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1. Modules

Definition 1.1. Let R be a ring. An R-module M is an abelian group
M with a multiplication map R×M →M (written rm) satisfying:

(1) r(m+ n) = rm+ rn,
(2) (r + r′)m = rm+ r′m,
(3) (rr′)m = r(r′m), and
(4) 1Rm = m for all r, r′ ∈ R, m,n ∈M .

Example 1.2. (1) When R is a field, an R-module M is a vector
space over R.

(2) For an arbitrary ring R, R is an R-module, with the map R ×
M → R being multiplication.

(3) For an arbitrary ring R, and an ideal I ⊆ R, both I and R/I
are R-modules.

(4) When R = Z, R-modules are abelian groups. Here ng = g +
· · ·+ g is the sum of n copies of g.

Definition 1.3. A subset N ⊆ M of an R-module is a submodule if
the following two conditions hold: If m,n ∈ N then m+ n ∈ N , and if
m ∈ N , r ∈ R, then rm ∈ N .

Example 1.4. A submodule of the R-module R is an ideal. If R is a
field, an R-submodule of M is a subspace of the vector space M .

Definition 1.5. A map φ : M → N is an R-module homomorphism if
it is a group homomorphism with

φ(rm) = rφ(m).

It is an isomorphism if it is injective and surjective.

Example 1.6. When R is a field, an R-module homomorphism is a
linear map.

Definition 1.7. If φ : M → N is an R-module homomorphism then

ker(φ) = {m ∈M : φ(m) = 0N},
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and

im(φ) = {n ∈ N : ∃m ∈M with φ(m) = n}.

Exercise: Show that ker(φ) is a submodule of M , and im(φ) is a
submodule of N .

Since a submodule N of M is a subgroup of an abelian group, we
can form the quotient group M/N . This is again an R-module, with
the action

r(m+N) = rm+N.

Exercise: Show that this is well-defined, so if m+N = m′+N , then
rm+N = rm′ +N .
Exercise: Isomorphism theorems. Show that

(1) If φ : M → N , then M/ ker(φ) ∼= im(φ).
(2) If L ⊆M ⊆ N with L a submodule of M , and M a submodule

of N , then

N/M ∼= (N/L)/(M/L).

(3) If L and M are submodules of N then (L+M)/L ∼= M/(M∩L),
where L+M = {l +m : l ∈ L,m ∈M}.

Hint: You already know these for abelian groups, so you just need
to check the R-action obeys the axioms.

2. Free modules

Definition 2.1. Let R be a ring. The R-module Rn is

R = {(r1, . . . , rn) : ri ∈ R},

where the R-action is

r(r1, . . . , rn) = (rr1, . . . , rrn),

and

(r1, . . . , rn) + (r′1, . . . , r
′
n) = (r1 + r′1, . . . , rn + r′n).

More generally, if A is any set, then

{(rα : α ∈ A) : rα ∈ R}

is an R-module.

Note: InRn, then set B = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
has the property that every element of Rn can be written as an R-linear
combination of elements of B. For example, when n = 2, we have
(r1, r2) = r1(1, 0) + r2(0, 1). This should remind you of a basis from
linear algebra.
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Definition 2.2. Let M be an R-module, and let G = {mα : α ∈ A}
be a subset of elements of M . The set G generates M as an R-module
if every element m ∈ M can be written in the form m =

∑s
i=1 rimαi

for some α1, . . . , αs ∈ A, and r1, . . . , rs ∈ R. Here the set A may be
infinite, but this is a finite sum.

Example 2.3. (1) When R is a field, an R-module M is a vector
space. Then G ⊆M generates M if G spans M .

(2) When M = I is an ideal of R, then G generates M as an R-
module if and only if I = 〈G〉 (so if and only if G generates I
as an ideal.

Definition 2.4. A set G ⊆ M is a basis for M if G generates M and
every element of M can be written uniquely as an R-linear combination
of elements of G.

