JORDAN AND RATIONAL CANONICAL FORMS

MATH 551

Throughout this note, let V be a n-dimensional vector space over a field k, and let $\phi: V \to V$ be a linear map. Let $\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ be a basis for V, and let A be the matrix for ϕ with respect to the basis \mathcal{B} . Thus $\phi(\mathbf{e}_j) = \sum_{i=1}^n a_{ij} \mathbf{e}_j$ (so the *j*th column of A records $\phi(\mathbf{e}_j)$). This is the standard convention for talking about vector spaces over a field k. To make these conventions coincide with Hungerford, consider V as a *right* module over k. Recall that if \mathcal{B}' is another basis for V, then the matrix for ϕ with respect to the basis \mathcal{B}' is CAC^{-1} , where C is the matrix whose *i*th column is the description of the *i*th element of \mathcal{B} in the basis \mathcal{B}' .

1. RATIONAL CANONICAL FORM

We give a k[x]-module structure to V by setting $x \cdot v = \phi(v) = Av$. Recall that the structure theorem for modules over a PID (such as k[x]) guarantees that $V \cong k[x]^r \oplus_{i=1}^l k[x]/f_i$ as a k[x]-module. Since V is a finite-dimensional k-module (vector space!), and k[x] is an infinite-dimensional k-module, we must have r = 0, so $V \cong \bigoplus_{i=1}^l k[x]/f_i$. By the classification theorem we may assume that $f_1|f_2|\ldots|f_l$. We may also assume that each f_i is monic (has leading coefficient one). To see this, let $f = \lambda x^s + \sum_{i=0}^{s-1} a_i x^i$. Then $\lambda^{s-1}f = (\lambda x)^s + \sum_{i=0}^{s-1} a_i \lambda^{s-1-i} (\lambda x)^i$. Now $k[x]/f \cong k[x]/\lambda^{s-1}f$, since the two polynomials generate the same ideal, and $k[x]/\lambda^{s-1}f \cong k[y]/f'$, where $f'(y) = y^s + \sum_{i=0}^{s-1} a_i \lambda^{s-1-i} y^i$. This transformation can be done preserving the relationship that f_i divides f_{i+1} .

Let $\psi : \bigoplus_{i=1}^{l} k[x]/f_i \to V$ be the isomorphism, and let V_i be $\psi(k[x]/f_i)$ (the image of this term of the direct sum). If we choose a basis for V consisting of the unions of bases for each V_i , then the matrix for ϕ will be in block form, since $\phi(v) \in V_i$ for each $v \in V_i$. Thus we can restrict our attention to $\phi|_{V_i}$.

our attention to $\phi|_{V_i}$. Let $f_i = x^m + \sum_{j=1}^{m-1} a_{ij} x^j$. Notice that $\{1, x, x^2, \dots, x^{m-1}\}$ is a basis for $k[x]/f_i$. Let $v = \psi(1) \in V_i$. Then $\{v, Av, A^2v, \dots, A^{m-1}v\}$ is a basis for V_i . The matrix for $\phi|_{V_i}$ in this basis is:

$$\begin{pmatrix}
0 & 0 & \dots & 0 & -a_{i0} \\
1 & 0 & \dots & 0 & -a_{i1} \\
0 & 1 & \dots & 0 & -a_{i2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 0 & -a_{i(m-2)} \\
0 & 0 & \dots & 1 & -a_{i(m-1)}
\end{pmatrix}$$

Thus if we take as our basis for V the union of these bases for V_i we have proved the existence of *Rational Canonical Form*.

Definition 1. Let $f = x^n + \sum_{i=1}^m a_i x^i$. Then the companion matrix of f is

$$\left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & -a_{n-2} \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{array}\right)$$

Theorem 2. Every $n \times n$ matrix A is similar to a matrix B which is block-diagonal, with the *i*th block the companion matrix of a monic polynomial f_i , with $f_1|f_2| \dots |f_l$.

2. JORDAN CANONICAL FORM

For this section we assume that the field k is algebraically closed.

Definition 3. A field k is algebraically closed if for every polynomial $f \in k[x]$ there is $a \in k$ with f(a) = 0.

