MA 3G6 COMMUTATIVE ALGEBRA: INTEGRAL CLOSURE

DIANE MACLAGAN

Exercise 1. (1) Show that $\mathbb{C}[x]$ is integral over $\mathbb{C}\left[x^{2}\right]$.
(2) Show that $\mathbb{Z}[1 / 3]$ is not integral over \mathbb{Z}.
(3) Let $R=K[x]$, when K is a field, and let $f \in R$. Let $U=\left\{f^{i}\right.$: $i \geq 0\}$. When is $R\left[U^{-1}\right]$ integral over R ?

Solution:

(1) Let $f=\sum_{i=0}^{r} a_{i} x^{i} \in \mathbb{C}[x]$. Write $f_{e}=\sum_{i=0}^{\lfloor r / 2\rfloor} a_{i} x^{i}$, and $f_{o}=$ $f-f_{e}$. We then have $f_{e} \in \mathbb{C}\left[x^{2}\right]$, and $f=f_{e}+f_{o}$. Note that $f_{o}^{2} \in \mathbb{C}\left[x^{2}\right]$, so f satisfies the monic polynomial $\left(y-f_{e}\right)^{2}-f_{o}^{2}=$ $y^{2}-2 f_{e} y+\left(f_{e}^{2}-f_{o}^{2}\right)=0$, so f is integral over $\mathbb{C}\left[x^{2}\right]$.
(2) Suppose $1 / 3$ satisfied a monic equation $x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}$ with $a_{i} \in \mathbb{Z}$ for all i, so $(1 / 3)^{n}+\sum_{i=0}^{n-1} a_{i}(1 / 3)^{i}=0$. Multiplying both sides by 3^{n}, we get $1+\sum_{i=0}^{n-1} a_{i} 3^{n-i}=0$. This reduces modulo 3 to $1=0$, which is a contradiction, so we conclude that $1 / 3$ is not integral over \mathbb{Z}.
(3) If $R\left[U^{-1}\right]$ is integral over R, then $1 / f$ must satisfy a monic equation with coefficients in $R:(1 / f)^{n}+\sum_{i=0}^{n-1} a_{i}(1 / f)^{i}=0$. Multiplying by f^{n}, we get the equation $1 / 1+\sum_{i=0}^{n-1} a_{i} f^{n-i} / 1=$ $0 / 1$ in $R\left[U^{-1}\right]$. This implies that $\left.1=f\left(-\sum_{i=0}^{n-1} a_{i} f^{n-1-i}\right)\right)$. We are using here that R is a domain, so the map $R \rightarrow R\left[U^{-1}\right]$ is an injection. Thus f is must be a unit in R. This necessary condition also suffices, as if f is a unit we have $R\left[U^{-1}\right] \cong R$. The only units of $R=K[x]$ are the elements of K, so for any nonconstant polynomial f the localization $R\left[U^{-1}\right.$ is not integral over R.

Exercise 2. Show that every element of $R\left[s_{1}, \ldots, s_{m}\right]$ can be written as a polynomial in the s_{i} with coefficients in R, and this subring contains all such polynomials.

Solution: Since $R\left[s_{1}, \ldots, s_{m}\right]$ is a subring containing R and s_{1}, \ldots, s_{m}, it must contain all products and sums of these elements, so must contain all polynomials in the s_{i} with coefficients in R. It thus suffices to
observe that these elements form a subring, as the set of such polynomials is closed under addition, multiplication, and taking additive inverses.
Exercise 3. We have $\sqrt{2}$ and $\sqrt{3}$ both integral over \mathbb{Z}. Show directly that $\sqrt{2}+\sqrt{3}$ is integral over \mathbb{Z} by giving the monic equation it satisfies. Repeat this with 2 and 3 replaced by your favourite smallish positive squarefree integers, and square roots replaced by larger roots. Note how much easier (thanks to the corollary of the Cayley-Hamilton theorem!) the proof of the last part of the theorem was than your computations.
Solution: One method is to write $x=\sqrt{2}+\sqrt{3}$, and then observe that $x^{2}=5+2 \sqrt{6}$, so $\left(x^{2}-5\right)^{2}=24$, so $\sqrt{2}+\sqrt{3}$ satisfies the monic polynomial $x^{4}-10 x^{2}+1=0$. This gets harder for more complicated expressions, and particularly for more complicated polynomials in radicals (such as $\left.\sqrt{3}\left(\sqrt[5]{5}^{2}-7 \sqrt[3]{3}\right)^{2}-8 \sqrt{11}\right)$. One method to solve this in general is to use Gröbner bases: if p is a polynomial in radicals, we add an extra variable y for each radical $\sqrt[m]{a}$, replace the radicals in p by these variables, and consider the ideal generated by p and the expressions $y^{m}-a$. The required polynomial is the generator of the intersection of this ideal with the original polynomial ring.

