MODULES : MA 3G6 2017

DIANE MACLAGAN

1. MODULES

Definition 1.1. Let R be a ring. An R-module M is an abelian group
M with a multiplication map R x M — M (written rm) satisfying:
(1) r(m+n) =rm+rn,
(2) (r+r"Ym =rm+r'm,
(3) (rr")ym = r(r'm), and
(4) 1gm =m forall 7" € R, m,n € M.

Example 1.2. (1) When R is a field, an R-module M is a vector

space over R.

(2) For an arbitrary ring R, R is an R-module, with the map R x
M — R being multiplication.

(3) For an arbitrary ring R, and an ideal I C R, both I and R/I
are R-modules.

(4) When R = Z, R-modules are abelian groups. Here ng = g +
-+ 4+ g is the sum of n copies of g.

Definition 1.3. A subset N C M of an R-module is a submodule if
the following two conditions hold: If m,n € N then m+n € N, and if
m &€ N, r € R, then rm € N.

Example 1.4. A submodule of the R-module R is an ideal. If R is a
field, an R-submodule of M is a subspace of the vector space M.

Definition 1.5. A map ¢: M — N is an R-module homomorphism if
it is a group homomorphism with

¢(rm) = ro(m).
It is an isomorphism if it is injective and surjective.

Example 1.6. When R is a field, an R-module homomorphism is a
linear map.

Definition 1.7. If ¢: M — N is an R-module homomorphism then
ker(¢p) = {m € M: ¢(m) = Oy},
1
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and
im(¢) = {n € N: Im € M with ¢(m) = n}.

Exercise: Show that ker(¢) is a submodule of M, and im(¢) is a
submodule of N.

Since a submodule N of M is a subgroup of an abelian group, we
can form the quotient group M/N. This is again an R-module, with
the action

r(m+ N)=rm+ N.

Exercise: Show that this is well-defined, so if m+ N = m/+ N, then
rm+ N =rm’+ N.
Exercise: Isomorphism theorems. Show that

(1) If p: M — N, then M/ ker(¢) = im(¢).
(2) If L C M C N with L a submodule of M, and M a submodule
of N, then

N/M 2 (N/L)/(M/L).

(3) If L and M are submodules of N then (L+M)/L = M/(MNL),
where L+ M ={l+m:l € L,me M}.

Hint: You already know these for abelian groups, so you just need
to check the R-action obeys the axioms.

2. FREE MODULES

Definition 2.1. Let R be a ring. The R-module R" is

R=A{(r1,...,r) : r; € R},
where the R-action is

r(ry, ... mn) = (rr, ..., 11ry),
and

(riyeeoyrn) + (o)) =(r+ 7y, e+ 1),
More generally, if A is any set, then
{(ro ;€ A): 1, € R}

is an R-module.

Note: In R", thenset B ={(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}
has the property that every element of R" can be written as an R-linear
combination of elements of B. For example, when n = 2, we have
(r1,7m2) = 11(1,0) 4+ 72(0,1). This should remind you of a basis from
linear algebra.
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Definition 2.2. Let M be an R-module, and let G = {m, : a € A}
be a subset of elements of M. The set G generates M as an R-module
if every element m € M can be written in the form m = Y7 | rim,,
for some aq,...,as € A, and r1,...,r, € R. Here the set A may be
infinite, but this is a finite sum.

Example 2.3. (1) When R is a field, an R-module M is a vector
space. Then G C M generates M if G spans M.
(2) When M = I is an ideal of R, then G generates M as an R-
module if and only if I = (G) (so if and only if G generates I
as an ideal.

Definition 2.4. A set G C M is a basis for M if G generates M and
every element of M can be written uniquely as an R-linear combination
of elements of G.

Equivalently, if 7 r;m,, =0 for a; € A, thenr; = --- =7, =0.

Example 2.5. (1) When R is a field, then a basis for an R-module
M is a basis for M as a vector space in the sense of linear

algebra.
(2) A basis for M = R? is given by {(1,0), (0,1)}.

Warning: Unlike in linear algebra, many R-modules do not have
bases.

Example 2.6. Let R = K|z, y|, where K is a field, and let M = (z,y).
Then M does not have a basis. Indeed, suppose that there was a basis G
for M. Then we could write z = > ;_, r;m; and y = 22:1 rim/;, where
mi,m; € G, and ry, 75 € R. Then zy = Y77 (riy)m; = Z;Zl(r;x)m;-.
By uniqueness, after reordering if necessary, we may assume that s = t,
m; = m;, and yr; = xr;. But then x divides r; for all 7, so we can write
r; = afy; for 7; € R. This means that x = Y ;_, xfym; € R = K|x,y].
Since R is a domain, we then have Ele rsm; = 1 € R. But this
contradicts that m; € (x,y) for all i, so > ;_,7m; € (z,y), as 1 &
(z,y).

