MATH 551 HOMEWORK 2

DUE WEDNESDAY, SEPTEMBER 21

You are encouraged to work on the homework together, but your final write-up should be your own. No late homework will be accepted. "Hungerford I.1.3" means Question 3 in the exercises at the end of Section 1 of Chapter 1.
(1) The symmetric group
(a) Convince yourself that every element of S_{n} can be written as a product of disjoint cycles, and this representation is unique up to the order of the cycles. See Hungerford, Section I. 6 if necessary. You do not need to hand this in.
(b) Show that the adjacent transpositions $\{(i i+1): 1 \leq i \leq$ $n-1\}$ generate S_{n} (that is, every element of S_{n} can be written as a product of finitely many adjacent transpositions).
(c) If $\sigma \in S_{n}$ can be written $\sigma=\tau_{1} \tau_{2} \tau_{3}$, where the τ_{i} are adjacent transpositions, we say this expression for σ has length three. The length of $\sigma \in S_{n}$ is the length of the shortest expression for σ. Which element(s) of S_{n} has/have the longest length?
(d) A trivial way to get different expressions for the same element of S_{n} is to add $\tau \tau$ to an expression. For example, $(12)=(13)(13)(12)$. If we require that there are no adjacent repeated adjacent transpositions in an expression for σ, is the expression unique?
(e) Show that the transposition (12) and the n-cycle (123 $\ldots n$ $1 n$) generate S_{n}.
(2) Hungerford I.2.15.
(3) Hungerford I.2.19.
(4) Hungerford I.3.3.
(5) Hungerford I.1.7, Hungerford I.4.4
(6) Hungerford I.5.10.
(7) Hungerford I.5.15.
(8) Show that if H and K are subgroups of a group G, then every element of $H \vee K$ can be written in the form $h_{1} k_{1} h_{2} k_{2} \ldots h_{r} k_{r}$ for some $h_{i} \in H, k_{i} \in K$.