Exercise 4. Let n be a squarefree integer (no divisible by m^{2} for any integer m), and let $K=\mathbb{Q}(\sqrt{n})$. Let $\alpha=(1+\sqrt{n}) / 2$ if $n \equiv 1 \bmod 4$, and $\alpha=\sqrt{n}$ if $n \equiv 2$ or $3 \bmod 4$ (the case $n \equiv 0 \bmod 4$ is ruled out by the squarefree hypothesis). Show that the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$ is $\mathbb{Z}[\alpha]$.
Solution: We first prove the following lemma, which is of independent interest: If $h \in \mathbb{Z}[x]$ is a monic polynomial, and $h=f g$ with $f, g \in \mathbb{Q}[x]$ monic, then $f, g \in \mathbb{Z}[x]$. Indeed, suppose that m is the smallest common denominator of the coefficients of f, and n is the smallest common denominator of the coefficients of g, so the coefficients of $m f, n g \in \mathbb{Z}[x]$ each have no common factor. If one of m, n is not 1 , let p be a prime factor of $m n$. Let i be the largest integer for which the coefficient of x^{i} in $m f$ is not divisible by p, and let j be the corresponding integer for $n g$. These must exist, as the coefficients of $m f$ and $n g$ do not have a common factor. Write $m f=\sum_{l=0}^{r} a_{l} x^{l}$, and $n g=\sum_{q=0}^{s} b_{q} x^{q}$. Then the coefficient of x^{i+j} in $(m f)(n g)=m n h$ is $\sum_{(l, q): l+q=i+j} a_{l} b_{q}$. The term $a_{i} b_{j}$ of this sum is not divisible by p, but each other term is by the choice of i, j, as either $l>i$ or $q>j$. Thus this coefficient is not divisible by p. This contradicts the fact that $h \in \mathbb{Z}[x]$, so every coefficient of mnh is divisible by p. This completes the proof of the lemma.

Now, every element β of $\mathbb{Q}(\sqrt{n})$ can be written in the form $a+b \sqrt{n}$ for some $a, b \in \mathbb{Q}$. The element β is a root of the polynomial $(x-a)^{2}-b^{2} n=$ $x^{2}-2 a x+\left(a^{2}-b^{2} n\right)$. If β satisfies a monic polynomial p with integral coefficients, then we can divide this by $x^{2}-2 a x+\left(a^{2}-b^{2} n\right)$ to see that either $x^{2}-2 a x+\left(a^{2}-b^{2} n\right)$ divides p, so β also satisfies a linear equation with rational coefficients, so $\beta \in \mathbb{Q}$. In the second case we must have $\beta \in \mathbb{Z}$ by the lemma of the first paragraph, so $b=0, a \in \mathbb{Z}$. In the first case, we must have $x^{2}-2 a x+\left(a^{2}-b^{2} n\right) \in \mathbb{Z}[x]$, again by the lemma of the first paragraph.

Thus if β is integral over \mathbb{Z} we must have $2 a, a^{2}-b^{2} n \in \mathbb{Z}$. If $a \in \mathbb{Z}$, then $2 a \in \mathbb{Z}$. The assumption $a^{2}-b^{2} n \in \mathbb{Z}$ then implies that $b^{2} n \in \mathbb{Z}$, so since n is squarefree we must have $b \in \mathbb{Z}$.

Otherwise we have $a=a^{\prime} / 2$ for some odd $a^{\prime} \in \mathbb{Z}$. Since $a^{\prime 2} / 4-b^{2} n \in$ \mathbb{Z}, we must also have $b=b^{\prime} / 2$ where b^{\prime} is an odd integer. This implies that $a^{\prime 2}-\left(b^{\prime 2} n \equiv 0\right.$ modulo 4 . Since a^{\prime}, b^{\prime} are odd, we have $a^{\prime 2} \equiv b^{\prime 2} \equiv 1$ $\bmod 4$, so $n \equiv 1 \bmod 4$. Thus this case $\left(a=a^{\prime} / 2\right)$ does not happen unless $n \equiv 1 \bmod 4$.

We thus conclude that if $n \equiv 2,3 \bmod 4$, then $a+b \sqrt{n}$ is integral over \mathbb{Z} if and only if $a, b \in \mathbb{Z}$, so the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$ is $\mathbb{Z}[\sqrt{n}]$. If $n \equiv 1 \bmod 4$ then $a+b \sqrt{n}$ if integral over \mathbb{Z} if and only if $2 a, 2 b \in \mathbb{Z}$, and $2 a \equiv 2 b \bmod 2$. As $\sqrt{n}=2(1+\sqrt{2}) / 2$, all such elements are in $\mathbb{Z}[(1+\sqrt{n}) / 2$, so this is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$.
Exercise 5. We claim that C is nonsingular at all points $(a, b) \in C$ if and only if $\mathbb{C}[x, y] /\langle f\rangle$ is normal. Check this for the polynomial $f=x+y+1$ (i.e., confirm that C is nonsingular at all points, and that $\mathbb{C}[x, y] /\langle f\rangle$ is integrally closed in its field of fractions).

Solution: We have $\partial f / \partial x=\partial f \partial y=1$, so C is nonsingular at all points $(a, b) \in C=\left\{(a, b) \in \mathbb{C}^{2}: a+b+1=0\right\}$. We have $\mathbb{C}[x, y] /\langle x+$ $y+1\rangle \cong \mathbb{C}[x]$, so the field of fractions of $\mathbb{C}[x, y] /\langle f\rangle$ is isomorphic to $\mathbb{C}(x)$. If $g / h \in \mathbb{C}(x)$ is integral over $\mathbb{C}[x]$, where g, h are relatively prime, then $(g / h)^{n}+\sum_{i=0}^{n} a_{i}(g / h)^{i}=0$ for some choices of $a_{i} \in \mathbb{C}[x]$, and so, clearing denominators, $g^{n}+\sum_{i=0}^{n} a_{i} g^{i} h^{n-i}=0$. This shows that g^{n} is a multiple of h, so g and h must have a common factor, contradicting our assumption. We thus conclude that $\mathbb{C}[x]$ is integrally closed in its field of fractions, and thus so is $\mathbb{C}[x, y] /\langle x+y+1\rangle$.

