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Throughout this note, let V be a n-dimensional vector space over a
field k, and let φ : V → V be a linear map. Let B = {e1, . . . , en} be a
basis for V , and let A be the matrix for φ with respect to the basis B.
Thus φ(ej) =

∑n
i=1 aijej (so the jth column of A records φ(ej)). This

is the standard convention for talking about vector spaces over a field
k. To make these conventions coincide with Hungerford, consider V as
a right module over k. Recall that if B′ is another basis for V , then
the matrix for φ with respect to the basis B′ is CAC−1, where C is the
matrix whose ith column is the description of the ith element of B in
the basis B′.

1. Rational Canonical Form

We give a k[x]-module structure to V by setting x · v = φ(v) = Av.
Recall that the structure theorem for modules over a PID (such as k[x])
guarantees that V ∼= k[x]r ⊕l

i=1 k[x]/fi as a k[x]-module. Since V is
a finite-dimensional k-module (vector space!), and k[x] is an infinite-
dimensional k-module, we must have r = 0, so V ∼= ⊕l

i=1k[x]/fi. By the
classification theorem we may assume that f1|f2| . . . |fl. We may also
assume that each fi is monic (has leading coefficient one). To see this,
let f = λxs +

∑s−1
i=0 aix

i. Then λs−1f = (λx)s +
∑s−1

i=0 aiλ
s−1−i(λx)i.

Now k[x]/f ∼= k[x]/λs−1f , since the two polynomials generate the same
ideal, and k[x]/λs−1f ∼= k[y]/f ′, where f ′(y) = ys +

∑s−1
i=0 aiλ

s−1−iyi.
This transformation can be done preserving the relationship that fi

divides fi+1.
Let ψ : ⊕l

i=1k[x]/fi → V be the isomorphism, and let Vi be ψ(k[x]/fi)
(the image of this term of the direct sum). If we choose a basis for V
consisting of the unions of bases for each Vi, then the matrix for φ will
be in block form, since φ(v) ∈ Vi for each v ∈ Vi. Thus we can restrict
our attention to φ|Vi

.
Let fi = xm +

∑m−1
j=1 aijx

j. Notice that {1, x, x2, . . . , xm−1} is a basis

for k[x]/fi. Let v = ψ(1) ∈ Vi. Then {v, Av,A2v, . . . , Am−1v} is a basis
for Vi. The matrix for φ|Vi

in this basis is:
1
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0 0 . . . 0 −ai0

1 0 . . . 0 −ai1

0 1 . . . 0 −ai2
...

...
. . .

...
...

0 0 . . . 0 −ai(m−2)

0 0 . . . 1 −ai(m−1)

 .

Thus if we take as our basis for V the union of these bases for Vi we
have proved the existence of Rational Canonical Form.

Definition 1. Let f = xn +
∑m

i=1 aix
i. Then the companion matrix of

f is 

0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 0 −an−2

0 0 . . . 1 −an−1

 .

Theorem 2. Every n × n matrix A is similar to a matrix B which
is block-diagonal, with the ith block the companion matrix of a monic
polynomial fi, with f1|f2| . . . |fl.

2. Jordan Canonical Form

For this section we assume that the field k is algebraically closed.

Definition 3. A field k is algebraically closed if for every polynomial
f ∈ k[x] there is a ∈ k with f(a) = 0.

Recall the alternative statement of the classification of modules over
a PID: instead of having f1|f2| . . . |fl, we can choose to have each fi =
pni

i , where pi is a prime in k[x]. If k is algebraically closed, then the
primes in k[x] are all of the form x − a for a ∈ k, so when V =
⊕ik[x]/fi = ⊕iVi, Vi is isomorphic to k[x]/(x − λi)

ni for some λi ∈ k,
ni ∈ N.

Let B = A−λiI, and consider the k[y]-module structure on V given
by y · v = Bv. Then for v ∈ Vi, y · v = x · v − λv ∈ Vi, so we also have
V ∼= ⊕iVi as a k[y]-module. Note that yni · Vi = 0, but yni−1 · Vi 6= 0,
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so the rational canonical form of B|Vi
is

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

 .

The matrix of φ|Vi
with respect to this basis is thus

λi 0 . . . 0 0
1 λi . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 0
0 0 . . . 1 λi

 .

Reversing the order of the basis, we get the matrix of φ|Vi
is

(1)



λi 1 . . . 0 0
0 λi . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1
0 0 . . . 0 λi

 .

