \cong V^{* *}$, the map α is a natural isomorphism.
Exercise: Check that this doesn't work if we replace $V^{* *}$ by V^{*}.

