MATH 244, SECTIONS 05, 06, 08

SOLUTIONS SAMPLE MIDTERM

Here are just the answers. Please write more than this in the exam!!!
(1) 15 j 16 c 17 g 18 b 19 h 20 e
(2) $y=(1 / 4) t^{2}-(1 / 3) t+1 / 2+1 /\left(12 t^{2}\right)$
(3) $-\sqrt{2(2-x)(x+1)}$. Valid on $-1<x<2$.
(4) Let $S(t)$ be the amount of salt at time t, so $S(0)=100$. We have the equation $S^{\prime}(t)=3-(2 / t+200) S$ (this comes from the fact that the volume of liquid in the tank at time t is $t+200$. This has solution $S(t)=$ $t+200-4000000 /(t+200)^{2}$. The tank overflows at $t=300$, and $S(300)=$ $500-400 / 25=484$, so the concentration is $484 / 500=0.968$. Limiting concentration is 1 pound/gallon.
(5) The equilibrium solutions are $y=0,1$. Both are semistable.
(6) $\psi(x, y)=x y^{2}+\left(-2+2 y-y^{2}\right) e^{y}=c$.
(7) $y_{1}=y_{0}+\left(2 y_{1}=3 t_{1}\right) h . y_{1}=\left(y_{0}-3 t_{1} h\right) /(1-2 h) . y_{1}=-0.03 / 0.8$.
(8) $y=e^{t}$. This goes to infinity as t goes to infinity.
(9) The Wronskian is 0 .
(10) $0<t<4$.

