
MA 3G6 COMMUTATIVE ALGEBRA: INTEGRAL
CLOSURE

DIANE MACLAGAN

Exercise 1. (1) Show that C[x] is integral over C[x2].
(2) Show that Z[1/3] is not integral over Z.
(3) Let R = K[x], when K is a field, and let f ∈ R. Let U = {f i :

i ≥ 0}. When is R[U−1] integral over R?

Solution:

(1) Let f =
∑r

i=0 aix
i ∈ C[x]. Write fe =

∑br/2c
i=0 aix

i, and fo =
f − fe. We then have fe ∈ C[x2], and f = fe + fo. Note that
f 2
o ∈ C[x2], so f satisfies the monic polynomial (y− fe)2− f 2

o =
y2 − 2fey + (f 2

e − f 2
o ) = 0, so f is integral over C[x2].

(2) Suppose 1/3 satisfied a monic equation xn +
∑n−1

i=0 aix
i with

ai ∈ Z for all i, so (1/3)n +
∑n−1

i=0 ai(1/3)i = 0. Multiplying

both sides by 3n, we get 1 +
∑n−1

i=0 ai3
n−i = 0. This reduces

modulo 3 to 1 = 0, which is a contradiction, so we conclude
that 1/3 is not integral over Z.

(3) If R[U−1] is integral over R, then 1/f must satisfy a monic
equation with coefficients in R: (1/f)n +

∑n−1
i=0 ai(1/f)i = 0.

Multiplying by fn, we get the equation 1/1 +
∑n−1

i=0 aif
n−i/1 =

0/1 in R[U−1]. This implies that 1 = f(−
∑n−1

i=0 aif
n−1−i)). We

are using here that R is a domain, so the map R → R[U−1] is
an injection. Thus f is must be a unit in R. This necessary
condition also suffices, as if f is a unit we have R[U−1] ∼= R.
The only units of R = K[x] are the elements of K, so for any
nonconstant polynomial f the localization R[U−1 is not integral
over R.

Exercise 2. Show that every element of R[s1, . . . , sm] can be written as
a polynomial in the si with coefficients in R, and this subring contains
all such polynomials.

Solution: Since R[s1, . . . , sm] is a subring containing R and s1, . . . , sm,
it must contain all products and sums of these elements, so must con-
tain all polynomials in the si with coefficients in R. It thus suffices to
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observe that these elements form a subring, as the set of such poly-
nomials is closed under addition, multiplication, and taking additive
inverses.

Exercise 3. We have
√

2 and
√

3 both integral over Z. Show directly
that

√
2+
√

3 is integral over Z by giving the monic equation it satisfies.
Repeat this with 2 and 3 replaced by your favourite smallish positive
squarefree integers, and square roots replaced by larger roots. Note how
much easier (thanks to the corollary of the Cayley-Hamilton theorem!)
the proof of the last part of the theorem was than your computations.

Solution: One method is to write x =
√

2 +
√

3, and then observe
that x2 = 5 + 2

√
6, so (x2 − 5)2 = 24, so

√
2 +
√

3 satisfies the monic
polynomial x4 − 10x2 + 1 = 0. This gets harder for more complicated
expressions, and particularly for more complicated polynomials in rad-

icals (such as
√

3( 5
√

5
2 − 7 3

√
3)2 − 8

√
11). One method to solve this in

general is to use Gröbner bases: if p is a polynomial in radicals, we
add an extra variable y for each radical m

√
a, replace the radicals in

p by these variables, and consider the ideal generated by p and the
expressions ym − a. The required polynomial is the generator of the
intersection of this ideal with the original polynomial ring.

Exercise 4. Let n be a squarefree integer (no divisible by m2 for any
integer m), and let K = Q(

√
n). Let α = (1 +

√
n)/2 if n ≡ 1 mod 4,

and α =
√
n if n ≡ 2 or 3 mod 4 (the case n ≡ 0 mod 4 is ruled out

by the squarefree hypothesis). Show that the integral closure of Z in
Q(
√
n) is Z[α].

