MATH 551 HOMEWORK 8

DUE WEDNESDAY, NOVEMBER 9

You are encouraged to work on the homework together, but your final write-up should be your own. Please write down on your homework the name of any collaborators. No late homework will be accepted. "Hungerford I.1.3" means Question 3 in the exercises at the end of Section 1 of Chapter 1.
(1) Let R be a commutative ring with identity 1_{R}.
(a) Show that the ideal $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for $a_{i} \in R$ is $\left\{r_{1} a_{1}+\cdots+\right.$ $\left.r_{n} a_{n}: r_{i} \in R, 1 \leq i \leq n\right\}$. (Do not cite results from the book we have not discussed in class).
(b) Let A be an R-module, and let B be the (left) submodule generated by $a \in A$. Show that $B=\{r a: r \in R\}$.
(c) Give a counterexample to the first part if R is not commutative. Did you need commutativity in the second part?
(2) Give an example of a ring R and two sets $A, B \subseteq R$ for which $A B \neq\{a b: a \in A, b \in B\}$.
(3) Let R be a ring with identity. An R-module A is cyclic if it is generated by one element. Show that a cyclic R-module is isomorphic to R / J, where J is a left ideal of R.
(4) Hungerford IV.1.5
(5) Hungerford IV.1.9. What linear algebra concept does this generalize?
(6) Fall 2002 Let p be an odd prime, and let R be the ring of " p-quarternions"; that is
$R=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k: a_{n} \in \mathbb{Z} / p \mathbb{Z}\right.$ for $n=0,1,2,3$, and
$\left.i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j, k i=j=-i k\right\}$.
Show that R is a simple ring, so the only two-sided ideals of R are the zero ring and R itself.