We thus have:

Theorem 4. Any n× n matrix A is similar to a matrix J which is in
block-diagonal form, where every block is of the form (1) for some λi.

3. Computing the Jordan Canonical Form

Recall first the definition of eigenvalues of a matrix A.

Definition 5. If A is a n×n matrix over k, then λ ∈ k is an eigenvalue
for A if there is v 6= 0 in V with Av = λv. If λ ∈ k is an eigenvalue,
then v ∈ V is an eigenvector for A if Av = λv. The characteristic
polynomial of A is pA(x) = det(A − xI) ∈ k[x]. An element λ ∈ k is
an eigenvalue for A if and only pA(λ) = 0.

Definition 6. For λ ∈ k, and m ∈ N, let Em
λ = {v ∈ V : (A−λI)mv =

0}. Since Em
λ is the kernel of a matrix, it is a subspace of V .
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Lemma 7. The subspace Em
λ 6= 0 for some m if and only if λ is an

eigenvalue of A, and Em
λ ∩ En

µ 6= {0} for some m,n > 0 implies that
λ = µ.

Proof. Suppose first that λ is an eigenvalue of A. Then E1
λ is the

eigenspace corresponding to λ, which is thus nonempty. Conversely,
suppose that Em

λ is nonempty for some m. We will show that E1
λ is

nonempty, so λ is an eigenvalue of A. To see this, consider v ∈ Em
λ with

v 6= 0. We may assume that v 6∈ Em−1
λ (otherwise replace m by m− 1

until this is possible or until v ∈ E1
λ). Consider w = (A − λI)m−1v.

Since v 6∈ Em−1
λ , w 6= 0, and (A − λI)w = (A − λI)mv = 0, so v ∈

E1
λ \ {0}, and thus λ is an eigenvalue.
Suppose that v ∈ Em

λ ∩ En
µ with v 6= 0. As above we may assume

thatm,n have been chosen minimally. Then consider w = (A−λI)m−1.
Now w ∈ E1

λ∩En
µ and w 6= 0. Replace n by a smaller integer if necessary

so that w 6∈ En−1
µ . Then w′ = (A − µI)n−1w 6= 0, and w′ ∈ E1

λ ∩ E1
µ.

But this means Aw′ = λw′ = µw′, so λ = µ. �

Proposition 8. If the characteristic polynomial of A is pA(x) =
∏

λ(x−
λ)nλ, then Em

λ ⊆ Enλ
λ for all m, and dimEnλ

λ = nλ. Furthermore,
V = ⊕λE

nλ
λ .

Proof. Since the characteristic polynomial is the same for similar ma-
trices (since det(A− xI) = det(C(A− xI)C−1) = det(CAC−1 − xI)),
we can compute the characteristic polynomial from the Jordan canon-
ical form. We thus see that nλ is the sum of the sizes of all λ Jordan
blocks. Also, note that if J is a λ Jordan block, then the correspond-
ing standard basis vectors all lie in Em

λ for some m ≤ nλ, and are
linearly independent, and by the Lemma Em

λ for different eigenvalues
do not intersect, so we see that V ∼= ⊕Enλ

λ . Since
∑

λ nλ = n, and
dimEnλ

λ ≥ nλ, we must thus have dimEnλ
λ = nλ, and Em

λ = Enλ
λ for

m > nλ. �

Thus we have the following algorithm to compute the Jordan Canon-
ical Form of A:

Algorithm 9. (1) Compute and factor the characteristic polyno-
mial of A.

(2) For each λ, compute a basis B = {v1, . . . , vk} for Enλ
λ /Enλ−1

λ ,
and lift to elements of Enλ

λ . Add the elements (A − λI)mvi to
B for 1 ≤ m < nλ.

(3) Set i = nλ − 1.
(4) Complete B ∩ Ei

λ to a basis for Ei
λ/E

i−1
λ . Add the element

(A− λI)mv to B for all m and v ∈ B.
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(5) If i ≥ 1, set i = i− 1, and return to the previous step.
(6) Output B - the matrix for A with respect to a suitable ordering

of B is in Jordan Canonical Form.

