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Motivation

We recall/introduce the following three facts.

(1) Any positive integer has a unique prime factorization n = pm1
1 pm2

2 . . . pmr
r

where the pi are prime and mi ∈ N. This means that every ideal
in Z can be written uniquely as the intersection of ideals gen-
erated by prime powers.

(2) If R is a UFD, then every f ∈ R can be written uniquely as
a product of powers of irreducible elements. Thus every prin-
cipal ideal can be written uniquely as the intersection of ideals
generated by powers of irreducible elements.

(3) (not examinable in 2017)

Definition 1. Let I be an ideal in K[x1, . . . , xn]. The variety
X = V (I) ⊆ Kn is irreducible if we cannot write X = X1 ∪X2

where Xi ( X for i = 1, 2, and each Xi has the form V (Ii) for
some ideal Ii ⊂ K[x1, . . . , xn].

Proposition 2. Let K be algebraically closed. Every variety in
Kn can be written as the union of a finite number of irreducible
varieties.

Proof. If X is not irreducible, then we can write it as X =
X1 ∪ X2 with X1, X2 proper subvarieties. Either each Xi is
irreducible, or we can rewrite it as Xi = Xi1 ∪ Xi2 with Xij

a proper subvariety of Xi. Repeat this procedure. Either
this terminates with a X written as a finite number of irre-
ducible varieties, or we get an infinite string of varieties X )
Xi ) Xij ) Xijk ) . . . . Write Xk for the variety in this list
whose label has k indices. Then I(X) ⊆ I(X1) ⊆ I(X2) ⊆
I(X3) . . . . Since K[x1, . . . , xn] is Noetherian, this must stabi-
lize with I(Xk) = I(XN) for all k ≥ N for some fixed N . But
then V (I(Xk)) = V (I(XN)) for k ≥ N , which is a contra-

diction, as if we write Xk = V (Ik), then I(Xk) =
√
Ik, and

V (
√
Ik) = V (Ik) = Xk. �
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(Challenge: you do not need to assume that K is algebraically
closed here).

This decomposition is again unique (exercise: prove this!).

The goal of this topic is to generalize these examples to more general
rings.

Definitions

Definition 3. Let Q be a proper ideal in a ring R. Then Q is primary
(or “a primary ideal”) if whenever fg ∈ Q, either f ∈ Q or gm ∈ Q for
some m > 0.

Example 4. Let I = 〈27〉 ⊂ Z. Then I is primary, as if ab ∈ I, then
27 divides ab, so either 27 divides a, or 3 divides b, and so 27 divides
b3. The ideal 〈12〉 ⊂ Z is not primary, however, as (3)(4) ∈ 〈12〉, but 3
is not divisible by 12, and no power of 4 is divisible by 12.

In general, an ideal 〈n〉 ⊂ Z is primary if and only if n is (up to sign)
a power of a prime. (Check this!)

Remark 5. If Q is primary, then P =
√
Q is prime. Indeed, if fg ∈ P ,

then (fg)m = fmgm ∈ Q for some m > 0, so either fm ∈ Q (and thus
f ∈
√
Q = P ), or some power (gm)l = gml is in Q, so g ∈

√
Q = P .

Definition 6. We say thatQ is P -primary for a prime P ifQ is primary
and P =

√
Q.

Example 7. The ideal 〈27〉 ⊂ Z is 〈3〉-primary. The ideal 〈x2 − 2x+
1〉 ⊆ C[x] is 〈x− 1〉-primary.

Warning: In Z the condition
√
Q = P is prime suffices to ensure that

Q is primary, but this is not true in general. For example consider the
ideal Q = 〈x2, xy〉 ⊂ C[x, y]. Then

√
Q = 〈x〉, which is prime, but Q

is not primary, as xy ∈ Q, x 6∈ Q, and no power of y is in Q. Note
that this also shows that the order of f and g in the definition matters
(or more precisely, that we need to consider both orders); y 6∈ Q, but
x2 ∈ Q is not enough to show that Q is primary.

Main theorem

For the rest of these notes we assume that R is Noetherian.

