MODULES : MA 3G6 2017

DIANE MACLAGAN

1. Modules

Definition 1.1. Let R be a ring. An R-module M is an abelian group M with a multiplication map $R \times M \rightarrow M$ (written $r m$) satisfying:
(1) $r(m+n)=r m+r n$,
(2) $\left(r+r^{\prime}\right) m=r m+r^{\prime} m$,
(3) $\left(r r^{\prime}\right) m=r\left(r^{\prime} m\right)$, and
(4) $1_{R} m=m$ for all $r, r^{\prime} \in R, m, n \in M$.

Example 1.2. (1) When R is a field, an R-module M is a vector space over R.
(2) For an arbitrary ring R, R is an R-module, with the map $R \times$ $M \rightarrow R$ being multiplication.
(3) For an arbitrary ring R, and an ideal $I \subseteq R$, both I and R / I are R-modules.
(4) When $R=\mathbb{Z}, R$-modules are abelian groups. Here $n g=g+$ $\cdots+g$ is the sum of n copies of g.

Definition 1.3. A subset $N \subseteq M$ of an R-module is a submodule if the following two conditions hold: If $m, n \in N$ then $m+n \in N$, and if $m \in N, r \in R$, then $r m \in N$.
Example 1.4. A submodule of the R-module R is an ideal. If R is a field, an R-submodule of M is a subspace of the vector space M.

Definition 1.5. A map $\phi: M \rightarrow N$ is an R-module homomorphism if it is a group homomorphism with

$$
\phi(r m)=r \phi(m) .
$$

It is an isomorphism if it is injective and surjective.
Example 1.6. When R is a field, an R-module homomorphism is a linear map.
Definition 1.7. If $\phi: M \rightarrow N$ is an R-module homomorphism then

$$
\operatorname{ker}(\phi)=\left\{m \in \underset{1}{M}: \phi(m)=0_{N}\right\},
$$

and

$$
\operatorname{im}(\phi)=\{n \in N: \exists m \in M \text { with } \phi(m)=n\} .
$$

Exercise: Show that $\operatorname{ker}(\phi)$ is a submodule of M, and $\operatorname{im}(\phi)$ is a submodule of N.

Since a submodule N of M is a subgroup of an abelian group, we can form the quotient group M / N. This is again an R-module, with the action

$$
r(m+N)=r m+N .
$$

Exercise: Show that this is well-defined, so if $m+N=m^{\prime}+N$, then $r m+N=r m^{\prime}+N$.
Exercise: Isomorphism theorems. Show that
(1) If $\phi: M \rightarrow N$, then $M / \operatorname{ker}(\phi) \cong \operatorname{im}(\phi)$.
(2) If $L \subseteq M \subseteq N$ with L a submodule of M, and M a submodule of N, then

$$
N / M \cong(N / L) /(M / L) .
$$

(3) If L and M are submodules of N then $(L+M) / L \cong M /(M \cap L)$, where $L+M=\{l+m: l \in L, m \in M\}$.
Hint: You already know these for abelian groups, so you just need to check the R-action obeys the axioms.

2. Free modules

Definition 2.1. Let R be a ring. The R-module R^{n} is

$$
R=\left\{\left(r_{1}, \ldots, r_{n}\right): r_{i} \in R\right\},
$$

where the R-action is

$$
r\left(r_{1}, \ldots, r_{n}\right)=\left(r r_{1}, \ldots, r r_{n}\right),
$$

and

$$
\left(r_{1}, \ldots, r_{n}\right)+\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right)=\left(r_{1}+r_{1}^{\prime}, \ldots, r_{n}+r_{n}^{\prime}\right) .
$$

More generally, if A is any set, then

$$
\left\{\left(r_{\alpha}: \alpha \in A\right): r_{\alpha} \in R\right\}
$$

is an R-module.
Note: In R^{n}, then set $\mathcal{B}=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\}$ has the property that every element of R^{n} can be written as an R-linear combination of elements of B. For example, when $n=2$, we have $\left(r_{1}, r_{2}\right)=r_{1}(1,0)+r_{2}(0,1)$. This should remind you of a basis from linear algebra.

