NATURAL TRANSFORMATIONS

MATH 551 NOTES - DIANE MACLAGAN

Definition 1. Let \mathcal{C} and \mathcal{D} be categories, and let S and T be covariant functors from \mathcal{C} to \mathcal{D} . A *natural transformation* α from Sto T is a collection of morphisms { $\alpha_C : C \in ob(\mathcal{C})$ } in \mathcal{D} , where $\alpha_C \in hom(S(C), T(C))$ (ie α_C is a morphism from S(C) to T(C)) such that if $f : C \to C'$ is a morphism in \mathcal{C} , the following diagram commutes:

When all the maps α_C are equivalences (that is, S(C) is equivalent to T(C) for all $C \in C$), then α is called a natural isomorphism, or natural equivalence.

To give an example, we need to recall some linear algebra. Let V be an *n*-dimensional vector space over \mathbb{R} (so $V \cong \mathbb{R}^n$). The *dual* of V, denoted V^* is the set of linear maps from V to \mathbb{R} .

Lemma 2. The set V^* is an n-dimensional vector space.

Proof. We can add two linear maps ((f + g)(v) = f(v) + g(v)), and multiply them by a scalar $((\lambda f)(v) = \lambda f(v))$, so V^* is a vector space.

To calculate the dimension, let v_1, \ldots, v_n be a basis for V, and let $f: V \to \mathbb{R}$ be a linear map. Then $f(\sum \lambda_i v_i) = \sum \lambda_i f(v_i)$, so the function f is determined by its values on v_1, \ldots, v_n . Let f_i be the functional defined by setting $f_i(v_j) = 1$ if i = j, and 0 otherwise. Then f_1, \ldots, f_n are linearly independent, and a general $f = \sum f(v_i)f_i$, so they span V^* , and thus V^* is *n*-dimensional. \Box

Note that while the above proof gives an explicit isomorphism of Vand V^* , given by sending v_i to f_i , this isomorphism depends on the choice of basis. However if we consider the double dual V^{**} , we get a more canonical isomorphism. Let $\phi_v \in V^{**}$ be defined by $\phi_v(f) = f(v)$ for $f \in V^*$. Then the map $v \mapsto \phi_v$ is an isomorphism from V to V^{**} . Let $\operatorname{Vect}_{\mathbf{n}}$ be the category whose objects are all *n*-dimensional vector spaces, and whose morphisms are linear maps. Let 1 be the identity functor from $\operatorname{Vect}_{\mathbf{n}}$ to $\operatorname{Vect}_{\mathbf{n}}$ (so 1 takes V to V, and a linear map f to itself). Let F be the functor from $\operatorname{Vect}_{\mathbf{n}}$ to itself that takes a vector space V to V^{**} . If $f: V \to W$ is a linear map, then the linear map $F(f): V^{**} \to W^{**}$ is given by setting for $\beta \in V^{**}$, $F(f)(\beta)$ is the element of W^{**} that takes an element an element $\psi \in W^*$ to $\beta(\psi \circ f) \in \mathbb{R}$.

We claim that there is a natural transformation α that takes 1 to F. For $V \in \mathbf{Vect_n}$ let $\alpha_V : V \to V^{**}$ be the morphism in $\mathbf{Vect_n}$ defined by sending v to ϕ_v for all $v \in V$. Let $f : V \to W$ be a morphism in $\mathbf{Vect_n}$. Then $F(f) \circ \alpha_V : V \to W^{**}$ takes $v \in V$ to the element of W^{**} that takes $\psi \in W^*$ to $\phi_v(\psi \circ f) = (\psi \circ f)(v)$. Thus $(F(f) \circ \alpha_V)(v) = \phi_{f(v)}$. The morphism $\alpha_W \circ 1(f) : V \to W^{**}$ takes $v \in V$ to $\alpha_W(f(v)) = \phi_{f(v)}$, so the following square commutes:

$$V \xrightarrow{\alpha_V} V^{**}$$

$$1(f) \downarrow \qquad \qquad \downarrow F(f)$$

$$W \xrightarrow{\alpha_W} W^{**}$$

Since $V \cong V^{**}$, the map α is a natural isomorphism.

Exercise: Check that this doesn't work if we replace V^{**} by V^* .