Definition 8. Let I be a proper ideal in a Noetherian ring R. A
primary decomposition of I is an expression

I = Q1 ∩Q2 ∩ · · · ∩Qr

where each Qi is primary.
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The decomposition is irredundant if for all 1 ≤ i ≤ r we have I (
∩j 6=iQj.

The decomposition is minimal if there is no decomposition with fewer
terms (i.e. r is as small as possible. Minimal decompositions are auto-
matically irredundant.

Example 9. Let I = 〈x2, xy, x2z2, yz2〉. Then I = 〈x2, y〉 ∩ 〈x, z2〉 is a
primary decomposition. You will show that these ideals are primary in
HW5, and also justify that the intersection of these two ideals is I. The
containment I ⊂ 〈x2, y〉∪〈x, z2〉 is straightforward. The ideals

√
〈x2, y〉

and
√
〈x, z2〉 are prime, as the quotients by them are polynomial rings,

so domains.
This decomposition is irredundant, as neither term can be removed.

It is also minimal, as I is not primary (xy ∈ I, x 6∈ I, and no power of
y is in I).

By contrast, 〈9〉 = 〈3〉 ∩ 〈9〉 ⊂ Z is not an irredundant primary
decomposition, as we do not need the ideal 〈3〉 in this decomposition.

Exercise 10. Consider the following intersections in C[x, y]. Are they
(irredundant? minimal?) primary decompositions?

(1) 〈x2〉 ∩ 〈y3〉 ∩ 〈x, y〉.
(2) 〈x2, xy2, y3〉 ∩ 〈x3, y〉

The main theorem about primary decompositions is the following.

Theorem 11. Let I be a proper ideal in a Noetherian ring R. Then I
has a primary decomposition.

Our proof will detour via the concept of irreducible ideals.

Definition 12. An ideal I ⊆ R is irreducible if it cannot be written
as the intersection of two strictly larger ideals: if I = J ∩K with J,K
ideals of R then I = J or I = K.

Lemma 13. Irreducible ideals in a Noetherian ring are primary.

Proof. Suppose that I is an irreducible ideal with fg ∈ I. Consider the
chain of ideals Jk = (I : gk) := {h ∈ R : hgk ∈ I} for k ≥ 1. Note that
Ji ⊆ Ji+1 for i ≥ 1, so J1 ⊆ J2 ⊆ . . . is an ascending chain of ideals.
Since R is Noetherian, there is N for which Jk = JN for k ≥ N . We
claim that I = (I+〈gN〉)∩(I+〈f〉). Indeed, if h ∈ (I+〈gN〉)∩(I+〈f〉)
then gh ∈ I (since h ∈ I + 〈f〉, and fg ∈ I). Since h ∈ I + 〈gN〉, we
have h = i+jgN for some i ∈ I, j ∈ R, so gh = gi+jgN+1. This means
that jgN+1 ∈ I, so j ∈ JN+1 = JN . But this means that jgN ∈ I, so
h ∈ I. This shows that (I + 〈gN〉) ∩ (I + 〈h〉) ⊆ I. The opposite
inclusion is immediate, so we have equality. Since I is irreducible, we
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must have I + 〈gN〉 = I, or I + 〈f〉 = I, and thus f ∈ I or gN ∈ I. We
thus conclude that I is primary. �

Proof of Theorem 11. It suffices by Lemma 13 to show that every ideal
I ⊆ R has an irreducible decomposition, so can be written as the
intersection of a finite number of irreducible ideals. This follows by
“Noetherian induction”. Let S be the set of proper ideals in R that
do not have an irreducible decomposition. We want to show that S
is empty. If S 6= ∅, then it has a maximal element I ∈ S (since R
is Noetherian, so there is no infinite ascending chain of ideals in R,
so in particular no infinite ascending chain of ideals in S). Since I
is not irreducible, we can write I = J ∩ K where J,K are proper
ideals with I ( J , I ( K. But then J,K 6∈ S, so J = ∩ri=1Qi

andK = ∩s
j=1Q

′
j with Qi, Q

′
j irreducible, and so I = ∩ri=1Qi ∩ ∩s

j=1Q
′
j

is an irreducible decomposition for I, which contradicts that I ∈ S.
From this contradiction we conclude that S is empty as required. �

Uniqueness?