Equivalently, if
∑s

i=1 rimαi
= 0 for αi ∈ A, then r1 = · · · = rs = 0.

Example 2.5. (1) When R is a field, then a basis for an R-module
M is a basis for M as a vector space in the sense of linear
algebra.

(2) A basis for M = R2 is given by {(1, 0), (0, 1)}.

Warning: Unlike in linear algebra, many R-modules do not have
bases.

Example 2.6. Let R = K[x, y], where K is a field, and let M = 〈x, y〉.
Then M does not have a basis. Indeed, suppose that there was a basis G
for M . Then we could write x =

∑s
i=1 rimi and y =

∑t
j=1 r

′
jm
′
j, where

mi,m
′
j ∈ G, and ri, r

′
j ∈ R. Then xy =

∑s
i=1(riy)mi =

∑t
j=1(r

′
jx)m′j.

By uniqueness, after reordering if necessary, we may assume that s = t,
mi = m′i, and yri = xr′i. But then x divides ri for all i, so we can write
ri = xr̃i for r̃i ∈ R. This means that x =

∑s
i=1 xr̃imi ∈ R = K[x, y].

Since R is a domain, we then have
∑s

i=1 r̃imi = 1 ∈ R. But this
contradicts that mi ∈ 〈x, y〉 for all i, so

∑s
i=1 r̃imi ∈ 〈x, y〉, as 1 6∈

〈x, y〉.

Definition 2.7. An R-module M is free if it has a basis.

Example 2.8. For any ring R, the R-module Rn is free. The K[x, y]-
module 〈x, y〉 is not.

Exercise: Which of the following modules are free?

(1) R = K[x, y], M = 〈x2 + y2〉,
(2) R = Z, M = Z2/〈(1, 1), (1,−1)〉.
(3) R = K[x, y], and M = K[x, y]/〈x2 + y2〉.
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3. The Cayley-Hamilton theorem

Recall: For an n × n matrix A with entries in a field K, the charac-
teristic polynomial is

pA(x) = det(xI − A).

The Cayley-Hamilton theorem states that pA(A) = 0. Here by pA(A)
we mean the following: if p(x) =

∑
aix

i ∈ K[x], then p(A) =
∑
aiA

i.
Note: Matrices still make sense over an arbitrary (commutative)
ring.

An n × n matrix A with entries in R gives an R-module homomor-
phism φ : Rn → Rn by

φ(r1, . . . , rn) = (
n∑
j=1

a1jrj, . . . ,

n∑
j=1

anjrj).

This is the usual multiplication of a matrix and a vector.
Determinants of n × n matrices with entries in R also still make

sense, as the definition of the determinant only involves concepts that
make sense in a general ring.

Definition 3.1. Let M be an R-module. The set of all R-module
homomorphisms φ : M → M forms a (noncommutative!) ring with
identity. We call this End(M) (here End is short for “endomorphism”).
The addition on End(M) is given by setting (φ+ψ)(m) = φ(m)+ψ(m),
and (φψ)(m) = φ(ψ(m)), where φ, ψ ∈ End(M). Thus addition is
pointwise, and multiplication is composition of functions.

This is the only noncommutative ring that we will see in this module.
When M = Rn, the ring End(M) is the ring of n× n matrices with

entries in R, and the multiplication is multiplication of matrices.

Definition 3.2. Given an n×n matrix A, the subring R[A] of End(Rn)
is the smallest subring of End(Rn) containing the identity endomor-
phism and A.

Exercise: Check that the “smallest subring” exists. It consists of
all polynomials in A:

∑s
i=0 aiA

i, where aiA
i means the scalar multi-

plication of the matrix Ai by the element ai, and A0 is the identity
matrix.
Note: R[A] is a commutative ring, and there is a surjective homo-
morphism ψ : R[x]→ R[A] given by sending x to A.

