MA 243 HOMEWORK 9

DUE: THURSDAY, DECEMBER 6 2007, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A: Warm-up problems

1. Find an affine transformation of \mathbb{A}^{2} taking the set $\{(0,0),(1,0),(1,1)\}$ to the set $\{(1,2),(1,3),(2,2)\}$.
2. Find a projective transformation of \mathbb{P}^{1} taking the set $\{(1: 0),(0$: $1),(1: 1)\}$ to $\{(1: 2),(1: 3),(1: 4)\}$. Repeat for the sets $\{(1: 0),(1: 2),(1: 3)\}$ and $\{(0: 1),(1: 1),(1: 5)\}$.
3. Show that an affine subspace of \mathbb{A}^{n} dimension d is isomorphic to \mathbb{A}^{d} (ie there is a map taking points to points, and lines to lines). Repeat this for projective subspaces. In particular, lines in \mathbb{A}^{n} look like \mathbb{A}^{1}, and lines in \mathbb{P}^{n} look like \mathbb{P}^{1}.

B: Exercises

1. Find the intersection of the following pairs of lines in $\mathbb{P}^{2}: L=$ $W / \sim, L^{\prime}=W^{\prime} / \sim$, where
(a) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{0}+x_{1}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: 2 x_{0}+x_{1}-x_{2}=0\right\}$
(b) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{2}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{1}=x_{2}\right\}$
2. Find an affine transformation of \mathbb{A}^{2} taking the set $\{(3,4),(4,6),(6,11)\}$ to $\{(1,-1),(2,1),(3,5)\}$.
3. Find a projective transformation of \mathbb{P}^{2} taking the (ordered) list $\{(1: 1: 0),(1: 0: 1),(1: 1: 1),(0: 1: 1)\}$ of points to the (ordered) list $\{(1: 0: 0),(0: 1: 0),(0: 0: 1),(1: 1: 1)\}$.
4. Compute the cross-ratio $\{P, Q ; R, S\}$ of the set $\{P=(1: 0), Q=$ $(1: 1), R=(2: 1), S=(1: 2)\}$ of points in \mathbb{P}^{1}.
5 . Recall that we embed \mathbb{A}^{n} into \mathbb{P}^{n} by sending \mathbf{x} to $(1: \mathbf{x})$. Given an affine transformation $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, write down the corresponding projective transformation it extends to (this was given in class briefly). Let $S(\mathbf{x})=A^{\prime} \mathbf{x}+\mathbf{b}^{\prime}$. Write down the composition $S \circ T$, and compare it with the result of composing the corresponding projective transformations.
5. Prove that 3 lines L, M, N of \mathbb{P}^{n} that intersect in pairs are either concurrent (have a common point) or coplanar.

C: Extensions

1. We can define affine and projective space over any field k. Affine space \mathbb{A}_{k}^{n} is the vector space k^{n} with affine transformations $T(x)=$ $A x+b$ where A is an $n \times n$ invertible matrix with entries in k, and $b \in k^{n}$. Projective space \mathbb{P}^{n} is $\left(k^{n+1} \backslash \mathbf{0}\right) / \sim$, where \sim is defined as before: $\mathbf{v} \sim \lambda \mathbf{v}$ for all $\lambda \in k \backslash 0$.
(a) Consider the case $k=\mathbb{F}_{2}$, the finite field with two elements. What do lines look like in \mathbb{A}^{2} ?
(b) What about \mathbb{A}^{3} ?
(c) Repeat this for $k=\mathbb{F}_{3}$, the finite field with three elements.
(d) Look at the game described at http://www.setgame.com/set/index.html. Can you see a connection?
(e) Let $k=\mathbb{F}_{2}$. List the points in \mathbb{P}_{k}^{2}. Draw a picture of all the lines in \mathbb{P}_{k}^{2}.