Definition 2.2. Let M be an R-module, and let $\mathcal{G}=\left\{m_{\alpha}: \alpha \in A\right\}$ be a subset of elements of M. The set \mathcal{G} generates M as an R-module if every element $m \in M$ can be written in the form $m=\sum_{i=1}^{s} r_{i} m_{\alpha_{i}}$ for some $\alpha_{1}, \ldots, \alpha_{s} \in A$, and $r_{1}, \ldots, r_{s} \in R$. Here the set A may be infinite, but this is a finite sum.
Example 2.3. (1) When R is a field, an R-module M is a vector space. Then $\mathcal{G} \subseteq M$ generates M if \mathcal{G} spans M.
(2) When $M=I$ is an ideal of R, then \mathcal{G} generates M as an R module if and only if $I=\langle G\rangle$ (so if and only if \mathcal{G} generates I as an ideal.

Definition 2.4. A set $\mathcal{G} \subseteq M$ is a basis for M if \mathcal{G} generates M and every element of M can be written uniquely as an R-linear combination of elements of \mathcal{G}.

Equivalently, if $\sum_{i=1}^{s} r_{i} m_{\alpha_{i}}=0$ for $\alpha_{i} \in A$, then $r_{1}=\cdots=r_{s}=0$.
Example 2.5. (1) When R is a field, then a basis for an R-module M is a basis for M as a vector space in the sense of linear algebra.
(2) A basis for $M=R^{2}$ is given by $\{(1,0),(0,1)\}$.

Warning: Unlike in linear algebra, many R-modules do not have bases.

Example 2.6. Let $R=K[x, y]$, where K is a field, and let $M=\langle x, y\rangle$. Then M does not have a basis. Indeed, suppose that there was a basis \mathcal{G} for M. Then we could write $x=\sum_{i=1}^{s} r_{i} m_{i}$ and $y=\sum_{j=1}^{t} r_{j}^{\prime} m_{j}^{\prime}$, where $m_{i}, m_{j}^{\prime} \in \mathcal{G}$, and $r_{i}, r_{j}^{\prime} \in R$. Then $x y=\sum_{i=1}^{s}\left(r_{i} y\right) m_{i}=\sum_{j=1}^{t}\left(r_{j}^{\prime} x\right) m_{j}^{\prime}$. By uniqueness, after reordering if necessary, we may assume that $s=t$, $m_{i}=m_{i}^{\prime}$, and $y r_{i}=x r_{i}^{\prime}$. But then x divides r_{i} for all i, so we can write $r_{i}=x \tilde{r}_{i}$ for $\tilde{r}_{i} \in R$. This means that $x=\sum_{i=1}^{s} x \tilde{r}_{i} m_{i} \in R=K[x, y]$. Since R is a domain, we then have $\sum_{i=1}^{s} \tilde{r}_{i} m_{i}=1 \in R$. But this contradicts that $m_{i} \in\langle x, y\rangle$ for all i, so $\sum_{i=1}^{s} \tilde{r}_{i} m_{i} \in\langle x, y\rangle$, as $1 \notin$ $\langle x, y\rangle$.
Definition 2.7. An R-module M is free if it has a basis.
Example 2.8. For any $\operatorname{ring} R$, the R-module R^{n} is free. The $K[x, y]-$ module $\langle x, y\rangle$ is not.

Exercise: Which of the following modules are free?
(1) $R=K[x, y], M=\left\langle x^{2}+y^{2}\right\rangle$,
(2) $R=\mathbb{Z}, M=\mathbb{Z}^{2} /\langle(1,1),(1,-1)\rangle$.
(3) $R=K[x, y]$, and $M=K[x, y] /\left\langle x^{2}+y^{2}\right\rangle$.

3. The Cayley-Hamilton theorem

Recall: For an $n \times n$ matrix A with entries in a field K, the characteristic polynomial is

$$
p_{A}(x)=\operatorname{det}(x I-A) .
$$

The Cayley-Hamilton theorem states that $p_{A}(A)=0$. Here by $p_{A}(A)$ we mean the following: if $p(x)=\sum a_{i} x^{i} \in K[x]$, then $p(A)=\sum a_{i} A^{i}$. Note: Matrices still make sense over an arbitrary (commutative) ring.