Recall the alternative statement of the classification of modules over a PID: instead of having $f_1|f_2|...|f_l$, we can choose to have each $f_i = p_i^{n_i}$, where p_i is a prime in k[x]. If k is algebraically closed, then the primes in k[x] are all of the form x - a for $a \in k$, so when $V = \bigoplus_i k[x]/f_i = \bigoplus_i V_i$, V_i is isomorphic to $k[x]/(x - \lambda_i)^{n_i}$ for some $\lambda_i \in k$, $n_i \in \mathbb{N}$.

Let $B = A - \lambda_i I$, and consider the k[y]-module structure on V given by $y \cdot v = Bv$. Then for $v \in V_i$, $y \cdot v = x \cdot v - \lambda v \in V_i$, so we also have $V \cong \bigoplus_i V_i$ as a k[y]-module. Note that $y^{n_i} \cdot V_i = 0$, but $y^{n_i-1} \cdot V_i \neq 0$, so the rational canonical form of $B|_{V_i}$ is

$$\left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 1 & 0 \end{array}\right)$$

The matrix of $\phi|_{V_i}$ with respect to this basis is thus

 $\begin{pmatrix} \lambda_i & 0 & \dots & 0 & 0 \\ 1 & \lambda_i & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_i & 0 \\ 0 & 0 & \dots & 1 & \lambda_i \end{pmatrix}.$

Reversing the order of the basis, we get the matrix of $\phi|_{V_i}$ is

(1)
$$\begin{pmatrix} \lambda_i & 1 & \dots & 0 & 0 \\ 0 & \lambda_i & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_i & 1 \\ 0 & 0 & \dots & 0 & \lambda_i \end{pmatrix}$$

We thus have:

Theorem 4. Any $n \times n$ matrix A is similar to a matrix J which is in block-diagonal form, where every block is of the form (1) for some λ_i .

3. Computing the Jordan Canonical Form

Recall first the definition of eigenvalues of a matrix A.

Definition 5. If A is a $n \times n$ matrix over k, then $\lambda \in k$ is an eigenvalue for A if there is $v \neq 0$ in V with $Av = \lambda v$. If $\lambda \in k$ is an eigenvalue, then $v \in V$ is an eigenvector for A if $Av = \lambda v$. The characteristic polynomial of A is $p_A(x) = \det(A - xI) \in k[x]$. An element $\lambda \in k$ is an eigenvalue for A if and only $p_A(\lambda) = 0$.

Definition 6. For $\lambda \in k$, and $m \in \mathbb{N}$, let $E_{\lambda}^{m} = \{v \in V : (A - \lambda I)^{m}v = 0\}$. Since E_{λ}^{m} is the kernel of a matrix, it is a subspace of V.

MATH 551

Lemma 7. The subspace $E_{\lambda}^{m} \neq 0$ for some m if and only if λ is an eigenvalue of A, and $E_{\lambda}^{m} \cap E_{\mu}^{n} \neq \{0\}$ for some m, n > 0 implies that $\lambda = \mu$.

Proof. Suppose first that λ is an eigenvalue of A. Then E_{λ}^{1} is the eigenspace corresponding to λ , which is thus nonempty. Conversely, suppose that E_{λ}^{m} is nonempty for some m. We will show that E_{λ}^{1} is nonempty, so λ is an eigenvalue of A. To see this, consider $v \in E_{\lambda}^{m}$ with $v \neq 0$. We may assume that $v \notin E_{\lambda}^{m-1}$ (otherwise replace m by m-1 until this is possible or until $v \in E_{\lambda}^{1}$). Consider $w = (A - \lambda I)^{m-1}v$. Since $v \notin E_{\lambda}^{m-1}$, $w \neq 0$, and $(A - \lambda I)w = (A - \lambda I)^{m}v = 0$, so $v \in E_{\lambda}^{1} \setminus \{0\}$, and thus λ is an eigenvalue.

Suppose that $v \in E_{\lambda}^{m} \cap E_{\mu}^{n}$ with $v \neq 0$. As above we may assume that m, n have been chosen minimally. Then consider $w = (A - \lambda I)^{m-1}$. Now $w \in E_{\lambda}^{1} \cap E_{\mu}^{n}$ and $w \neq 0$. Replace n by a smaller integer if necessary so that $w \notin E_{\mu}^{n-1}$. Then $w' = (A - \mu I)^{n-1}w \neq 0$, and $w' \in E_{\lambda}^{1} \cap E_{\mu}^{1}$. But this means $Aw' = \lambda w' = \mu w'$, so $\lambda = \mu$.