Definition 2.7. An R-module M is free if it has a basis.

Example 2.8. For any ring R, the R-module R" is free. The K|z, yl-
module (z,y) is not.

Exercise: Which of the following modules are free?
(2) R= Za M = Z2/<(17 1)a (17 _1)>
(3) R= Klw,y], and M = K[z, y]/(2* + ¢?).
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3. THE CAYLEY-HAMILTON THEOREM

Recall: For an n x n matrix A with entries in a field K, the charac-
teristic polynomial is

pa(z) = det(zl — A).

The Cayley-Hamilton theorem states that pa(A) = 0. Here by pa(A)
we mean the following: if p(z) =Y a;2" € K|z], then p(A) =Y a; A"
Note:  Matrices still make sense over an arbitrary (commutative)
ring.

An n x n matrix A with entries in R gives an R-module homomor-
phism ¢: R — R" by

¢<T1, e 77‘n) = (Z(]Jlj’i”j, ceey Zanjrj).
Jj=1 Jj=1

This is the usual multiplication of a matrix and a vector.

Determinants of n x n matrices with entries in R also still make
sense, as the definition of the determinant only involves concepts that
make sense in a general ring.

Definition 3.1. Let M be an R-module. The set of all R-module
homomorphisms ¢: M — M forms a (noncommutative!) ring with
identity. We call this End(M) (here End is short for “endomorphism”).
The addition on End(M) is given by setting (¢+)(m) = ¢(m)+1(m),
and (¢)(m) = ¢(¢(m)), where ¢,¢» € End(M). Thus addition is

pointwise, and multiplication is composition of functions.

This is the only noncommutative ring that we will see in this module.
When M = R", the ring End(M) is the ring of n x n matrices with
entries in R, and the multiplication is multiplication of matrices.

Definition 3.2. Given an nxn matrix A, the subring R[A] of End(R")
is the smallest subring of End(R") containing the identity endomor-
phism and A.

Exercise: Check that the “smallest subring” exists. It consists of
all polynomials in A: >°7  a;A’, where a;A" means the scalar multi-
plication of the matrix A® by the element a;, and A° is the identity
matrix.
Note: R[A] is a commutative ring, and there is a surjective homo-
morphism ¢: R[z] — R[A] given by sending z to A.

Also, R" is a R[A]-module, with the action given by

(Z a; A = Z a;(A")

=0
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for v = (ry,...,m,) € R", where A'v is usual matrix/vector multiplica-
tion.

Theorem 3.3 (Cayley-Hamilton Theorem). Let R be a ring, and A
an n X n matriz with entries in R. Write pa(x) = det(xl — A). This
is a polynomial of degree n in x with coefficients in R, and pa(A) = 0.

Example 3.4. Let R =7Z/6Z, and

The characteristic polynomial is

det(x_—?)l —2 >:(x—1)(q:—4)—6:x2+:c+4.

r—4
s (1 4
A_<3 4 7
SO

) (14 12 40\ (00
A+A+4I_(34>+(34>+<04)—(00>.

Exercise: Let R = Clz], and

x x?
(57)

Compute the characteristic polynomial of A, and verify that pa(A) = 0.

We have

Proof of the Cayley-Hamilton theorem. Write ey, ..., e, for the stan-
dard basis vectors of R™.

We have Aej, = Z?Zl ajre; for 1 < k < n. Write ¢;; for the Kro-
necker delta: 6;, = 1if j = k, and 0 otherwise. Then Z?Zl(éjkA —
ajr)e; = 0 € R". Let B = (Bj),) be the n x n matrix with entries in
R[A] with Bj, = §;5A— aj.. Write C for the adjoint matrix of B. This
is the n x n matrix with Cj; = (—1)"*/ det(B\ith column and jth row).
This is a well-defined operation in any commutative ring, so in partic-
ular in the ring R[A]. As in standard linear algebra we have

BC = CB = det(B)1,.
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Indeed,
(BC);; = Z B Cy;
k=1

= Z(—l)k“Bm det(B \ kth column, jth row)
k=1

= det(B with jth row replaced by the ith row)

_ {det(B) i=

0 otherwise.

The third equality here comes from expanding det(B) along the jth
row (Check that these expansions still make sense over an arbitrary
ring!).

Now,

0= Z(ij Z(5ikA — ai)e;)

k=1 i=1

- Z(Z ij(éikA - aik))ei

=1 k=1

=> Y BuCue

=1 k=1
i=1

So det(B) = 0.

