JORDAN AND RATIONAL CANONICAL FORMS

MATH 551

Throughout this note, let V be a n-dimensional vector space over a field k, and let $\phi: V \rightarrow V$ be a linear map. Let $\mathcal{B}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be a basis for V, and let A be the matrix for ϕ with respect to the basis \mathcal{B}. Thus $\phi\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{n} a_{i j} \mathbf{e}_{j}$ (so the j th column of A records $\phi\left(\mathbf{e}_{j}\right)$). This is the standard convention for talking about vector spaces over a field k. To make these conventions coincide with Hungerford, consider V as a right module over k. Recall that if \mathcal{B}^{\prime} is another basis for V, then the matrix for ϕ with respect to the basis \mathcal{B}^{\prime} is $C A C^{-1}$, where C is the matrix whose i th column is the description of the i th element of \mathcal{B} in the basis \mathcal{B}^{\prime}.

1. Rational Canonical Form

We give a $k[x]$-module structure to V by setting $x \cdot v=\phi(v)=A v$. Recall that the structure theorem for modules over a PID (such as $k[x]$) guarantees that $V \cong k[x]^{r} \oplus_{i=1}^{l} k[x] / f_{i}$ as a $k[x]$-module. Since V is a finite-dimensional k-module (vector space!), and $k[x]$ is an infinitedimensional k-module, we must have $r=0$, so $V \cong \oplus_{i=1}^{l} k[x] / f_{i}$. By the classification theorem we may assume that $f_{1}\left|f_{2}\right| \ldots \mid f_{l}$. We may also assume that each f_{i} is monic (has leading coefficient one). To see this, let $f=\lambda x^{s}+\sum_{i=0}^{s-1} a_{i} x^{i}$. Then $\lambda^{s-1} f=(\lambda x)^{s}+\sum_{i=0}^{s-1} a_{i} \lambda^{s-1-i}(\lambda x)^{i}$. Now $k[x] / f \cong k[x] / \lambda^{s-1} f$, since the two polynomials generate the same ideal, and $k[x] / \lambda^{s-1} f \cong k[y] / f^{\prime}$, where $f^{\prime}(y)=y^{s}+\sum_{i=0}^{s-1} a_{i} \lambda^{s-1-i} y^{i}$. This transformation can be done preserving the relationship that f_{i} divides f_{i+1}.

Let $\psi: \oplus_{i=1}^{l} k[x] / f_{i} \rightarrow V$ be the isomorphism, and let V_{i} be $\psi\left(k[x] / f_{i}\right)$ (the image of this term of the direct sum). If we choose a basis for V consisting of the unions of bases for each V_{i}, then the matrix for ϕ will be in block form, since $\phi(v) \in V_{i}$ for each $v \in V_{i}$. Thus we can restrict our attention to $\left.\phi\right|_{V_{i}}$.

Let $f_{i}=x^{m}+\sum_{j=1}^{m-1} a_{i j} x^{j}$. Notice that $\left\{1, x, x^{2}, \ldots, x^{m-1}\right\}$ is a basis for $k[x] / f_{i}$. Let $v=\psi(1) \in V_{i}$. Then $\left\{v, A v, A^{2} v, \ldots, A^{m-1} v\right\}$ is a basis for V_{i}. The matrix for $\left.\phi\right|_{V_{i}}$ in this basis is:

$$
\left(\begin{array}{lllll}
0 & 0 & \ldots & 0 & -a_{i 0} \\
1 & 0 & \ldots & 0 & -a_{i 1} \\
0 & 1 & \ldots & 0 & -a_{i 2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -a_{i(m-2)} \\
0 & 0 & \ldots & 1 & -a_{i(m-1)}
\end{array}\right)
$$

Thus if we take as our basis for V the union of these bases for V_{i} we have proved the existence of Rational Canonical Form.

Definition 1. Let $f=x^{n}+\sum_{i=1}^{m} a_{i} x^{i}$. Then the companion matrix of f is

$$
\left(\begin{array}{lllll}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -a_{n-2} \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right) .
$$

Theorem 2. Every $n \times n$ matrix A is similar to a matrix B which is block-diagonal, with the ith block the companion matrix of a monic polynomial f_{i}, with $f_{1}\left|f_{2}\right| \ldots \mid f_{l}$.

2. Jordan Canonical Form

For this section we assume that the field k is algebraically closed.
Definition 3. A field k is algebraically closed if for every polynomial $f \in k[x]$ there is $a \in k$ with $f(a)=0$.