An $n \times n$ matrix A with entries in R gives an R-module homomorphism $\phi: R^{n} \rightarrow R^{n}$ by

$$
\phi\left(r_{1}, \ldots, r_{n}\right)=\left(\sum_{j=1}^{n} a_{1 j} r_{j}, \ldots, \sum_{j=1}^{n} a_{n j} r_{j}\right) .
$$

This is the usual multiplication of a matrix and a vector.
Determinants of $n \times n$ matrices with entries in R also still make sense, as the definition of the determinant only involves concepts that make sense in a general ring.
Definition 3.1. Let M be an R-module. The set of all R-module homomorphisms $\phi: M \rightarrow M$ forms a (noncommutative!) ring with identity. We call this $\operatorname{End}(M)$ (here End is short for "endomorphism"). The addition on $\operatorname{End}(M)$ is given by setting $(\phi+\psi)(m)=\phi(m)+\psi(m)$, and $(\phi \psi)(m)=\phi(\psi(m))$, where $\phi, \psi \in \operatorname{End}(M)$. Thus addition is pointwise, and multiplication is composition of functions.

This is the only noncommutative ring that we will see in this module.
When $M=R^{n}$, the $\operatorname{ring} \operatorname{End}(M)$ is the ring of $n \times n$ matrices with entries in R, and the multiplication is multiplication of matrices.
Definition 3.2. Given an $n \times n$ matrix A, the subring $R[A]$ of $\operatorname{End}\left(R^{n}\right)$ is the smallest subring of $\operatorname{End}\left(R^{n}\right)$ containing the identity endomorphism and A.

Exercise: Check that the "smallest subring" exists. It consists of all polynomials in A : $\sum_{i=0}^{s} a_{i} A^{i}$, where $a_{i} A^{i}$ means the scalar multiplication of the matrix A^{i} by the element a_{i}, and A^{0} is the identity matrix.
Note: $\quad R[A]$ is a commutative ring, and there is a surjective homomorphism $\psi: R[x] \rightarrow R[A]$ given by sending x to A.

Also, R^{n} is a $R[A]$-module, with the action given by

$$
\left(\sum_{i=0}^{s} a_{i} A^{i}\right) v=\sum_{i=0}^{s} a_{i}\left(A^{i} v\right)
$$

for $v=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$, where $A^{i} v$ is usual matrix/vector multiplication.

Theorem 3.3 (Cayley-Hamilton Theorem). Let R be a ring, and A an $n \times n$ matrix with entries in R. Write $p_{A}(x)=\operatorname{det}(x I-A)$. This is a polynomial of degree n in x with coefficients in R, and $p_{A}(A)=0$.

Example 3.4. Let $R=\mathbb{Z} / 6 \mathbb{Z}$, and

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

The characteristic polynomial is

$$
\operatorname{det}\left(\begin{array}{cc}
x-1 & -2 \\
-3 & x-4
\end{array}\right)=(x-1)(x-4)-6=x^{2}+x+4 .
$$

We have

$$
A^{2}=\left(\begin{array}{ll}
1 & 4 \\
3 & 4
\end{array}\right)
$$

so

$$
A^{2}+A+4 I=\left(\begin{array}{ll}
1 & 4 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Exercise: Let $R=\mathbb{C}[x]$, and

$$
A=\left(\begin{array}{rr}
x & x^{2} \\
x^{3} & x^{4}
\end{array}\right)
$$

Compute the characteristic polynomial of A, and verify that $p_{A}(A)=0$.
Proof of the Cayley-Hamilton theorem. Write $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ for the standard basis vectors of R^{n}.

We have $A \mathbf{e}_{k}=\sum_{j=1}^{n} a_{j k} \mathbf{e}_{j}$ for $1 \leq k \leq n$. Write $\delta_{j k}$ for the Kronecker delta: $\delta_{j k}=1$ if $j=k$, and 0 otherwise. Then $\sum_{j=1}^{n}\left(\delta_{j k} A-\right.$ $\left.a_{j k}\right) \mathbf{e}_{j}=\mathbf{0} \in R^{n}$. Let $B=\left(B_{j k}\right)$ be the $n \times n$ matrix with entries in $R[A]$ with $B_{j k}=\delta_{j k} A-a_{j k}$. Write C for the adjoint matrix of B. This is the $n \times n$ matrix with $C_{i j}=(-1)^{i+j} \operatorname{det}(B \backslash i$ th column and j th row $)$. This is a well-defined operation in any commutative ring, so in particular in the ring $R[A]$. As in standard linear algebra we have

$$
B C=C B=\operatorname{det}(B) I_{n}
$$

Indeed,

$$
\begin{aligned}
(B C)_{i j} & =\sum_{k=1}^{n} B_{i k} C_{k j} \\
& =\sum_{k=1}^{n}(-1)^{k+j} B_{i k} \operatorname{det}(B \backslash k \text { th column, } j \text { th row }) \\
& =\operatorname{det}(B \text { with } j \text { th row replaced by the } i \text { th row }) \\
& = \begin{cases}\operatorname{det}(B) & i=j \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

The third equality here comes from expanding $\operatorname{det}(B)$ along the j th row (Check that these expansions still make sense over an arbitrary ring!).