Primary decomposition generalizes the notion of prime factorization
for integers. In that case we have uniqueness. We now discuss the
extent to which this is true in our setting.

We first note that we need some assumptions to get uniqueness;
〈27〉 = 〈3〉 ∩ 〈27〉 are two different primary decompositions.

Given any primary decomposition I = ∩si=1Qi we can obtain an ir-
redundant primary decomposition by iteratively removing Qj if I =
∩i 6=jQi. Thus every proper ideal in a Noetherian ring has an irredun-
dant primary decomposition.

We also have the following lemma:

Lemma 14. If Q1, Q2 are primary ideals in R with
√
Q1 =

√
Q2 = P ,

then Q1 ∩Q2 is P -primary.

Proof. Suppose fg ∈ Q1 ∩ Q2. Then either f ∈ Q1 ∩ Q2, or, without
loss of generality, f 6∈ Q1, so there is m > 0 with gm ∈ Q1, and thus
g ∈

√
Q1 = P . Since

√
Q2 = P , in this case there is l > 0 with

gl ∈ Q2, so gmaxm,l ∈ Q1 ∩ Q2. Thus Q1 ∩ Q2 is primary. We have
Q1 ∩ Q2 ⊆ Q1, so

√
Q1 ∩Q2 ⊆ P . If f ∈ P , then there are m, l with

fm ∈ Q1, and f l ∈ Q2. Then fmax(m,l) ∈ Q1 ∩ Q2, so f ∈
√
Q1 ∩Q2,

and thus
√
Q1 ∩Q2 = P . �

This means that given a primary decomposition I = ∩si=1Qi for an
ideal I, we can modify it by removing some terms and replacing others
by their intersections to get one with the following two properties:
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(1) The decomposition is irredundant, and
(2) If i 6= j, we have

√
Qi 6=

√
Qj.

These decompositions are still not always unique, but they are closer
to unique, as we next see.

Associated primes

Recall: The annihilator ann(M) of an element m of an R-module M
is ann(m) = {r ∈ R : rm = 0M}.

Definition 15. Let M be an R-module. An ideal P is an associated
prime of M if P is prime, and P = ann(m) for some m ∈M . We write
Ass(M) for the set of associated primes of M .

Example 16. Let R = C[x], and M = C[x]/〈x2〉. Then 〈x〉 is an
associated prime of M , since 〈x〉 = ann(x + 〈x2〉). The annihilator of
1 + 〈x2〉 is 〈x2〉, which is not prime.

Lemma 17. If R is a Noetherian ring, and M 6= 0,then Ass(M) 6= ∅.

Proof. Let S = {ann(m) : m ∈M,m 6= 0}. Then S is nonempty, since
there is a nonzero element of M , and every element of S is a proper
ideal, as 1 6∈ ann(m) if m 6= 0. Thus S is a nonempty collection of
proper ideals in the Noetherian ring R, so it has a maximal element
I = ann(m′). We claim that I is prime. Indeed, if fg ∈ I, then
fgm′ = 0M . If gm′ = 0M , then g ∈ I. If gm′ 6= 0M , then f ∈ ann(gm′).
Now for any m ∈M we have ann(m) ⊆ ann(gm), as if hm = 0M , then
h(gm) = g(hm) = g0M = 0M . Thus since I = ann(m′) is a maximal
element of S, we have ann(m′) = ann(gm′). Thus if gm′ 6= 0M , we
have f ∈ ann(m′) = I. So either g ∈ I or f ∈ I, and so I is prime. We
then conclude that I ∈ Ass(M), so Ass(M) 6= ∅. �

Proposition 18. If Q is a P -primary ideal in a Noetherian ring R,
then Ass(R/Q) = {P}.

Proof. We have
√
Q = P . If r ∈ R \ Q, and s ∈ R with rs ∈ Q, then

sm ∈ Q for some m > 0, so s ∈ P . Thus for any m = r + Q ∈ R/Q
we have ann(m) ⊆ P . Since Q ⊆ ann(m), we have P =

√
Q ⊆√

ann(m) ⊆
√
P − P , so

√
ann(m) = P . Thus if ann(m) is prime, it

equals P . As we know that Ass(R/Q) is nonempty by Lemma 17, we
conclude that Ass(R/Q) = {P}. �

We now discuss the connection of associated primes to primary de-
composition.

