
MA 3G6 COMMUTATIVE ALGEBRA: INTEGRAL
CLOSURE

DIANE MACLAGAN

These notes and exercises substitute for lectures 17 and 18 (Wednes-
day 11/2/15 and Friday 13/2/15). As you read through them, stop
and try the exercises before moving on. In later weeks I will assume
that you have done the exercises. Answers to the exercises for these
notes will be available next week (Week 7).

This week we will see an advantage of the abstract commutative
algebra approach: we will see that the same commutative algebra will
explain the ring of integers from algebraic number theory and resolution
of singularity of curves from algebraic number theory.

These notes mostly follow Reid, Chapter 4.

Definition 1. Let R be a ring. A ring S is an R-algebra if there is a
homomorphism φ : R→ S. This makes S into an R-module: for r ∈ R
and s ∈ S we set rs = φ(r)s. In most applications we can replace R
by φ(R), so can assume that R ⊂ S. We say that an R-algebra S is
finite over R if S is a finitely generated R-module.

Example 2. Let R = Q and S = Q(
√

3). Then S is finite over R.

Definition 3. Let R be a ring, and let S be an R-algebra. An element
s ∈ S is integral over R if there is an monic polynomial f(y) = yn +
a1y

n−1 + · · ·+an ∈ R[y] with f(s) = 0. If every element of S is integral
over R, then we say S is integral over R.

This usage of the word “integral” is unrelated to the “integral” in
“integral domain”. Avoiding confusion between these two concepts is
one of our motivations for using “domain” instead of “integral domain”
in commutative algebra.

Example 4. (1) Let S = Z[(1 +
√

5)/2]. Then φ = (1 +
√

5)/2
is integral over Z, as φ2 − φ − 1 = 0, so φ satisfies a monic
equation with coefficients in Z. It will follow from the theorem
below that S is integral over Z.

(2) Let S = Z[(1 +
√

3)/2]. Then S is not integral over Z be-
cause (1 +

√
3)/2 does not satisfy any monic polynomial with

coefficients in Z (why?!)
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Exercise 5. (1) Show that C[x] is integral over C[x2].
(2) Show that Z[1/3] is not integral over Z.
(3) Let R = K[x], when K is a field, and let f ∈ R. Let U = {f i :

i ≥ 0}. When is R[U−1] integral over R?

If R is a ring, S is a ring containing R, and s1, . . . , sm are elements of
S, then by R[s1, . . . , sm] we mean the smallest subring of S containing
R and s1, . . . , sm.

Exercise 6. Show that every element of R[s1, . . . , sm] can be written as
a polynomial in the si with coefficients in R, and this subring contains
all such polynomials.

The following proposition uses our corollary to the Cayley-Hamilton
theorem to give a relationship between an extension ring being finite
and being integral.

Proposition 7. Let S be an R-algebra, with R ⊂ S. Fix s ∈ S. The
following are equivalent:

(1) s is integral over R;
(2) The subring R[s] ⊂ S is finite over R;
(3) There is an R-subalgebra R′ ⊂ S such that R[s] ⊂ R′ and R′ is

finite over R.

Proof.

1 =⇒ 2 If s satisfies a relation sn + a1s
n−1 + · · · + an = 0 with ai ∈ R,

then R[s] is generated by 1, s, s2, . . . , sn−1. Indeed, if f ∈ R[s]
is a polynomial in s of degree at least n, then we can use this
relation to lower the degree of the polynomial by one. This
shows that every element of R[s] can be written as an R-linear
combination of 1, s, . . . , sn−1, so R[s] is a finitely generated R-
module.

2 =⇒ 3 We can take R′ = R[s].
3 =⇒ 1 Consider the R-module homomorphism φ : R′ → R′ given by

φ(r′) = sr′. Since R′ is a finitely generated R-module, phi sat-
isfies a relation of the form φn + a1φ

n−1 + · · · + an = 0 (this
follows from the corollary to the Cayley-Hamilton theorem ap-
plied to the ideal I = 〈1〉 = R). Applying this to 1R, we get
sn + a1s

n−1 + · · ·+ an = 0, so s is integral over R as required.

�

Theorem 8. Let S be an R-algebra, with R ⊂ S.

(1) Let S ′ be a ring containing S such that S ′ finite over S. If S is
an R-algebra that is finite over R, then S ′ is finite over R.
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(2) If s1, . . . , sm ∈ S are integral over R, then R[s1, . . . , sm] is finite
over R, and thus every f ∈ R[s1, . . . , sm] is integral over R.

(3) If R ⊂ S ⊂ S ′, S ′ is integral over S, and S is integral over R,
then S ′ is integral over R.