Proof of correctness. To show that this algorithm works we need to
check that it is always possible to complete B ∩ Ek

λ to a basis for
Ek

λ/E
k−1
λ . Suppose B ∩ Ek

λ is linearly dependent. Then there are
v1, . . . , vs ∈ B ∩ Ek

λ with
∑

i civi = 0, with not all ci = 0. By the
construction of B we know that vi = (A − λI)wi for some wi ∈ B, so
consider w =

∑
i ciwi. Then w 6= 0, since the wi are linearly indepen-

dent, and not all ci are zero. In fact, by the construction of the wi, we
know w 6∈ Ek

λ. But (A−λI)w = 0, so w ∈ E1
λ, which is a contradiction,

since k ≥ 1. �

Example 10. Consider the matrix

A =


2 −4 2 2

−2 0 1 3
−2 −2 3 3
−2 −6 3 7

 .

Then the characteristic polynomial of A is (x− 2)2(x− 4)2. A basis
for E1

2 is {(2, 1, 0, 2), (0, 1, 2, 0)}, so since there is a two-dimensional
eigenspace for 2, the Jordan canonical form will have two distinct
2 blocks, each of size one. To confirm this, check that Em

2 = E1
2

for all m > 1. A basis for E1
4 is {(0, 1, 1, 1)}, while a basis for E2

4

is {(0, 1, 1, 1), (1, 0, 0, 1)}, so we can take {(1, 0, 0, 1)} as a basis for
E2

4/E
1
4 . Then (A − 4I)(1, 0, 0, 1)T = (0, 1, 1, 1)T , so our basis is then

{(2, 1, 0, 2), (0, 1, 2, 0), (0, 1, 1, 1), (1, 0, 0, 1)}. The matrix of the trans-
formation with respect to this basis is:

2 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4

 .

4. The minimal and characteristic polynomials

Definition 11. Let I = {f ∈ k[x] : f · v = 0 for all v ∈ V } = {f ∈
k[x] : f(A) = 0}. Then I is an ideal of k[x], so since k[x] is a PID,
I = 〈g〉 for some polynomial g ∈ k[x]. We can choose g to be monic
(have leading coefficient one). The polynomial g is called the minimal
polynomial of the matrix A (or linear transformation φ).

Lemma 12. The minimal polynomial of a nonzero matrix A is nonzero.
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Proof. Let {v1, . . . , vn} be a basis for V . Then for each i Ovi
= {f ∈

k[x] : f(A)vi = 0} is nonzero, since {vi, Avi, A
2vi, . . . , A

nvi} is linearly
dependent. Pick nonzero fi ∈ Ovi

for each i. Then
∏n

i=1 fi ∈ ∩n
i=1Ovi

=
I, so I 6= 0, and thus the generator is nonzero. �

Proposition 13. If A is the companion matrix of a monic polynomial
f , then f is the minimal polynomial of A.

Proof. First note that ei = Ai−1e1, so {e1, Ae1, . . . , A
n−1e1} is lin-

early independent. Thus the minimal polynomial of A has degree
at least n. If f = xn +

∑n−1
i=0 cix

i, then f(A)e1 =
∑n−1

i=0 −ciei +∑n−1
i=0 ciei = 0 by the construction of the companion matrix. Also

f(A)ei = f(A)Ai−1e1 = Ai−1f(A)e1 = 0, so f(A) = 0, and thus f ∈ I.
If f were not the minimal polynomial, then there would be a monic
g ∈ I with g dividing f . But since f is itself monic g would have to
have degree less than n, which we showed above is impossible, so f is
the minimal polynomial of its companion matrix. �

Corollary 14. The minimal polynomial of A is fl, if its rational
canonical form has blocks the companion matrices of f1, . . . , fl with
f1|f2| . . . |fl. This is

∏
λ(x − λ)m(λ), where m(λ) is the size of the

largest Jordan block corresponding to the eigenvalue λ.

Proof. Since applying a polynomial to a matrix in block-diagonal form
applies it to each block, we know that fl(A) = 0, and thus the minimal
polynomial of A divides fl. Conversely, if f(A) = 0, then fl divides f ,
since f applied to the last block of the rational canonical form is zero.
Thus fl is the minimal polynomial of A.

The second description of the minimal polynomial follows from the
method to convert between the two different descriptions of modules
over a PID. �

Theorem 15. If pA(x) is the characteristic polynomial of A, then
pA(A) = 0.

Proof. By Proposition 8 we know that the characteristic polynomial of
A is

∏
i(x − λi)

ni where the ith Jordan block has eigenvalue λi and
size ni. Thus by Corollary 14 the minimal polynomial of A divides the
characteristic polynomial of A, and thus pA(A) = 0. �


