MATH 551 HOMEWORK 2

DUE WEDNESDAY, SEPTEMBER 21

You are encouraged to work on the homework together, but your final write-up should be your own. No late homework will be accepted. "Hungerford I.1.3" means Question 3 in the exercises at the end of Section 1 of Chapter 1.

- (1) The symmetric group
 - (a) Convince yourself that every element of S_n can be written as a product of disjoint cycles, and this representation is unique up to the order of the cycles. See Hungerford, Section I.6 if necessary. You do not need to hand this in.
 - (b) Show that the adjacent transpositions $\{(ii + 1) : 1 \le i \le n 1\}$ generate S_n (that is, every element of S_n can be written as a product of finitely many adjacent transpositions).
 - (c) If $\sigma \in S_n$ can be written $\sigma = \tau_1 \tau_2 \tau_3$, where the τ_i are adjacent transpositions, we say this expression for σ has length three. The length of $\sigma \in S_n$ is the length of the shortest expression for σ . Which element(s) of S_n has/have the longest length?
 - (d) A trivial way to get different expressions for the same element of S_n is to add $\tau\tau$ to an expression. For example, (12) = (13)(13)(12). If we require that there are no adjacent repeated adjacent transpositions in an expression for σ , is the expression unique?
 - (e) Show that the transposition (12) and the *n*-cycle (123...n-1n) generate S_n .
- (2) Hungerford I.2.15.
- (3) Hungerford I.2.19.
- (4) Hungerford I.3.3.
- (5) Hungerford I.1.7, Hungerford I.4.4
- (6) Hungerford I.5.10.
- (7) Hungerford I.5.15.
- (8) Show that if H and K are subgroups of a group G, then every element of $H \vee K$ can be written in the form $h_1k_1h_2k_2\ldots h_rk_r$ for some $h_i \in H, k_i \in K$.