Recall the alternative statement of the classification of modules over a PID: instead of having $f_{1}\left|f_{2}\right| \ldots \mid f_{l}$, we can choose to have each $f_{i}=$ $p_{i}^{n_{i}}$, where p_{i} is a prime in $k[x]$. If k is algebraically closed, then the primes in $k[x]$ are all of the form $x-a$ for $a \in k$, so when $V=$ $\oplus_{i} k[x] / f_{i}=\oplus_{i} V_{i}, V_{i}$ is isomorphic to $k[x] /\left(x-\lambda_{i}\right)^{n_{i}}$ for some $\lambda_{i} \in k$, $n_{i} \in \mathbb{N}$.

Let $B=A-\lambda_{i} I$, and consider the $k[y]$-module structure on V given by $y \cdot v=B v$. Then for $v \in V_{i}, y \cdot v=x \cdot v-\lambda v \in V_{i}$, so we also have $V \cong \oplus_{i} V_{i}$ as a $k[y]$-module. Note that $y^{n_{i}} \cdot V_{i}=0$, but $y^{n_{i}-1} \cdot V_{i} \neq 0$,
so the rational canonical form of $\left.B\right|_{V_{i}}$ is

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

The matrix of $\left.\phi\right|_{V_{i}}$ with respect to this basis is thus

$$
\left(\begin{array}{lllll}
\lambda_{i} & 0 & \ldots & 0 & 0 \\
1 & \lambda_{i} & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_{i} & 0 \\
0 & 0 & \ldots & 1 & \lambda_{i}
\end{array}\right)
$$

Reversing the order of the basis, we get the matrix of $\left.\phi\right|_{V_{i}}$ is

$$
\left(\begin{array}{lllll}
\lambda_{i} & 1 & \ldots & 0 & 0 \tag{1}\\
0 & \lambda_{i} & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_{i} & 1 \\
0 & 0 & \ldots & 0 & \lambda_{i}
\end{array}\right)
$$

We thus have:
Theorem 4. Any $n \times n$ matrix A is similar to a matrix J which is in block-diagonal form, where every block is of the form (1) for some λ_{i}.

3. Computing the Jordan Canonical Form

Recall first the definition of eigenvalues of a matrix A.
Definition 5. If A is a $n \times n$ matrix over k, then $\lambda \in k$ is an eigenvalue for A if there is $v \neq 0$ in V with $A v=\lambda v$. If $\lambda \in k$ is an eigenvalue, then $v \in V$ is an eigenvector for A if $A v=\lambda v$. The characteristic polynomial of A is $p_{A}(x)=\operatorname{det}(A-x I) \in k[x]$. An element $\lambda \in k$ is an eigenvalue for A if and only $p_{A}(\lambda)=0$.

Definition 6. For $\lambda \in k$, and $m \in \mathbb{N}$, let $E_{\lambda}^{m}=\left\{v \in V:(A-\lambda I)^{m} v=\right.$ $0\}$. Since E_{λ}^{m} is the kernel of a matrix, it is a subspace of V.

Lemma 7. The subspace $E_{\lambda}^{m} \neq 0$ for some m if and only if λ is an eigenvalue of A, and $E_{\lambda}^{m} \cap E_{\mu}^{n} \neq\{0\}$ for some $m, n>0$ implies that $\lambda=\mu$.

Proof. Suppose first that λ is an eigenvalue of A. Then E_{λ}^{1} is the eigenspace corresponding to λ, which is thus nonempty. Conversely, suppose that E_{λ}^{m} is nonempty for some m. We will show that E_{λ}^{1} is nonempty, so λ is an eigenvalue of A. To see this, consider $v \in E_{\lambda}^{m}$ with $v \neq 0$. We may assume that $v \notin E_{\lambda}^{m-1}$ (otherwise replace m by $m-1$ until this is possible or until $v \in E_{\lambda}^{1}$). Consider $w=(A-\lambda I)^{m-1} v$. Since $v \notin E_{\lambda}^{m-1}, w \neq 0$, and $(A-\lambda I) w=(A-\lambda I)^{m} v=0$, so $v \in$ $E_{\lambda}^{1} \backslash\{0\}$, and thus λ is an eigenvalue.

Suppose that $v \in E_{\lambda}^{m} \cap E_{\mu}^{n}$ with $v \neq 0$. As above we may assume that m, n have been chosen minimally. Then consider $w=(A-\lambda I)^{m-1}$. Now $w \in E_{\lambda}^{1} \cap E_{\mu}^{n}$ and $w \neq 0$. Replace n by a smaller integer if necessary so that $w \notin E_{\mu}^{n-1}$. Then $w^{\prime}=(A-\mu I)^{n-1} w \neq 0$, and $w^{\prime} \in E_{\lambda}^{1} \cap E_{\mu}^{1}$. But this means $A w^{\prime}=\lambda w^{\prime}=\mu w^{\prime}$, so $\lambda=\mu$.

