MAX FLOW / MIN CUT ALGORITHM

MA 252, 2010

Let N = (G, V, c, s, t) be a network. We explain here the Ford-Fulkerson augmenting paths algorithm to compute a maximal flow in a graph.

Assumption: We assume that if $(u, v) \in E$, then $(v, u) \notin E$. This is a harmless assumption, as if $(v, u) \in E$, we can add a new vertex w, and replace (v, u) by two new edges (v, w) and (w, u), with c(v, w) = c(w, u) = c(v, u).

Max Flow Algorithm.

Input: A network N = (G, V, c, s, t). **Output:** A flow f, and a cut (S, T) with |f| = C(S, T).

- (1) Initialize: Set f(e) = 0 for all $e \in E$. Define a vector $(p(v) : v \in V)$ (the *predecessor vector*) and a vector $(s(v) : v \in V)$ (the *slack vector*). Set treached = true.
- (2) While treached = true do
 - (a) Initialize: p(v), s(v) are set to be unlabelled for all v. Set $s(s) = \infty$. treached = false. $S = L = \{s\}$. S is the set of searched vertices, and L is the set of labelled vertices.
 - (b) While $S \neq \emptyset$ and treached = false do
 - (i) Pick $v \in S$. Set $S = S \setminus \{v\}$.
 - (ii) For all $(v, w) \in E$ with $w \notin L$ and f(v, w) < c(v, w): (A) Set $L = L \cup \{w\}$.
 - (B) Set $s(w) = \min(c(v, w) f(v, w), s(v)).$
 - (C) Set p(w) = v.
 - (D) If $w \neq t$, then set $S = S \cup \{w\}$. Otherwise set treached =true.
 - (iii) For all $(w, v) \in E$ with $w \notin L$ and f(w, v) > 0:
 - (A) Set $L = L \cup \{w\}$.
 - (B) Set $s(w) = \min(f(v, w), s(v))$.
 - (C) Set p(w) = v.
 - (D) If $w \neq t$, then set $S = S \cup \{w\}$. Otherwise set treached =true.
 - (c) If treached = true, then augment the path by s(t):

(i) Set v = t.

MA 252, 2010

- (ii) While $v \neq s$ do: (A) if $(p(v), v) \in E$, then set f(p(v), v) = f(p(v), v) +s(t). (B) if $(v, p(v)) \in E$, then set f(v, p(v)) = f(v, p(v)) s(t). (C) Set v = p(v). (3) Output $f, (L, V \setminus L)$.