Also, Rn is a R[A]-module, with the action given by

(
s∑
i=0

aiA
i)v =

s∑
i=0

ai(A
iv)
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for v = (r1, . . . , rn) ∈ Rn, where Aiv is usual matrix/vector multiplica-
tion.

Theorem 3.3 (Cayley-Hamilton Theorem). Let R be a ring, and A
an n × n matrix with entries in R. Write pA(x) = det(xI − A). This
is a polynomial of degree n in x with coefficients in R, and pA(A) = 0.

Example 3.4. Let R = Z/6Z, and

A =

(
1 2
3 4

)
.

The characteristic polynomial is

det

(
x− 1 −2
−3 x− 4

)
= (x− 1)(x− 4)− 6 = x2 + x+ 4.

We have

A2 =

(
1 4
3 4

)
,

so

A2 + A+ 4I =

(
1 4
3 4

)
+

(
1 2
3 4

)
+

(
4 0
0 4

)
=

(
0 0
0 0

)
.

Exercise: Let R = C[x], and

A =

(
x x2

x3 x4

)
.

Compute the characteristic polynomial of A, and verify that pA(A) = 0.

Proof of the Cayley-Hamilton theorem. Write e1, . . . , en for the stan-
dard basis vectors of Rn.

We have Aek =
∑n

j=1 ajkej for 1 ≤ k ≤ n. Write δjk for the Kro-

necker delta: δjk = 1 if j = k, and 0 otherwise. Then
∑n

j=1(δjkA −
ajk)ej = 0 ∈ Rn. Let B = (Bjk) be the n × n matrix with entries in
R[A] with Bjk = δjkA−ajk. Write C for the adjoint matrix of B. This
is the n×n matrix with Cij = (−1)i+j det(B\ith column and jth row).
This is a well-defined operation in any commutative ring, so in partic-
ular in the ring R[A]. As in standard linear algebra we have

BC = CB = det(B)In.
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Indeed,

(BC)ij =
n∑
k=1

BikCkj

=
n∑
k=1

(−1)k+jBik det(B \ kth column, jth row)

= det(B with jth row replaced by the ith row)

=

{
det(B) i = j

0 otherwise.

The third equality here comes from expanding det(B) along the jth
row (Check that these expansions still make sense over an arbitrary
ring!).

Now,

0 =
n∑
k=1

(Ckj

n∑
i=1

(δikA− aik)ei)

=
n∑
i=1

(
n∑
k=1

Ckj(δikA− aik))ei

=
n∑
i=1

n∑
k=1

BikCkjei

=
n∑
i=1

(BC)ijei

= det(B)ej.

So det(B) = 0.
Now pA(x) = det(xIn − A) ∈ R[x]. The map φ : R[x] → R[A]

sending x to A is a homomorphism which induces a homomorphism
ψ : End(R[x]n)→ End(R[A]n) as follows. An element f ∈ End(R[x]n)
can be represented by an n × n matrix with entries in R[x]. The
homomorphism ψ applies φ to each entry of this matrix. Equivalently, if
f(ei) =

∑n
j=1 hiej, then ψ(f)(ei =

∑n
j=1 φ(hi)ej. The homomorphism

ψ takes xIn − A to B. Thus pA(A) = det(B) = 0. �

We now give a version of this theorem that applies to a more general
module.
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Definition 3.5. An R-module M is finitely generated if it has a finite
set of generators, so there is m1, . . . ,ms ∈ M such that for all m ∈ M
there is r1, . . . , rs with m =

∑s
i=1 rimi.

For an ideal I ⊂ R, we denote by IM the submodule of M generated
by {rm : r ∈ I,m ∈M}.

Theorem 3.6. Let M be a finitely generated R-module with n genera-
tors, let φ : M →M be an R-module homomorphism, and suppose that
I is an ideal of R such that φ(M) ⊆ IM . Then φ satisfies a relation
of the form

φn + a1φ
n−1 + · · ·+ an−1φ+ an = 0

where ai ∈ I i for 1 ≤ i ≤ n. This is a relation in the ring End(M).

