244 SPRING 2006 SAMPLE MIDTERM 2

SECTIONS 05, 06, 08

(1) Find the solution of the initial value problem: $y^{\prime \prime}-2 y^{\prime}+5 y=0$, $y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$.
(2) Solve the initial value problem: $y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=0$, $y^{\prime}(0)=2$.
(3) Find the solution of the initial value problem: $y^{\prime \prime}+2 y^{\prime}+y=$ $t e^{t}+4, y(0)=1, y^{\prime}(0)=1$.
(4) Solve the following differential equation using the method of variation of parameters: $y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}$.
(5) Determine the general solution of the differential equation: $y^{\prime \prime \prime}-$ $y^{\prime}=2 \sin (t)$.
(6) Give the general solution to $(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0$.
(7) Transform the following initial value problem into an initial value problem for two first order equations: $u^{\prime \prime}+0.25 u+4 u=$ $2 \cos (3 t), u(0)=1, u^{\prime}(0)=-2$.
(8) If $A=\left(\begin{array}{rr}3 & t^{2} \\ e^{t} & t-1\end{array}\right)$ and $B=\left(\begin{array}{rr}2 t & e^{-t} \\ t+1 & t\end{array}\right)$, compute:
(a) $A+B$
(b) $A B$
(c) $d / d t(A B)$
(9) Find all eigenvalues and eigenvectors of $A=\left(\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right)$.
(10) Compute the Wronskian of the vectors $\mathbf{x}^{(1)}=\binom{t}{1}$ and $\mathbf{x}^{(2)}=$ $\binom{t^{2}}{2 t}$.

