# MATH 551 HOMEWORK 11 

DUE WEDNESDAY, NOVEMBER 30

You are encouraged to work on the homework together, but your final write-up should be your own. Please write down on your homework the name of any collaborators. No late homework will be accepted. "Hungerford I.1.3" means Question 3 in the exercises at the end of Section 1 of Chapter 1.
(1) Hungerford, III.3.1
(2) Hungerford, III.3.3
(3) Hungerford, III.3.4
(4) Spring 2002 Call an integral domain $R$ special if and only if the intersection of any two principal ideals in $R$ is again principal (generated by one element).
(a) Show that if $R$ is special, then any two nonzero elements of $R$ have a greatest common divisor. (An element $a \in R$ is the greatest common divisor of $b, c \in R$ if $a$ divides $b, a$ divides $c$, and if $d \in R$ divides both $b$ and $c$, then $d$ divides a.)
(b) Give an example of a special integral domain $R$ and nonzero elements $a, b \in R$ such that the greatest common divisor of $a$ and $b$ is not an $R$-linear combination of $a$ and $b$.
(5) Spring 2001 Let $A$ be the abelian group of quintuples of integers under addition, and let $G$ be the subgroup generated by the elements
$(1,-1,0,2,1),(2,3,1,1,0),(4,1,0,0,2),(-1,1,-1,1,1),(1,1,1,1,1)$.
Determine the group $A / G$ as a product of cyclic groups.
(6) Describe an algorithm to answer all questions of the form of the previous question. Hint: You want a computational form of our theorem about subgroups about free abelian groups.
(7) Berkeley Prelim Spring 1999 Let $G$ be a finite group with identity $e$. Suppose that for all $a, b \in G$ distinct from $e$ there is an automorphism $\sigma$ of $G$ such that $\sigma(a)=b$. Prove that $G$ is abelian. (Added): Give an example of such a group.