Now,

$$
\begin{aligned}
\mathbf{0} & =\sum_{k=1}^{n}\left(C_{k j} \sum_{i=1}^{n}\left(\delta_{i k} A-a_{i k}\right) \mathbf{e}_{i}\right) \\
& =\sum_{i=1}^{n}\left(\sum_{k=1}^{n} C_{k j}\left(\delta_{i k} A-a_{i k}\right)\right) \mathbf{e}_{i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} B_{i k} C_{k j} \mathbf{e}_{i} \\
& =\sum_{i=1}^{n}(B C)_{i j} \mathbf{e}_{i} \\
& =\operatorname{det}(B) \mathbf{e}_{j} .
\end{aligned}
$$

So $\operatorname{det}(B)=0$.
Now $p_{A}(x)=\operatorname{det}\left(x I_{n}-A\right) \in R[x]$. The map $\phi: R[x] \rightarrow R[A]$ sending x to A is a homomorphism which induces a homomorphism $\psi: \operatorname{End}\left(R[x]^{n}\right) \rightarrow \operatorname{End}\left(R[A]^{n}\right)$ as follows. An element $f \in \operatorname{End}\left(R[x]^{n}\right)$ can be represented by an $n \times n$ matrix with entries in $R[x]$. The homomorphism ψ applies ϕ to each entry of this matrix. Equivalently, if $f\left(\mathbf{e}_{i}\right)=\sum_{j=1}^{n} h_{i} \mathbf{e}_{j}$, then $\psi(f)\left(\mathbf{e}_{i}=\sum_{j=1}^{n} \phi\left(h_{i}\right) \mathbf{e}_{j}\right.$. The homomorphism ψ takes $x I_{n}-A$ to B. Thus $p_{A}(A)=\operatorname{det}(B)=0$.

We now give a version of this theorem that applies to a more general module.

Definition 3.5. An R-module M is finitely generated if it has a finite set of generators, so there is $m_{1}, \ldots, m_{s} \in M$ such that for all $m \in M$ there is r_{1}, \ldots, r_{s} with $m=\sum_{i=1}^{s} r_{i} m_{i}$.

For an ideal $I \subset R$, we denote by $I M$ the submodule of M generated by $\{r m: r \in I, m \in M\}$.

Theorem 3.6. Let M be a finitely generated R-module with n generators, let $\phi: M \rightarrow M$ be an R-module homomorphism, and suppose that I is an ideal of R such that $\phi(M) \subseteq I M$. Then ϕ satisfies a relation of the form

$$
\phi^{n}+a_{1} \phi^{n-1}+\cdots+a_{n-1} \phi+a_{n}=0
$$

where $a_{i} \in I^{i}$ for $1 \leq i \leq n$. This is a relation in the ring $\operatorname{End}(M)$.
Here I^{i} is the product of the ideal I with itself i times, so is the ideal generated by the products of any i elements of I. For example, if $I=\langle x, y\rangle \subseteq \mathbb{Q}[x, y]$, then $I^{2}=\left\langle x^{2}, x y, y^{2}\right\rangle$. The case that $M=R^{n}$ and $I=R$ is the Cayley-Hamilton theorem; in that case the relation is the characteristic polynomial. The proof of this theorem is very similar to the proof of the Cayley-Hamilton theorem.