Proposition 8. If the characteristic polynomial of A is $p_A(x) = \prod_{\lambda} (x - \lambda)^{n_{\lambda}}$, then $E_{\lambda}^m \subseteq E_{\lambda}^{n_{\lambda}}$ for all m, and dim $E_{\lambda}^{n_{\lambda}} = n_{\lambda}$. Furthermore, $V = \bigoplus_{\lambda} E_{\lambda}^{n_{\lambda}}$.

Proof. Since the characteristic polynomial is the same for similar matrices (since det $(A - xI) = \det(C(A - xI)C^{-1}) = \det(CAC^{-1} - xI))$), we can compute the characteristic polynomial from the Jordan canonical form. We thus see that n_{λ} is the sum of the sizes of all λ Jordan blocks. Also, note that if J is a λ Jordan block, then the corresponding standard basis vectors all lie in E_{λ}^m for some $m \leq n_{\lambda}$, and are linearly independent, and by the Lemma E_{λ}^m for different eigenvalues do not intersect, so we see that $V \cong \bigoplus E_{\lambda}^{n_{\lambda}}$. Since $\sum_{\lambda} n_{\lambda} = n$, and dim $E_{\lambda}^{n_{\lambda}} \geq n_{\lambda}$, we must thus have dim $E_{\lambda}^{n_{\lambda}} = n_{\lambda}$, and $E_{\lambda}^m = E_{\lambda}^{n_{\lambda}}$ for $m > n_{\lambda}$.

Thus we have the following algorithm to compute the Jordan Canonical Form of A:

Algorithm 9. (1) Compute and factor the characteristic polynomial of A.

- (2) For each λ , compute a basis $\mathcal{B} = \{v_1, \ldots, v_k\}$ for $E_{\lambda}^{n_{\lambda}}/E_{\lambda}^{n_{\lambda}-1}$, and lift to elements of $E_{\lambda}^{n_{\lambda}}$. Add the elements $(A - \lambda I)^m v_i$ to \mathcal{B} for $1 \leq m < n_{\lambda}$.
- (3) Set $i = n_{\lambda} 1$.
- (4) Complete $\mathcal{B} \cap E_{\lambda}^{i}$ to a basis for $E_{\lambda}^{i}/E_{\lambda}^{i-1}$. Add the element $(A \lambda I)^{m}v$ to \mathcal{B} for all m and $v \in \mathcal{B}$.

- (5) If $i \ge 1$, set i = i 1, and return to the previous step.
- (6) Output \mathcal{B} the matrix for A with respect to a suitable ordering of \mathcal{B} is in Jordan Canonical Form.

Proof of correctness. To show that this algorithm works we need to check that it is always possible to complete $\mathcal{B} \cap E_{\lambda}^{k}$ to a basis for $E_{\lambda}^{k}/E_{\lambda}^{k-1}$. Suppose $\mathcal{B} \cap E_{\lambda}^{k}$ is linearly dependent. Then there are $v_{1}, \ldots, v_{s} \in \mathcal{B} \cap E_{\lambda}^{k}$ with $\sum_{i} c_{i}v_{i} = 0$, with not all $c_{i} = 0$. By the construction of \mathcal{B} we know that $v_{i} = (A - \lambda I)w_{i}$ for some $w_{i} \in \mathcal{B}$, so consider $w = \sum_{i} c_{i}w_{i}$. Then $w \neq 0$, since the w_{i} are linearly independent, and not all c_{i} are zero. In fact, by the construction of the w_{i} , we know $w \notin E_{\lambda}^{k}$. But $(A - \lambda I)w = 0$, so $w \in E_{\lambda}^{1}$, which is a contradiction, since $k \geq 1$.