(4) The subset R̃ = {s ∈ S : s is integral overR} ⊂ S is a subring

of S. If s ∈ S is integral over R̃, then s ∈ R̃ (so ˜̃R = R̃).

Proof. (1) If s1, . . . , sm generate S as an R-module, and s′1, . . . , s
′
n

generate S ′ as an S-module, then {s′isj : 1 ≤ i ≤ m, 1 ≤
j ≤ n} generate S ′ as an R-module. Indeed, if s ∈ S ′, then
s =

∑n
i=1 ais

′
i for ai ∈ S. We can write ai =

∑m
j=1 rijsj

for some rij ∈ R, so s =
∑n

i=1 ais
′
i =

∑n
i=1(

∑m
j=1 rijsj)s

′
i =∑n

i=1

∑m
j=1 rij(s

′
isj).

(2) The proof is by induction on m. The base case is m = 1,
when Proposition 7 implies that R[s1] is finite over R. The
induction step uses the previous part, since R[s1, . . . , sm] =
R[s1, . . . , sm−1][sm]. This shows that R[s1, . . . , sm] is finite over
R. Thus any f ∈ R[s1, . . . , sm] satisfies the hypotheses of part
3 of Proposition 7, and so is integral over R.

(3) Let s′ ∈ S ′. Then s′ satisfies a relation s′n + b1s
′n−1 + · · ·+ bn =

0, where all the bi are integral over R. Thus R[b1, . . . , bn] is
finite over R, and R[b1, . . . , bn, s

′] is finite over R[b1, . . . , bn], so
R[b1, . . . , bn, s

′] is finite over R by the first part. Thus s′ satisfies
the hypotheses of part 3 of Proposition 7, and so is integral over
R. Since s′ was arbitrary, S ′ is integral over R.

(4) For the first part we need to show that R̃ is closed under in-
verses, addition and multiplication. Consider s1, s2 ∈ R̃. Then
s1, s2 are integral over R, so R[s1, s2] is finite over R, and thus
by the second part −s1, s1+s2 and s1s2 are integral over R. The
second part follows from the previous part of the proposition.

�

Exercise 9. We have
√

2 and
√

3 both integral over Z. Show directly
that

√
2+
√

3 is integral over Z by giving the monic equation it satisfies.
Repeat this with 2 and 3 replaced by your favourite smallish positive
squarefree integers, and square roots replaced by larger roots. Note how
much easier (thanks to the corollary of the Cayley-Hamilton theorem!)
the proof of the last part of the theorem was than your computations.

Definition 10. Let R, S be rings with R ⊂ S. The subring R̃ = {s ∈
S : s is integral overR} of S is the integral closure of R in S. If R̃ = R,
then R is integrally closed in S. If R is a domain, and R is integrally
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closed in its field of fractions, then we say that R is integrally closed,
or normal.

Example 11. (1) Consider Z ⊂ Q(
√

3). Then the integral closure
of Z in Q(

√
3) is Z[

√
3].

(2) The subring Z[
√

5] is not integrally closed in Q(
√

5), because
(1+
√

5)/2 is integral over Z, and thus over Z[
√

5]. Thus Z[
√

5]
is not normal.

Definition 12. A number field is a finite field extension of Q (i.e., a
field K containing Q that is a finite Q-module. The ring of integers
OK of a number field K is the integral closure of Z in K. This is a
fundamental object in algebraic number theory.

Exercise 13. Let n be a squarefree integer (no divisible by m2 for any
integer m), and let K = Q(

√
n). Let α = (1 +

√
n)/2 if n ≡ 1 mod 4,

and α =
√
n if n ≡ 2 or 3 mod 4 (the case n ≡ 0 mod 4 is ruled out

by the squarefree hypothesis). Show that the integral closure of Z in
Q(
√
n) is Z[α].

Definition 14. Let f ∈ C[x, y] be an irreducible polynomial, and let
C = {(a, b) ∈ C2 : f(a, b) = 0}. The tangent line to C at a point
(a, b) ∈ C is ∂f/∂x(a, b)x + ∂f/∂y(a, b)y = 0 (this is a Geometry and
Motion style exercise - think about implicit derivatives). We say that
C is nonsingular at (a, b) if this is actually the equation of a line, so at
least one of ∂f/∂x(a, b) and ∂f/∂y(a, b) is nonzero.

We claim that C is nonsingular at all points (a, b) ∈ C if and only if
C[x, y]/〈f〉 is normal.

Exercise 15. Check this for the polynomial f = x+y+1 (i.e., confirm
that C is nonsingular at all points, and that C[x, y]/〈f〉 is integrally
closed in its field of fractions).