Proof. Let m_{1}, \ldots, m_{n} be a generating set for M. Since $\phi\left(m_{i}\right) \in I M$ we can write $\phi\left(m_{i}\right)=\sum_{j=1}^{n} a_{j i} m_{j}$ with $a_{j i} \in I$. In the subring $R[\phi]$ of $\operatorname{End}(M)$ this is $\sum_{j=1}^{n}\left(\delta_{j i} \phi-a_{j i}\right) m_{j}=0$. Here we regard an element $a \in$ R as the endomorphism of M given by $m \mapsto a m$. Write B for the $n \times n$ matrix with entries in $R[\phi]$ with $B_{i j}=\delta_{j i} \phi-a_{j i}$, so $\sum_{j=1}^{n} B_{i j} m_{j}=0$. Let C be the adjoint matrix of B. Then

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} C_{k i}\left(\sum_{j=1}^{n} B_{i j} m_{j}\right) \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{n} C_{k i} B_{i j}\right) m_{j} \\
& =\sum_{j=1}^{n}(C B)_{k j} m_{j} \\
& =\operatorname{det}(B) m_{k} .
\end{aligned}
$$

So $\operatorname{det}(B) \in R[\phi]$ satisfies $\operatorname{det}(B) m_{k}=0$ for all k, and $\operatorname{det}(B) m=0$ for all $m \in M$. Thus $\operatorname{det}(B)=0$ in $\operatorname{End}(M)$. Expanding the determinant gives a polynomial in ϕ of the desired form.

4. Nakayama's lemmas

We finish this topic with several important corollaries of the CayleyHamilton theorem and its generalization, each of which is called Nakayama's lemma by some authors.

Corollary 4.1. If M is a finitely generated R-module and I is an ideal of R with $I M=M$, then there exists $r \in R$ such that $r-1 \in I$, and $r M=0$.

Proof. Applying Theorem 3.6 in the case that ϕ is the identity homomorphism we get

$$
\mathrm{id}+\sum_{i=1}^{n-1} a_{i} \mathrm{id}+a_{n}=0,
$$

with $a_{i} \in I^{i}$, so $\left(1+\sum_{i=1}^{n} a_{i}\right)$ id $=0$. Set $r=1+\sum_{i=1}^{n} a_{i}$. Then $r-1 \in I$, and $r m=0$ for all $m \in M$.

Corollary 4.2. Let R be a local ring with maximal ideal \mathfrak{m}, and $M a$ finitely generated R-module. If $M=\mathfrak{m} M$, then $M=0$.

Proof. By Corollary 4.1 there is $r \in R$ with $r-1 \in \mathfrak{m}$ and $r m=0$ for all $m \in M$. But then $r \notin \mathfrak{m}$ (as otherwise $1 \in \mathfrak{m}$), so r is a unit, and thus $m=r^{-1} r m=r^{-1} 0=0$ for all $m \in M$.

The last version is the one most commonly called Nakayama's lemma.
Corollary 4.3. Let R be a local ring with maximal ideal \mathfrak{m}. If M is a finitely generated R-module and $m_{1}, \ldots, m_{s} \in M$ are elements whose images span the $k=R / \mathfrak{m}$-vector space $\bar{M}=M / \mathfrak{m} M$, then m_{1}, \ldots, m_{s} generate M.

Proof. Let N be the submodule of M generated by m_{1}, \ldots, m_{s}. Since the $m_{i}+\mathfrak{m} M$ span $M / \mathfrak{m} M$, each element of M can be written as $m=\sum_{i=1}^{s} r_{i} m_{i}+m^{\prime}$ where $r_{i} \in R$ and $m^{\prime} \in \mathfrak{m} M$. Thus $m=n+m^{\prime}$ for $n \in N$. Thus $m+N=m^{\prime}+N$, so $M / N=\mathfrak{m} M / N$. By Corollary 4.2 this implies that $M / N=0$. So $N=M$, and m_{1}, \ldots, m_{s} generates M.

Warning: These corollaries all need M to be finitely generated.
Example 4.4. Let $R=\mathbb{Z}_{\langle 2\rangle}=\{a / b \in \mathbb{Q}: 2 \nmid b\}$, and $M=\mathbb{Q}$. Then M is an R-module. Note that $2 \mathbb{Q}=\mathbb{Q}$, as $a / b=2(a / 2 b)$, but $\mathbb{Q} \neq 0$. This does not contradict Corollary 4.2, as M is not a finitely generated R-module. (Why not?)

The last two also need R to be local.

Example 4.5. \mathbb{Z} is a \mathbb{Z}-module, $\langle 2\rangle$ is a maximal ideal of $\mathbb{Z}, 5$ generates $\mathbb{Z} / 2 \mathbb{Z}$, but not \mathbb{Z}. This does not contradict Corollary 4.3 because \mathbb{Z} is not a local ring.