Example 10. Consider the matrix

$$A = \begin{pmatrix} 2 & -4 & 2 & 2 \\ -2 & 0 & 1 & 3 \\ -2 & -2 & 3 & 3 \\ -2 & -6 & 3 & 7 \end{pmatrix}$$

Then the characteristic polynomial of A is $(x-2)^2(x-4)^2$. A basis for E_2^1 is $\{(2,1,0,2), (0,1,2,0)\}$, so since there is a two-dimensional eigenspace for 2, the Jordan canonical form will have two distinct 2 blocks, each of size one. To confirm this, check that $E_2^m = E_2^1$ for all m > 1. A basis for E_4^1 is $\{(0,1,1,1)\}$, while a basis for E_4^2 is $\{(0,1,1,1), (1,0,0,1)\}$, so we can take $\{(1,0,0,1)\}$ as a basis for E_4^2/E_4^1 . Then $(A - 4I)(1,0,0,1)^T = (0,1,1,1)^T$, so our basis is then $\{(2,1,0,2), (0,1,2,0), (0,1,1,1), (1,0,0,1)\}$. The matrix of the transformation with respect to this basis is:

$$\left(\begin{array}{rrrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{array}\right).$$

4. The minimal and characteristic polynomials

Definition 11. Let $I = \{f \in k[x] : f \cdot v = 0 \text{ for all } v \in V\} = \{f \in k[x] : f(A) = 0\}$. Then I is an ideal of k[x], so since k[x] is a PID, $I = \langle g \rangle$ for some polynomial $g \in k[x]$. We can choose g to be monic (have leading coefficient one). The polynomial g is called the minimal polynomial of the matrix A (or linear transformation ϕ).

Lemma 12. The minimal polynomial of a nonzero matrix A is nonzero.

MATH 551

Proof. Let $\{v_1, \ldots, v_n\}$ be a basis for V. Then for each $i \mathcal{O}_{v_i} = \{f \in k[x] : f(A)v_i = 0\}$ is nonzero, since $\{v_i, Av_i, A^2v_i, \ldots, A^nv_i\}$ is linearly dependent. Pick nonzero $f_i \in \mathcal{O}_{v_i}$ for each i. Then $\prod_{i=1}^n f_i \in \bigcap_{i=1}^n \mathcal{O}_{v_i} = I$, so $I \neq 0$, and thus the generator is nonzero. \Box

Proposition 13. If A is the companion matrix of a monic polynomial f, then f is the minimal polynomial of A.

Proof. First note that $\mathbf{e}_i = A^{i-1}\mathbf{e}_1$, so $\{\mathbf{e}_1, A\mathbf{e}_1, \dots, A^{n-1}\mathbf{e}_1\}$ is linearly independent. Thus the minimal polynomial of A has degree at least n. If $f = x^n + \sum_{i=0}^{n-1} c_i x^i$, then $f(A)\mathbf{e}_1 = \sum_{i=0}^{n-1} -c_i \mathbf{e}_i + \sum_{i=0}^{n-1} c_i \mathbf{e}_i = 0$ by the construction of the companion matrix. Also $f(A)\mathbf{e}_i = f(A)A^{i-1}\mathbf{e}_1 = A^{i-1}f(A)\mathbf{e}_1 = 0$, so f(A) = 0, and thus $f \in I$. If f were not the minimal polynomial, then there would be a monic $g \in I$ with g dividing f. But since f is itself monic g would have to have degree less than n, which we showed above is impossible, so f is the minimal polynomial of its companion matrix. \Box

Corollary 14. The minimal polynomial of A is f_l , if its rational canonical form has blocks the companion matrices of f_1, \ldots, f_l with $f_1|f_2|\ldots|f_l$. This is $\prod_{\lambda} (x-\lambda)^{m(\lambda)}$, where $m(\lambda)$ is the size of the largest Jordan block corresponding to the eigenvalue λ .

Proof. Since applying a polynomial to a matrix in block-diagonal form applies it to each block, we know that $f_l(A) = 0$, and thus the minimal polynomial of A divides f_l . Conversely, if f(A) = 0, then f_l divides f, since f applied to the last block of the rational canonical form is zero. Thus f_l is the minimal polynomial of A.

The second description of the minimal polynomial follows from the method to convert between the two different descriptions of modules over a PID. $\hfill \Box$

Theorem 15. If $p_A(x)$ is the characteristic polynomial of A, then $p_A(A) = 0$.

Proof. By Proposition 8 we know that the characteristic polynomial of A is $\prod_i (x - \lambda_i)^{n_i}$ where the *i*th Jordan block has eigenvalue λ_i and size n_i . Thus by Corollary 14 the minimal polynomial of A divides the characteristic polynomial of A, and thus $p_A(A) = 0$.

6