244 SPRING 2006 SAMPLE MIDTERM 2 SOLUTIONS

SECTIONS 05, 06, 08

(1) The general solution is $y(t)=c_{1} e^{t} \cos (2 t)+c_{2} e^{t} \sin (2 t)$, so the solution to the initial value problem is $y(t)=-e^{t-\pi / 2} \sin (2 t)$.
(2) $y(t)=2 t e^{3 t}$.
(3) The general solution is $y(t)=1 / 6 t^{3} e^{t}+4+c_{1} e^{t}+c_{2} t e^{t}$, so the solution is $-3 e^{t}+4 t e^{t}+1 / 6 t^{3} e^{t}+4$.
(4) The general solution to the homogeneous equation is $y(t)=$ $c_{1} e^{2 t}+c_{2} e^{-t}$, so we look for a solution of the form $y(t)=$ $v_{1}(t) e^{2 t}+v_{2}(t) e^{-t}$. We differentiate and set $v_{1}^{\prime} e^{2 t}+v_{2}^{\prime} e^{-t}=0$. This leads to the other equation $2 v_{1}^{\prime} e^{2 t}-v_{2}^{\prime} e^{-t}=2 e^{-t}$. Solving these two equations for $v_{1}^{\prime}, v_{2}^{\prime}$ we get $v_{1}^{\prime}=2 / 3 e^{-3 t}$, and $v_{2}^{\prime}=-2 / 3$, leading to $v_{1}=-2 / 9 e^{-3 t}$ and $v_{2}=-2 / 3 t$. Thus $y=-2 / 9 e^{-t}-2 / 3 t e^{-t}$ is a solution to the equation. Since e^{-t} is a solution to the homogeneous equation we can remove that from the solution to get another solution being $y=-2 / 3 t e^{-t}$.
(5) $y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}+\cos (t)$.
(6) $y(t)=c_{1}(|x-2|)^{-2} \sin \left(2 \ln (|x-2|)+c_{2}(|x-2|)^{-2} \cos (2 \ln (|x-2|)\right.$.
(7) Let $x_{1}=u$, and $x_{2}=x_{1}^{\prime}$. Then we have the system $x_{1}^{\prime}=$ $x_{2}, x_{2}^{\prime}=2 \cos (3 t)-4 x_{1}-0.25 x_{2}$, with initial conditions $x_{1}(0)=$ $1, x_{2}(0)=-2$.
(a) $A+B=\left(\begin{array}{rr}3+2 t & t^{2}+e^{-t} \\ e^{t}+t+1 & 2 t-1\end{array}\right)$.
(b) $A B=\left(\begin{array}{rr}t^{3}+t^{2}+6 t & 3 e^{-t}+t^{3} \\ 2 t e^{t}+t^{2}-1 & t^{2}-t+1\end{array}\right)$.
(c) $d / d t(A B)=\left(\begin{array}{rr}3 t^{2}+2 t+6 & -3 e^{-t}+3 t^{2} \\ 2(t+1) e^{t}+2 t & 2 t-1\end{array}\right)$.
(9) $\operatorname{det}(A-\lambda I)=(5-\lambda)(1-\lambda)+3=\lambda^{2}-6 \lambda+8=(\lambda-4)(\lambda-2)$. So the eigenvalues of A are $\lambda=2$ and $\lambda=4$. For $\lambda=2$ the eigenvectors are all multiples of the vector $\binom{1}{3}$, while for $\lambda=4$ the eigenvectors are all multiples of the vector $\binom{1}{1}$. $W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right)(t)=\left|\begin{array}{cc}t & t^{2} \\ 1 & 2 t\end{array}\right|=t^{2}$.