This needs the following definition (recall that we have already seen
the direct product of rings).
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Definition 19. If M1, . . . ,Ms are R-modules, then ⊕s
i=1Mi is the

R-module with elements {(m1, . . . ,ms) : mi ∈ Mi} with addition
coordinate-wise, and r(m1, . . . ,ms) = (rm1, . . . , rms).

Example 20. For any ring R, the free module Rs is the direct sum of
s copies of R.

Lemma 21. If φ : M → N is an injection of R-modules, then Ass(M) ⊆
Ass(N).

Proof. If P = ann(m) for some element m ∈M , then P = ann(φ(m)).
�

Example 22. Consider the group homomorphism φ(Z/2Z) → Z/6Z
given by φ(1) = 3. This is a Z-module homomorphism. We have
Ass(Z/2Z) = {〈2〉} (by Proposition 18), and Ass(Z/6Z) = {〈2〉, 〈3〉}.

Lemma 23. If M = ⊕s
i=1Mi is a direct sum of R-modules, then

Ass(M) = ∪si=1 Ass(Mi).

Proof. From the injective homomorphism φi : Mi →M given by φi(m) =
(0M1 , . . . ,m, . . . , 0Ms), we get Ass(Mi) ⊆ Ass(M). Suppose P = ann((m1, . . . ,ms)) ∈
Ass(M), but P 6∈ Ass(Mi) for any 1 ≤ i ≤ s. For all r ∈ P we have
rms = 0Ms , so since P 6= ann(ms) there is r′ ∈ ann(ms) \ P . By in-
duction we know that since P 6∈ Ass(Mi) for 1 ≤ i ≤ s − 1 we have
P 6∈ Ass(⊕s−1

i=1Mi), so since P ⊆ ann((m1, . . . ,ms−1)) there is r′′ ∈ R
with r′′ ∈ ann((m1, . . . ,ms−1)) \ P . But then r′r′′(m1, . . . ,ms) = 0, so
r′r′′ ∈ P , but r′, r′′ 6∈ P . This is a contradiction, since P is prime,
so we conclude that P ∈ Ass(Mi) for some i, and so Ass(M) =
∪si=1 Ass(Mi). �

Theorem 24. Let R be a Noetherian ring, and let I = Q1∩· · ·∩Qs be
a primary decomposition, where Qi is Pi-primary. Then Ass(R/I) ⊆
{P1, . . . , Ps}. If the decomposition is irredundant, then we have equal-
ity.

Proof. Each R/Qi is an R-module, so we can form the direct sum
M = ⊕s

i=1R/Qi. Consider the R-module homomorphism φ : R/I →M
given by φ(r+I) = (r+Q1, . . . , r+Qs). To see that this is well defined,
note that if I ⊆ Qi for each i, so if r+ I = r′+ I, then r− r′ ∈ I ⊆ Qi,
so r +Qi = r′ +Qi for each i.

If φ(r+ I) = 0M , then r ∈ Qi for all i, so r ∈ ∩si=1Qi = I, so r+ I =
0 + I, and so φ is injective. Thus by Lemma 21 we have Ass(R/I) ⊆
Ass(M). By Lemma 23 we have Ass(M) = ∪si=1 Ass(R/Qi) = {P1, . . . , Ps},
so Ass(R/I) ⊆ {P1, . . . , Ps}.
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If the decomposition is irredundant, then for all 1 ≤ i ≤ s, we have
I 6= ∩j 6=iQj. Consider φ(∩j 6=iQj + I). Since φ is injective, this is
nonzero. However the image in each R/Qj coordinate is zero for j 6= i,
so we may consider φ restricted to ∩j 6=iQj + I as a homomorphism
to R/Qi. This is still injective, so Ass(∩j 6=iQj + I) ⊆ Ass(R/Qi) =
{Pi}. Since ∩j 6=iQj + I is a submodule of R/I (so there is an injective
map ∩j 6=iQj + I → R/I), we have Pi ∈ Ass(R/I). Thus Ass(R/I) =
{P1, . . . , Ps}. �

Important consequences: This shows that the primes occuring as√
Qi in an irredundant primary decomposition I = ∩si=1Qi are deter-

mined (so do not depend on the choice of decomposition. It also shows
that Ass(R/I) is a finite set when R is Noetherian.

