
MA5 ALGEBRAIC GEOMETRY - HOMEWORK 6

NOT ASSESSED

These problems vary widely in difficulty. The first 6 are more routine,
and you should all be able to do them. Question 7 is less routine, but
also doable. The other questions are harder; you will learn something
from attempting them, and the definitions are examinable.

This homework covers material that has not been assessed yet, so
some fraction of this material is guaranteed to be on the exam.

Let me know as soon as you find something that you think might be
a mistake (even if you think the correction is “obvious”).

(1) Let I = 〈x30, x1x2, x0x2, x21〉 ⊂ K[x0, x1, x2]. Show that (I :
x0) = 〈x20, x21, x2〉.

(2) Describe how to compute (I : xi) when I is a monomial ideal
(ie state a proposition and prove it).

(3) Let I = 〈x20, x21x2, x22x3〉 ⊆ S := K[x0, x1, x2, x3]. Compute the
Hilbert polynomial of S/I.

(4) Let I = 〈x0x1 − x22, x31 − x33〉 ⊆ S := K[x0, x1, x2, x3]. Compute
the Hilbert polynomial of S/I.

(5) Show that the intersection of two radical ideals is radical. Use
this to show that if X = {p1, . . . , ps} is a collection of points in
Pn, then IX = ∩si=1Ipi (assuming K is algebraically closed).

(6) Let p1 = [1 : 2 : 3], p2 = [1 : 1 : 0], and p3 = [0 : 1 : 2].
Let X = {p1, p2, p3}. Compute IX (you may want to use a
computer). Compute the Hilbert polynomial PX directly from
IX . (Hint: you already know the answer, so can check your
work).

(7) Let X ⊂ An be an irreducible variety. Show that if dim(X) = 0
then X is a point. Hint: If dim(X) = 0 then K(X) is algebraic
over K. Conclude that if X is an arbitrary affine or projective
variety with dim(X) = 0 then X is a finite collection of points.

(8) In this question you will show that the dimension of a projective
variety equals the degree of the Hilbert polynomial.
(a) Let X ⊂ An be a variety, and let H = V (`), where ` = a0+∑

aixi for some a0, . . . , an ∈ K. Show that if no irreducible
component of X is contained in H, then dim(X ∩ H) ≤
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dim(X) − 1. Why can you always choose an H satisfying
this condition?

(b) Let X ⊂ Pn be a projective variety, and H = V(`) with
` =

∑n
i=0 aixi for some a0, . . . , an ∈ K. Show that there is

an open set U ⊂ Pn for which if [a0 : a1 : · · · : an] ∈ U then
PX∩H(t) = PX(t)−PX(t−1), so deg(PX∩H) = deg(PX)−1.
Hint: this requires some of the commutative algebra of
nonzerodivisors.

(c) Combine the previous parts to conclude that if X is a sub-
variety of Pn, then dim(X) ≥ deg(PX), where PX is the
Hilbert Polynomial of X.

(d) Use the fact that if X ⊂ An with dim(X) = d then there
is σ = {i1, . . . , id} with iX ∩K[xj : j ∈ σ] = 0 to show that
deg(PX) ≥ dim(X). Hint: consider a lexicographic initial
ideal with {xj : j ∈ σ} last in the order.

(e) Conclude that dim(X) = deg(PX).
(f) Conclude that we actually have equality for general H in

part 8a. This is a special case of Krull’s principal ideal
theorem; see, for example, chapter 10 of Eisenbud’s Com-
mutative Algebra.)

(9) Let X be a d-dimensional projective variety with Hilbert poly-

nomial P (t) =
∑d

i=0 ait
i. The degree of X is add!.

(a) Show that the degree of the twisted cubic (the image of
the 3rd Veronese embedding of P1 into P3) is 3. (Hint: we
computed the Hilbert polynomial in class).

(b) Show that the degree of P1×P1 in the Segre embedding is
two.

(c) IfX is an r-dimensional variety, a generic (n−r)-dimensional
subspaces in Pn intersect X in a finite number of points.
show this for X being the image of the dth Veronese em-
bedding of P1 into Pn.

(d) Show that for the dth Veronese embedding of P1 the num-
ber of such points is equal to d.