Here I i is the product of the ideal I with itself i times, so is the
ideal generated by the products of any i elements of I. For example, if
I = 〈x, y〉 ⊆ Q[x, y], then I2 = 〈x2, xy, y2〉. The case that M = Rn and
I = R is the Cayley-Hamilton theorem; in that case the relation is the
characteristic polynomial. The proof of this theorem is very similar to
the proof of the Cayley-Hamilton theorem.

Proof. Let m1, . . . ,mn be a generating set for M . Since φ(mi) ∈ IM
we can write φ(mi) =

∑n
j=1 ajimj with aji ∈ I. In the subring R[φ] of

End(M) this is
∑n

j=1(δjiφ−aji)mj = 0. Here we regard an element a ∈
R as the endomorphism of M given by m 7→ am. Write B for the n×n
matrix with entries in R[φ] with Bij = δjiφ − aji, so

∑n
j=1Bijmj = 0.

Let C be the adjoint matrix of B. Then

0 =
n∑
i=1

Cki(
n∑
j=1

Bijmj)

=
n∑
j=1

(
n∑
i=1

CkiBij)mj

=
n∑
j=1

(CB)kjmj

= det(B)mk.

So det(B) ∈ R[φ] satisfies det(B)mk = 0 for all k, and det(B)m = 0 for
all m ∈M . Thus det(B) = 0 in End(M). Expanding the determinant
gives a polynomial in φ of the desired form. �
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4. Nakayama’s lemmas

We finish this topic with several important corollaries of the Cayley-
Hamilton theorem and its generalization, each of which is called Nakayama’s
lemma by some authors.

Corollary 4.1. If M is a finitely generated R-module and I is an ideal
of R with IM = M , then there exists r ∈ R such that r − 1 ∈ I, and
rM = 0.

Proof. Applying Theorem 3.6 in the case that φ is the identity homo-
morphism we get

id +
n−1∑
i=1

ai id +an = 0,

with ai ∈ I i, so (1 +
∑n

i=1 ai) id = 0. Set r = 1 +
∑n

i=1 ai. Then
r − 1 ∈ I, and rm = 0 for all m ∈M . �

Corollary 4.2. Let R be a local ring with maximal ideal m, and M a
finitely generated R-module. If M = mM , then M = 0.

Proof. By Corollary 4.1 there is r ∈ R with r − 1 ∈ m and rm = 0 for
all m ∈ M . But then r 6∈ m (as otherwise 1 ∈ m), so r is a unit, and
thus m = r−1rm = r−10 = 0 for all m ∈M . �

The last version is the one most commonly called Nakayama’s lemma.

Corollary 4.3. Let R be a local ring with maximal ideal m. If M is a
finitely generated R-module and m1, . . . ,ms ∈ M are elements whose
images span the k = R/m-vector space M = M/mM , then m1, . . . ,ms

generate M .

Proof. Let N be the submodule of M generated by m1, . . . ,ms. Since
the mi + mM span M/mM , each element of M can be written as
m =

∑s
i=1 rimi+m′ where ri ∈ R and m′ ∈ mM . Thus m = n+m′ for

n ∈ N . Thus m + N = m′ + N , so M/N = mM/N . By Corollary 4.2
this implies that M/N = 0. So N = M , and m1, . . . ,ms generates
M . �

Warning: These corollaries all need M to be finitely generated.

Example 4.4. Let R = Z〈2〉 = {a/b ∈ Q : 2 6 |b}, and M = Q. Then
M is an R-module. Note that 2Q = Q, as a/b = 2(a/2b), but Q 6= 0.
This does not contradict Corollary 4.2, as M is not a finitely generated
R-module. (Why not?)

The last two also need R to be local.
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Example 4.5. Z is a Z-module, 〈2〉 is a maximal ideal of Z, 5 generates
Z/2Z, but not Z. This does not contradict Corollary 4.3 because Z is
not a local ring.


