3G6 COMMUTATIVE ALGEBRA - HOMEWORK 6

NOT ASSESSED - BUT EXAMINABLE.

- (1) Give two different minimal primary decompositions of the ideal $I = \langle x^2 y^3, x^3 y^2, x^4 y \rangle \subset K[x, y].$
- (2) Show that if $I \subset R$ satisfies $P = \sqrt{I}$ is prime, then R/I has only one minimal prime.
- (3) Write down an example of an ideal $I \subset K[x, y, z]$ with $|\operatorname{Ass}(R/I)| >$ 1 but \sqrt{I} prime.
- (4) Show that if val: $K \setminus \{0\} \to \mathbb{R}$ is a valuation, then val(1) = 0, $\operatorname{val}(-a) = \operatorname{val}(a)$, and $\operatorname{val}(1/a) = -\operatorname{val}(a)$.
- (5) Show that if val: $K \setminus \{0\} \to \mathbb{R}$ is a valuation, and $a, b \in K \setminus \{0\}$ with $\operatorname{val}(a) \neq \operatorname{val}(b)$, then $\operatorname{val}(a+b) = \min(\operatorname{val}(a), \operatorname{val}(b))$.
- (6) Let K = k(t) be the ring of rational functions in t, with the valuation given in lectures. Show that the residue field of K is isomorphic to k.
- (7) Show that the residue field R/\mathfrak{m} of \mathbb{Q} with the *p*-adic valuation is isomorphic to $\mathbb{Z}/p\mathbb{Z}$. (8) Let $K = \mathbb{C}((t)) = \{\sum_{i=N}^{\infty} a_i t^i : a_i \in \mathbb{C}, N \in \mathbb{Z}\}.$
- - (a) Check that the natural addition and multiplication make this into a field. Here by "natural" I mean the extension of the addition and multiplication from the ring of power series. This is the field of Laurent series.
 - (b) Check (as claimed in lectures) that the function given by $\operatorname{val}(\sum_{i=N}^{\infty} a_i t^i = N)$ when $a_N \neq 0$ obeys the valuation axioms.
 - (c) What is the valuation ring of this valuation? What is the residue field?
- (9) The field of Puiseux series is $\mathbb{C}\{\{t\}\} = \bigcup_{n>1} \mathbb{C}((t^{1/n}))$.
 - (a) Check that $\mathbb{C}\{\{t\}\}\$ is a field.
 - (b) We define val: $\mathbb{C}\{\{t\}\}\setminus\{0\} \to \mathbb{R}$ by val $(\sum a_q t^q) = \min_{a_q \neq 0}(q)$. Show that this is a valuation.
 - (c) What is the valuation ring of this valuation? What is the residue field?