MA 243 HOMEWORK 4

DUE: THURSDAY, NOVEMBER 1, 2007, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A: Warm-up problems

1. Decompose the motion

$$
T(\mathbf{x})=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \mathbf{x}+\binom{1}{0}
$$

of \mathbb{E}^{2} into a product of reflections.
2. Show that every rotation in \mathbb{E}^{2} can be written as the composition of two reflections. (Hint: Last week's homework).

B: Exercises

1. Prove that if triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, and the angles at A and B equal the angles at A^{\prime} and B^{\prime} respectively: $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}, \angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$, then $A B C$ is congruent to $A^{\prime} B^{\prime} C^{\prime}$. Use the language and definitions of this module.
2. Let T be the motion of \mathbb{E}^{3} given in coordinates by $T\left(x_{1}, x_{2}, x_{3}\right)=$ $(\mathbf{x})=\left(-x_{3},-x_{2}, x_{1}\right)$. Write T as the composition of rotations and reflections and a translation as described in class. Then write T as the composition of at most four reflections as described in class.
3. Write an equation for the perpendicular bisector Π of the line between $(2,0,0)$ and $(2,1,3)$. Write down in coordinates the motion of reflecting in the plane Π.

C: Extensions

1. (a) Prove that if $T(\mathbf{x})=A \mathbf{x}+\mathbf{g}$ is a motion, then $\operatorname{det}(A)= \pm 1$.
(b) Show that the value of $\operatorname{det}(A)$ does not depend on the choice of coordinates (so the notions of orientation preserving/reversion are well-defined).
2. We've often used the fact that given a Euclidean frame $P_{0}, P_{1}, \ldots, P_{n}$ there is choose of coordinates that takes P_{0} to $\mathbf{0}$ and P_{i} to \mathbf{e}_{i} (the standard Euclidean frame). (This is why we can choose coordinates so a rotation is about the origin, for example, or a reflection is about the $x y$-plane). Prove this rigourously.
