MA 243 HOMEWORK 2

DUE: THURSDAY, OCTOBER 18, 2007, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A: Warm-up problems

(1) Which of the following sets of three points are collinear?
(a) $\{(1,0,0),(1,2,3),(1,4,6)\}$,
(b) $\{(1,1,1),(1,1,3),(1,5,4)\}$,
(c) $\{(1,1,1),(1,1,3),(1,1,4)\}$,
(2) Fix two points P and Q of \mathbb{E}^{2} and describe in coordinates the motion given by first rotating by an angle of $\pi / 4$ about P, and then reflecting in the line $\overline{P Q}$.
(3) Show that the composition of two motions is a motion.

B: ExERCISES

(1) Let T be motion obtained by rotating by θ anti-clockwise about a point P in \mathbb{E}^{2}, and let S be the motion obtained by rotating by ω anti-clockwise about the same point P. Write down the matrices A and B for T and S in some choice of coordinates. Describe the motion $T \circ S$ geometrically, and write down its matrix in the same choice of coordinates. Compare this to the matrix $A B$ (unsimplified) and explain your answer.
(2) Let T be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point P, and let S be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point Q distance one from P. Fix a coordinate choice in which P is taken to $(0,0)$, and Q is taken to $(1,0)$.
(a) Write down the expression for T in these coordinates.
(b) Write down the expression for S in these coordinates. (Hint: You may want to choose a more convenient coordinate choice and then rewrite in these coordinates).
(c) Write down the composition $S \circ T$ in these coordinates
(d) Describe $S \circ T$ geometrically.
(3) Write down in coordinates the motion of \mathbb{E}^{3} obtained by first rotating by $\pi / 3$ around the x-axis in a right-hand direction, then reflecting in the $x y$-plane, and finally translating by one unit in the positive z direction.

C: Extensions

(1) Let $\phi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ and $\psi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ be two choices of Euclidean coordinates. What can you say about the map $\psi \circ \phi^{-1}: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} ? If $T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is a motion given in the ϕ coordinates by $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, what is the representation of T in ψ coordinates?