Now pa(z) = det(zl, — A) € Rlz]. The map ¢: R[z] — R[A]
sending x to A is a homomorphism which induces a homomorphism
¢: End(R[z]") — End(R[A]") as follows. An element f € End(R[z]")
can be represented by an n x n matrix with entries in R[zx]. The
homomorphism ¢ applies ¢ to each entry of this matrix. Equivalently, if
fle:) =327, hiej, then P(f)(e; = 3_7_, ¢(hi)e;. The homomorphism
Y takes xl,, — A to B. Thus ps(A) = det(B) = 0. O

We now give a version of this theorem that applies to a more general
module.
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Definition 3.5. An R-module M is finitely generated if it has a finite
set of generators, so there is mq,...,mg € M such that for all m € M
there is rq,...,rs with m =>"7  rim,.

For an ideal I C R, we denote by I M the submodule of M generated
by {rm:reI,me M}.

Theorem 3.6. Let M be a finitely generated R-module with n genera-
tors, let ¢: M — M be an R-module homomorphism, and suppose that
I is an ideal of R such that ¢(M) C IM. Then ¢ satisfies a relation
of the form

¢" +arg" "+t an1d+an =0
where a; € I' for 1 < i <mn. This is a relation in the ring End(M).

Here I’ is the product of the ideal I with itself ¢ times, so is the
ideal generated by the products of any ¢ elements of I. For example, if
I = (z,y) C Q[z,y], then I* = (z, zy,y*). The case that M = R" and
I = R is the Cayley-Hamilton theorem; in that case the relation is the
characteristic polynomial. The proof of this theorem is very similar to
the proof of the Cayley-Hamilton theorem.

Proof. Let my,...,m, be a generating set for M. Since ¢(m;) € IM
we can write ¢(m;) = Y 7, a;im; with aj; € I. In the subring R[¢] of
End(M) thisis )7, (0;:0—aji)m; = 0. Here we regard an element a €
R as the endomorphism of M given by m — am. Write B for the n xn
matrix with entries in R[¢] with B;; = d,i¢ — aj;, so Z?Zl B;jm; = 0.
Let C be the adjoint matrix of B. Then

0= Cu()_ Bimy)
i=1 j=1
= Z(Z CriBij)m;

j=1 =1
= (CB)ym;
j=1
= det(B)my.
So det(B) € R|¢] satisfies det(B)my, = 0 for all k, and det(B)m = 0 for

all m € M. Thus det(B) = 0 in End(M). Expanding the determinant
gives a polynomial in ¢ of the desired form. U
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4. NAKAYAMA’S LEMMAS

We finish this topic with several important corollaries of the Cayley-
Hamilton theorem and its generalization, each of which is called Nakayama’s
lemma by some authors.

Corollary 4.1. If M is a finitely generated R-module and I is an ideal
of R with IM = M, then there exists r € R such thatr —1 € I, and
rM = 0.

Proof. Applying Theorem 3.6 in the case that ¢ is the identity homo-

morphism we get
n—1

id+2aiid+an:0,
i=1
with a; € I', so (1 + 3.7 a;)id = 0. Set r = 1+ >, a;. Then
r—1€l, and rm =0 for all m € M. O

Corollary 4.2. Let R be a local ring with maximal ideal m, and M a
finitely generated R-module. If M = mM, then M = 0.

Proof. By Corollary 4.1 there is » € R with r — 1 € m and rm = 0 for
all m € M. But then r € m (as otherwise 1 € m), so r is a unit, and
thus m = r~trm =110 =0 for all m € M. O

The last version is the one most commonly called Nakayama’s lemma.

Corollary 4.3. Let R be a local ring with maximal ideal m. If M is a
finitely generated R-module and mq,...,mg € M are elements whose
images span the k = R/m-vector space M = M/mM, then my, ..., m
generate M.

Proof. Let N be the submodule of M generated by mq, ..., ms. Since
the m; + mM span M/mM, each element of M can be written as
m =Y., rim;+m' where r; € R and m' € mM. Thus m = n+m' for
n € N. Thus m+ N =m'+ N, so M/N =mM/N. By Corollary 4.2
this implies that M/N = 0. So N = M, and m,...,ms generates
M. O

Warning: These corollaries all need M to be finitely generated.

Example 4.4. Let R = Z¢ = {a/b € Q: 2 b}, and M = Q. Then
M is an R-module. Note that 2Q = Q, as a/b = 2(a/2b), but Q # 0.
This does not contradict Corollary 4.2, as M is not a finitely generated
R-module. (Why not?)

The last two also need R to be local.
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Example 4.5. Z is a Z-module, (2) is a maximal ideal of Z, 5 generates
Z/2Z, but not Z. This does not contradict Corollary 4.3 because Z is
not a local ring.