Proposition 8. If the characteristic polynomial of A is $p_{A}(x)=\prod_{\lambda}(x-$ $\lambda)^{n_{\lambda}}$, then $E_{\lambda}^{m} \subseteq E_{\lambda}^{n_{\lambda}}$ for all m, and $\operatorname{dim} E_{\lambda}^{n_{\lambda}}=n_{\lambda}$. Furthermore, $V=\oplus_{\lambda} E_{\lambda}^{n_{\lambda}}$.

Proof. Since the characteristic polynomial is the same for similar matrices $\left(\right.$ since $\left.\operatorname{det}(A-x I)=\operatorname{det}\left(C(A-x I) C^{-1}\right)=\operatorname{det}\left(C A C^{-1}-x I\right)\right)$, we can compute the characteristic polynomial from the Jordan canonical form. We thus see that n_{λ} is the sum of the sizes of all λ Jordan blocks. Also, note that if J is a λ Jordan block, then the corresponding standard basis vectors all lie in E_{λ}^{m} for some $m \leq n_{\lambda}$, and are linearly independent, and by the Lemma E_{λ}^{m} for different eigenvalues do not intersect, so we see that $V \cong \oplus E_{\lambda}^{n_{\lambda}}$. Since $\sum_{\lambda} n_{\lambda}=n$, and $\operatorname{dim} E_{\lambda}^{n_{\lambda}} \geq n_{\lambda}$, we must thus have $\operatorname{dim} E_{\lambda}^{n_{\lambda}}=n_{\lambda}$, and $E_{\lambda}^{m}=E_{\lambda}^{n_{\lambda}}$ for $m>n_{\lambda}$.

Thus we have the following algorithm to compute the Jordan Canonical Form of A :

Algorithm 9. (1) Compute and factor the characteristic polynomial of A.
(2) For each λ, compute a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ for $E_{\lambda}^{n_{\lambda}} / E_{\lambda}^{n_{\lambda}-1}$, and lift to elements of $E_{\lambda}^{n_{\lambda}}$. Add the elements $(A-\lambda I)^{m} v_{i}$ to \mathcal{B} for $1 \leq m<n_{\lambda}$.
(3) Set $i=n_{\lambda}-1$.
(4) Complete $\mathcal{B} \cap E_{\lambda}^{i}$ to a basis for $E_{\lambda}^{i} / E_{\lambda}^{i-1}$. Add the element $(A-\lambda I)^{m} v$ to \mathcal{B} for all m and $v \in \mathcal{B}$.
(5) If $i \geq 1$, set $i=i-1$, and return to the previous step.
(6) Output \mathcal{B} - the matrix for A with respect to a suitable ordering of \mathcal{B} is in Jordan Canonical Form.

Proof of correctness. To show that this algorithm works we need to check that it is always possible to complete $\mathcal{B} \cap E_{\lambda}^{k}$ to a basis for $E_{\lambda}^{k} / E_{\lambda}^{k-1}$. Suppose $\mathcal{B} \cap E_{\lambda}^{k}$ is linearly dependent. Then there are $v_{1}, \ldots, v_{s} \in \mathcal{B} \cap E_{\lambda}^{k}$ with $\sum_{i} c_{i} v_{i}=0$, with not all $c_{i}=0$. By the construction of \mathcal{B} we know that $v_{i}=(A-\lambda I) w_{i}$ for some $w_{i} \in \mathcal{B}$, so consider $w=\sum_{i} c_{i} w_{i}$. Then $w \neq 0$, since the w_{i} are linearly independent, and not all c_{i} are zero. In fact, by the construction of the w_{i}, we know $w \notin E_{\lambda}^{k}$. But $(A-\lambda I) w=0$, so $w \in E_{\lambda}^{1}$, which is a contradiction, since $k \geq 1$.