Definition 25. If I = ∩si=1Qi is an irredundant primary decomposition
with Pi =

√
Qi 6= Pj for i 6= j, then Qi is called the primary component

of I corresponding to Pi.

Definition 26. Let I be an ideal of R, and fix f ∈ R. The set

(I : f) = {r ∈ R : rf ∈ I}
is an ideal of R (check!). The saturation of I by f is

(I : f∞) = {r ∈ R : there is m > 0 such that rfm ∈ I}.

Exercise 27. (1) (I : f∞) = ∪m≥1(I : fm).
(2) We have (I : fm) ⊆ (I : fm+1) for any I, f and m > 0.
(3) If R is Noetherian, then (I : f∞) = (I : fN) for some N > 0.
(4) (I ∩ J : f) = (I : f) ∩ (J : f).

Definition 28. An associated prime P of an R-module M is minimal
if there is no P ′ ( P with P ′ ∈ Ass(M).

Example 29. Let I = 〈x2, xy〉 ⊆ C[x, y]. Then I = 〈x〉 ∩ 〈x2, y〉 is an
irredundant primary decomposition for I, so the associated primes are
〈x〉 and 〈x2, y〉. The ideal 〈x〉 is a minimal associated prime, but 〈x, y〉
is not.

Proposition 30. Let P be a minimal associated prime of an ideal I
in a Noetherian ring R. Then the P -primary component of I does not
depend on the choice of primary decomposition.

Proof. Let I = ∩si=1Qi be an irredundant primary decomposition, with√
Qi 6=

√
Qj for i 6= j, and

√
Qs = P . (We checked that this exists in

the uniqueness section). Since ∩s−1i=1Qi 6= I, there is f ∈ ∩s−1i=1Qi \ Qs.
We may assume that f 6∈ P , as if ∩si=1Qi ⊆ P , then Qi ⊂ P for some
i with 1 ≤ i ≤ s − 1, (using that if J1 ∩ J2 ⊂ P for a prime ideal
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P , then J1 ⊂ P or J2 ⊂ P ) and so Pi =
√
Qi ⊂ P , which would

contradict either the minimality of P , or the hypothesis that Pi 6= Pj

for i 6= j. Then (I : f∞) = ∩si=1(Qi : f∞) by the exercise. If f ∈ Qi

then (Qi : f∞) = R (as 1f 1 ∈ Qi). Thus (I : f∞) = (Qs : f∞).
If g ∈ (Qs : f∞), then gfm ∈ Qs for some m > 0, so since Qs is
primary we have g ∈ Qs or (fm)l = fml ∈ Qs for some l > 0. Since
f 6∈ P =

√
Qs, we have fml 6∈ Qs for any m, l, so g ∈ Qs, and thus

(Qs : f∞) = Qs. Thus (I : f∞) = Qs, so Qs does not depend on the
choice of primary decomposition. �

Proposition 30 generalizes the fact that the powers of primes showing
up in a prime factorization are determined.
Important: The assumption that P is minimal is essential in Propo-
sition 30. Consider the ideal I = 〈x3, x2y2〉 ⊆ C[x, y]. Then I =
〈x2〉 ∩ 〈x3, y2〉 and I = 〈x2〉 ∩ 〈x3, x2y2, y5〉 are both irredundant pri-
mary decompositions. The ideal I has one minimal associated prime
(〈x〉), which has (as required) the same primary component in both de-
compositions. Both ideals 〈x3, y2〉 and 〈x3, x2y2, y5〉 are 〈x, y〉-primary.

Summary

We showed that in a Noetherian ring every proper ideal I has an
irredundant primary decomposition I = ∩si=1 with the property that
i 6= j means that

√
Qi 6=

√
Qj. Such decompositions are minimal,

as every associated prime occurs exactly one as
√
Qi. The primary

components Qi that are Pi primary for a minimal associated prime Pi

do not depend on the primary decomposition, but the primary com-
ponents for non-minimal primes can be different in different minimal
primary decompositions.