Solution: We first prove the following lemma, which is of independent
interest: If h ∈ Z[x] is a monic polynomial, and h = fg with f, g ∈ Q[x]
monic, then f, g ∈ Z[x]. Indeed, suppose that m is the smallest com-
mon denominator of the coefficients of f , and n is the smallest common
denominator of the coefficients of g, so the coefficients of mf, ng ∈ Z[x]
each have no common factor. If one of m,n is not 1, let p be a prime
factor of mn. Let i be the largest integer for which the coefficient of
xi in mf is not divisible by p, and let j be the corresponding integer
for ng. These must exist, as the coefficients of mf and ng do not have
a common factor. Write mf =

∑r
l=0 alx

l, and ng =
∑s

q=0 bqx
q. Then

the coefficient of xi+j in (mf)(ng) = mnh is
∑

(l,q):l+q=i+j albq. The
term aibj of this sum is not divisible by p, but each other term is by
the choice of i, j, as either l > i or q > j. Thus this coefficient is
not divisible by p. This contradicts the fact that h ∈ Z[x], so every
coefficient of mnh is divisible by p. This completes the proof of the
lemma.
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Now, every element β of Q(
√
n) can be written in the form a+b

√
n for

some a, b ∈ Q. The element β is a root of the polynomial (x−a)2−b2n =
x2− 2ax+ (a2− b2n). If β satisfies a monic polynomial p with integral
coefficients, then we can divide this by x2 − 2ax + (a2 − b2n) to see
that either x2 − 2ax + (a2 − b2n) divides p, so β also satisfies a linear
equation with rational coefficients, so β ∈ Q. In the second case we
must have β ∈ Z by the lemma of the first paragraph, so b = 0, a ∈ Z.
In the first case, we must have x2 − 2ax + (a2 − b2n) ∈ Z[x], again by
the lemma of the first paragraph.

Thus if β is integral over Z we must have 2a, a2− b2n ∈ Z. If a ∈ Z,
then 2a ∈ Z. The assumption a2 − b2n ∈ Z then implies that b2n ∈ Z,
so since n is squarefree we must have b ∈ Z.

Otherwise we have a = a′/2 for some odd a′ ∈ Z. Since a′2/4−b2n ∈
Z, we must also have b = b′/2 where b′ is an odd integer. This implies
that a′2−(b′2n ≡ 0 modulo 4. Since a′, b′ are odd, we have a′2 ≡ b′2 ≡ 1
mod 4, so n ≡ 1 mod 4. Thus this case (a = a′/2) does not happen
unless n ≡ 1 mod 4.

We thus conclude that if n ≡ 2, 3 mod 4, then a + b
√
n is integral

over Z if and only if a, b ∈ Z, so the integral closure of Z in Q(
√
n) is

Z[
√
n]. If n ≡ 1 mod 4 then a + b

√
n if integral over Z if and only

if 2a, 2b ∈ Z, and 2a ≡ 2b mod 2. As
√
n = 2(1 +

√
2)/2, all such

elements are in Z[(1 +
√
n)/2, so this is the integral closure of Z in

Q(
√
n).

Exercise 5. We claim that C is nonsingular at all points (a, b) ∈ C
if and only if C[x, y]/〈f〉 is normal. Check this for the polynomial
f = x + y + 1 (i.e., confirm that C is nonsingular at all points, and
that C[x, y]/〈f〉 is integrally closed in its field of fractions).

Solution: We have ∂f/∂x = ∂f∂y = 1, so C is nonsingular at all
points (a, b) ∈ C = {(a, b) ∈ C2 : a+ b+ 1 = 0}. We have C[x, y]/〈x+
y + 1〉 ∼= C[x], so the field of fractions of C[x, y]/〈f〉 is isomorphic to
C(x). If g/h ∈ C(x) is integral over C[x], where g, h are relatively
prime, then (g/h)n +

∑n
i=0 ai(g/h)i = 0 for some choices of ai ∈ C[x],

and so, clearing denominators, gn +
∑n

i=0 aig
ihn−i = 0. This shows

that gn is a multiple of h, so g and h must have a common factor,
contradicting our assumption. We thus conclude that C[x] is integrally
closed in its field of fractions, and thus so is C[x, y]/〈x+ y + 1〉.