Example 10. Consider the matrix

$$
A=\left(\begin{array}{rrrr}
2 & -4 & 2 & 2 \\
-2 & 0 & 1 & 3 \\
-2 & -2 & 3 & 3 \\
-2 & -6 & 3 & 7
\end{array}\right)
$$

Then the characteristic polynomial of A is $(x-2)^{2}(x-4)^{2}$. A basis for E_{2}^{1} is $\{(2,1,0,2),(0,1,2,0)\}$, so since there is a two-dimensional eigenspace for 2 , the Jordan canonical form will have two distinct 2 blocks, each of size one. To confirm this, check that $E_{2}^{m}=E_{2}^{1}$ for all $m>1$. A basis for E_{4}^{1} is $\{(0,1,1,1)\}$, while a basis for E_{4}^{2} is $\{(0,1,1,1),(1,0,0,1)\}$, so we can take $\{(1,0,0,1)\}$ as a basis for E_{4}^{2} / E_{4}^{1}. Then $(A-4 I)(1,0,0,1)^{T}=(0,1,1,1)^{T}$, so our basis is then $\{(2,1,0,2),(0,1,2,0),(0,1,1,1),(1,0,0,1)\}$. The matrix of the transformation with respect to this basis is:

$$
\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

4. The minimal and characteristic polynomials

Definition 11. Let $I=\{f \in k[x]: f \cdot v=0$ for all $v \in V\}=\{f \in$ $k[x]: f(A)=0\}$. Then I is an ideal of $k[x]$, so since $k[x]$ is a PID, $I=\langle g\rangle$ for some polynomial $g \in k[x]$. We can choose g to be monic (have leading coefficient one). The polynomial g is called the minimal polynomial of the matrix A (or linear transformation ϕ).

Lemma 12. The minimal polynomial of a nonzero matrix A is nonzero.

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Then for each $i \mathcal{O}_{v_{i}}=\{f \in$ $\left.k[x]: f(A) v_{i}=0\right\}$ is nonzero, since $\left\{v_{i}, A v_{i}, A^{2} v_{i}, \ldots, A^{n} v_{i}\right\}$ is linearly dependent. Pick nonzero $f_{i} \in \mathcal{O}_{v_{i}}$ for each i. Then $\prod_{i=1}^{n} f_{i} \in \cap_{i=1}^{n} \mathcal{O}_{v_{i}}=$ I, so $I \neq 0$, and thus the generator is nonzero.

Proposition 13. If A is the companion matrix of a monic polynomial f, then f is the minimal polynomial of A.
Proof. First note that $\mathbf{e}_{i}=A^{i-1} \mathbf{e}_{1}$, so $\left\{\mathbf{e}_{1}, A \mathbf{e}_{1}, \ldots, A^{n-1} \mathbf{e}_{1}\right\}$ is linearly independent. Thus the minimal polynomial of A has degree at least n. If $f=x^{n}+\sum_{i=0}^{n-1} c_{i} x^{i}$, then $f(A) \mathbf{e}_{1}=\sum_{i=0}^{n-1}-c_{i} \mathbf{e}_{i}+$ $\sum_{i=0}^{n-1} c_{i} \mathbf{e}_{i}=0$ by the construction of the companion matrix. Also $f(A) \mathbf{e}_{i}=f(A) A^{i-1} \mathbf{e}_{1}=A^{i-1} f(A) \mathbf{e}_{1}=0$, so $f(A)=0$, and thus $f \in I$. If f were not the minimal polynomial, then there would be a monic $g \in I$ with g dividing f. But since f is itself monic g would have to have degree less than n, which we showed above is impossible, so f is the minimal polynomial of its companion matrix.

Corollary 14. The minimal polynomial of A is f_{l}, if its rational canonical form has blocks the companion matrices of f_{1}, \ldots, f_{l} with $f_{1}\left|f_{2}\right| \ldots \mid f_{l}$. This is $\prod_{\lambda}(x-\lambda)^{m(\lambda)}$, where $m(\lambda)$ is the size of the largest Jordan block corresponding to the eigenvalue λ.

Proof. Since applying a polynomial to a matrix in block-diagonal form applies it to each block, we know that $f_{l}(A)=0$, and thus the minimal polynomial of A divides f_{l}. Conversely, if $f(A)=0$, then f_{l} divides f, since f applied to the last block of the rational canonical form is zero. Thus f_{l} is the minimal polynomial of A.

The second description of the minimal polynomial follows from the method to convert between the two different descriptions of modules over a PID.

Theorem 15. If $p_{A}(x)$ is the characteristic polynomial of A, then $p_{A}(A)=0$.

Proof. By Proposition 8 we know that the characteristic polynomial of A is $\prod_{i}\left(x-\lambda_{i}\right)^{n_{i}}$ where the i th Jordan block has eigenvalue λ_{i} and size n_{i}. Thus by Corollary 14 the minimal polynomial of A divides the characteristic polynomial of A, and thus $p_{A}(A)=0$.