(10) Use the approach of Question 8 (intersecting with a general hy-
perplane) to show that the degree of a d-dimensional irreducible
projective variety X equals the number of intersection points
of X with a generic subspace of dimension n− d (ie there is an
open set U ⊂ G(n − d + 1, n + 1) with L ∈ U implying that
|X ∩ L| is the degree of X.
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(11) Show that if X1 is an irreducible component of X, and X1 is
the unique component of X containing a point a ∈ X, then
Ta(X) = Ta(X1).

(12) Let X be an irreducible variety in An. The goal of this exercise
is to show that for all a ∈ X we have dim(Ta(X)) ≥ dim(X).
Recall that Ta(X) is an affine subspace (ie of the form a + L
for a subspace L), so the dimension on the left is in the sense
of linear algebra, while the dimension on the right is in the
sense introduced in this module. The proof is by induction on
dim(X).
(a) Show that the base case follows from Question 7.
(b) Show that there is an open subset U ⊂ Pn for which if b ∈

U then H = V (
∑n

i=0 bixi) satisfies rank(Jac(X)|x=a) =
rank(Jac(X ∩H)|x=a)− 1 for all a ∈ X ∩H.

(c) Use Question 8 to conclude that dim(Ta(X)) ≥ dim(X).
(13) Let X ⊆ An be an affine variety. Use Question 12 to show that

the set {a ∈ An : X is singular at a} is a Zariski closed set.
This is called the singular locus of X.

(14) Let X = {p1, . . . , ps} be a finite collection of points in Pn. Show
that the Hilbert function HX(d) is the dimension of the vector
space of functions {p1, . . . , ps} → K that are restrictions of
polynomials of degree d in K[x0, . . . , xn].

(15) The goal of this question is to apply some basic properties of
Hilbert polynomials to prove some classical theorems from al-
gebraic and projective geometry. The questions are in reverse
chronological order (ie newest first), though the statements are
the modern formulations. For hints, and many nice extensions,
see Cayley-Bacharach theorems and conjectures by Eisenbud,
Green, Harris, Bulletin of the AMS, 33, 1996. (link).
(a) (Chasles 1885). Let f, g ∈ C[x0, x1, x2] be two polyno-

mials of degree three with V(f) ∩ V(g) equal to nine dis-
tinct points (recall that by Bézout we knew that as long as
gcd(f, g) = 1 then this number was at most nine). Show
that if h is any other homogeneous polynomial of degree
three that vanishes at eight of these points, then it must
also vanish at the ninth. Hint: Use the previous question.
If Y is eight of the nine points, and X is all of them, why
do you know that HX(3) = HY (3)?

(b) (Pascal 1640). A conic in P2 is a variety of the form V(f)
for f ∈ K[x0, x1, x2] of degree two (for example, a circle).
Show that if a hexagon is inscribed in a conic in P2, then
the opposite sides of the hexagon meet in three collinear

http://www.ams.org/journals/bull/1996-33-03/S0273-0979-96-00666-0/S0273-0979-96-00666-0.pdf
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points. This hexagon need not be convex, so the ques-
tion really asks: if p1, q2, p3, q1, p2, q3 are six distinct points
on the conic, and ri is the intersection point of piqj and
pjqi for {1, 2, 3} = {i, j, k}, then r1, r2, r3 are collinear (the
strange ordering of the vertices of the hexagon is chosen to
make this description simpler). Hint: Show that this is a
corollary of Chasles theorem. Your cubic polynomials do
not need to be irreducible; they could be a product of a
polynomial of degree two (a “quadric”) and one of degree
one, or of three polynomials of degree one.

(c) (Pappus, 4th Century AD). Let L andM be two lines in the
plane. Let p1, p2, p3 be distinct points of L, and let q1, q2, q3
be distinct points of M , all distinct from the point L∩M .
For 1 ≤ j < k ≤ 3 let rjk be the point of intersection
of the lines pjqk and pkqj. Show that r12, r13, and r23 are
collinear. Hint: Deduce this from Pascal’s theorem. Your
proof should of Pascal’s theorem should not have needed
the conic V(f) to be irreducible.


