MA 243 HOMEWORK 9

DUE: THURSDAY, DECEMBER 6 2007, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- 1. Find an affine transformation of \mathbb{A}^2 taking the set $\{(0,0), (1,0), (1,1)\}$ to the set $\{(1,2), (1,3), (2,2)\}$.
- 2. Find a projective transformation of \mathbb{P}^1 taking the set $\{(1:0), (0:1), (1:1)\}$ to $\{(1:2), (1:3), (1:4)\}$. Repeat for the sets $\{(1:0), (1:2), (1:3)\}$ and $\{(0:1), (1:1), (1:5)\}$.
- 3. Show that an affine subspace of \mathbb{A}^n dimension d is isomorphic to \mathbb{A}^d (ie there is a map taking points to points, and lines to lines). Repeat this for projective subspaces. In particular, lines in \mathbb{A}^n look like \mathbb{A}^1 , and lines in \mathbb{P}^n look like \mathbb{P}^1 .

B: Exercises

- 1. Find the intersection of the following pairs of lines in \mathbb{P}^2 : $L = W/\sim, L' = W'/\sim$, where
 - (a) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_0 + x_1 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : 2x_0 + x_1 x_2 = 0 \}$ (b) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_2 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 = x_2 \}$
- 2. Find an affine transformation of \mathbb{A}^2 taking the set $\{(3, 4), (4, 6), (6, 11)\}$ to $\{(1, -1), (2, 1), (3, 5)\}$.
- 3. Find a projective transformation of \mathbb{P}^2 taking the (ordered) list $\{(1:1:0), (1:0:1), (1:1:1), (0:1:1)\}$ of points to the (ordered) list $\{(1:0:0), (0:1:0), (0:0:1), (1:1:1)\}$.
- 4. Compute the cross-ratio $\{P, Q; R, S\}$ of the set $\{P = (1:0), Q = (1:1), R = (2:1), S = (1:2)\}$ of points in \mathbb{P}^1 .
- 5. Recall that we embed \mathbb{A}^n into \mathbb{P}^n by sending \mathbf{x} to $(1 : \mathbf{x})$. Given an affine transformation $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, write down the corresponding projective transformation it extends to (this was given in class briefly). Let $S(\mathbf{x}) = A'\mathbf{x} + \mathbf{b}'$. Write down the composition $S \circ T$, and compare it with the result of composing the corresponding projective transformations.

6. Prove that 3 lines L, M, N of \mathbb{P}^n that intersect in pairs are either concurrent (have a common point) or coplanar.

C: EXTENSIONS

- 1. We can define affine and projective space over any field k. Affine space \mathbb{A}_k^n is the vector space k^n with affine transformations T(x) = Ax + b where A is an $n \times n$ invertible matrix with entries in k, and $b \in k^n$. Projective space \mathbb{P}^n is $(k^{n+1} \setminus \mathbf{0}) / \sim$, where \sim is defined as before: $\mathbf{v} \sim \lambda \mathbf{v}$ for all $\lambda \in k \setminus 0$.
 - (a) Consider the case $k = \mathbb{F}_2$, the finite field with two elements. What do lines look like in \mathbb{A}^2 ?
 - (b) What about \mathbb{A}^3 ?
 - (c) Repeat this for $k = \mathbb{F}_3$, the finite field with three elements.
 - (d) Look at the game described at http://www.setgame.com/set/index.html. Can you see a connection?
 - (e) Let $k = \mathbb{F}_2$. List the points in \mathbb{P}_k^2 . Draw a picture of all the lines in \mathbb{P}_k^2 .

2