MA 3G6 COMMUTATIVE ALGEBRA: INTEGRAL

CLOSURE

DIANE MACLAGAN

Exercise 1. (1) Show that Clx] is integral over C[z?].

(2)
(3)

Show that Z[1/3] is not integral over Z.
Let R = K[|, when K is a field, and let f € R. Let U = {f*:
i > 0}. When is R[U '] integral over R?

Solution:

(1)

(2)

Let f = Y7 jaa’ € Cla]. Write f, = S a27) and f, =
f — f.. We then have f. € C[z?], and f = f. + f,. Note that
fg € C[z?], so f satisfies the monic polynomial (y — fe)2 —f2=
y? —2fy+ (f2— f%) =0, so f is integral over C[z ]

Suppose 1/3 satisfied a monic equatlon " + ZZ o @;x" with
a; € Z for all i, so (1/3)" + 321 a;(1/3)" = 0. Multiplying
both sides by 3", we get 1 + ZZ:O a;3"~" = 0. This reduces
modulo 3 to 1 = 0, which is a contradiction, so we conclude
that 1/3 is not integral over Z.

If R[U™'] is integral over R, then 1/f must satisfy a monic
equation with coefficients in R: (1/f)" + Y1, a,(l/f)i =
Multiplying by f", we get the equation 1/1 + Z lf"_i/l =
0/1 in R[U']. This implies that 1 = f(= Y7, azf” 1)), We
are using here that R is a domain, so the map R — R[U™'] is
an injection. Thus f is must be a unit in R. This necessary
condition also suffices, as if f is a unit we have R[U™!] & R.
The only units of R = K|[z| are the elements of K, so for any
nonconstant polynomial f the localization R[U ™! is not integral
over R.

Exercise 2. Show that every element of R[sy, ..., s,,]| can be written as
a polynomial in the s; with coefficients in R, and this subring contains
all such polynomials.

Solution: Since R[sq,. .., S,,] is a subring containing R and s, . .., Sy,
it must contain all products and sums of these elements, so must con-
tain all polynomials in the s; with coefficients in R. It thus suffices to
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observe that these elements form a subring, as the set of such poly-
nomials is closed under addition, multiplication, and taking additive
inverses.

Exercise 3. We have v/2 and v/3 both integral over Z. Show directly
that v/2++/3 is integral over Z by giving the monic equation it satisfies.
Repeat this with 2 and 3 replaced by your favourite smallish positive
squarefree integers, and square roots replaced by larger roots. Note how
much easier (thanks to the corollary of the Cayley-Hamilton theorem!)
the proof of the last part of the theorem was than your computations.

Solution: One method is to write z = /2 + \/§, and then observe
that 22 = 5 + 2v/6, so (22 — 5)? = 24, so V2 + /3 satisfies the monic
polynomial z* — 1022 + 1 = 0. This gets harder for more complicated
expressions, and particularly for more complicated polynomials in rad-

icals (such as \/§(\5/32 - 7\3/3)2 — 8\/ﬁ) One method to solve this in
general is to use Grobner bases: if p is a polynomial in radicals, we
add an extra variable y for each radical {/a, replace the radicals in
p by these variables, and consider the ideal generated by p and the
expressions y™ — a. The required polynomial is the generator of the
intersection of this ideal with the original polynomial ring.

Exercise 4. Let n be a squarefree integer (no divisible by m? for any
integer m), and let K = Q(y/n). Let a = (1 4+ +/n)/2if n =1 mod 4,
and o« = /n if n =2 or 3 mod 4 (the case n =0 mod 4 is ruled out
by the squarefree hypothesis). Show that the integral closure of Z in
Q(v/n) is Zla).

Solution: We first prove the following lemma, which is of independent
interest: If h € Z[z] is a monic polynomial, and h = fg with f, g € Qx|
monic, then f,g € Z[z]. Indeed, suppose that m is the smallest com-
mon denominator of the coefficients of f, and n is the smallest common
denominator of the coefficients of g, so the coeflicients of mf, ng € Z[x|
each have no common factor. If one of m,n is not 1, let p be a prime
factor of mn. Let 7 be the largest integer for which the coefficient of
x' in mf is not divisible by p, and let j be the corresponding integer
for ng. These must exist, as the coefficients of m f and ng do not have
a common factor. Wﬁte mf =>,_,az', and ng = Y a—0bgz?. Then
the coefficient of z'*7 in (mf)(ng) = mnh is 32, .11 4ir; @ibg. The
term a;b; of this sum is not divisible by p, but each other term is by
the choice of 7,7, as either [ > ¢ or ¢ > j. Thus this coefficient is
not divisible by p. This contradicts the fact that h € Z|x], so every
coefficient of mnh is divisible by p. This completes the proof of the
lemma.
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Now, every element (3 of Q(y/n) can be written in the form a+by/n for
some a,b € Q. The element J3 is a root of the polynomial (z—a)?—b*n =
1? — 2ax + (a* — b*n). If B satisfies a monic polynomial p with integral
coefficients, then we can divide this by x? — 2az + (a? — b?n) to see
that either 2? — 2ax + (a? — b*n) divides p, so 3 also satisfies a linear
equation with rational coefficients, so § € Q. In the second case we
must have § € Z by the lemma of the first paragraph, so b =0, a € Z.
In the first case, we must have x? — 2ax + (a* — b?n) € Z[x], again by
the lemma of the first paragraph.

Thus if 3 is integral over Z we must have 2a,a? — b*n € Z. If a € Z,
then 2a € Z. The assumption a®? — b?>n € Z then implies that b*n € Z,
so since n is squarefree we must have b € Z.

Otherwise we have a = a’/2 for some odd o’ € Z. Since a’*/4—b*n €
Z, we must also have b = ' /2 where V' is an odd integer. This implies
that a’*— (b*n = 0 modulo 4. Since @/, are odd, we have a’> = V> = 1
mod 4, so n =1 mod 4. Thus this case (¢ = a’/2) does not happen
unless n =1 mod 4.

We thus conclude that if n = 2,3 mod 4, then a + by/n is integral
over Z if and only if a,b € Z, so the integral closure of Z in Q(y/n) is
Zly/n]. If n =1 mod 4 then a + by/n if integral over Z if and only
if 2a,2b € Z, and 2a = 2b mod 2. As /n = 2(1 + v/2)/2, all such
elements are in Z[(1 + y/n)/2, so this is the integral closure of Z in

Q(v/n).

Exercise 5. We claim that C is nonsingular at all points (a,b) € C
if and only if C[z,y]/(f) is normal. Check this for the polynomial
f=x+y+1 (ie., confirm that C' is nonsingular at all points, and
that C[z,y]/(f) is integrally closed in its field of fractions).

Solution: We have df/0x = 0f0y = 1, so C is nonsingular at all
points (a,b) € C' = {(a,b) € C*:a+b+1=0}. We have C[z,y]/{x +
y + 1) = C[z], so the field of fractions of C[z,y|/(f) is isomorphic to
C(x). If g/h € C(x) is integral over C[z]|, where g, h are relatively
prime, then (g/h)" + " ai(g/h)" = 0 for some choices of a; € C|z],
and so, clearing denominators, ¢" + > a;g'h"~* = 0. This shows
that ¢" is a multiple of h, so ¢ and h must have a common factor,
contradicting our assumption. We thus conclude that Clz] is integrally
closed in its field of fractions, and thus so is C[z, y]/(z +y + 1).



