MA 243 HOMEWORK 2

DUE: THURSDAY, OCTOBER 18, 2007, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- (1) Which of the following sets of three points are collinear?
 - (a) $\{(1,0,0), (1,2,3), (1,4,6)\},\$
 - (b) $\{(1,1,1), (1,1,3), (1,5,4)\},\$
 - (c) $\{(1,1,1), (1,1,3), (1,1,4)\},\$
- (2) Fix two points P and Q of \mathbb{E}^2 and describe in coordinates the motion given by first rotating by an angle of $\pi/4$ about P, and then reflecting in the line \overline{PQ} .
- (3) Show that the composition of two motions is a motion.

B: EXERCISES

- (1) Let T be motion obtained by rotating by θ anti-clockwise about a point P in \mathbb{E}^2 , and let S be the motion obtained by rotating by ω anti-clockwise about the same point P. Write down the matrices A and B for T and S in some choice of coordinates. Describe the motion $T \circ S$ geometrically, and write down its matrix in the same choice of coordinates. Compare this to the matrix AB (unsimplified) and explain your answer.
- (2) Let T be the motion of \mathbb{E}^2 of anti-clockwise rotation by $\pi/2$ about a point P, and let S be the motion of \mathbb{E}^2 of anti-clockwise rotation by $\pi/2$ about a point Q distance one from P. Fix a coordinate choice in which P is taken to (0,0), and Q is taken to (1,0).
 - (a) Write down the expression for T in these coordinates.
 - (b) Write down the expression for S in *these* coordinates. (Hint: You may want to choose a more convenient coordinate choice and then rewrite in these coordinates).
 - (c) Write down the composition $S \circ T$ in these coordinates
 - (d) Describe $S \circ T$ geometrically.

DUE: THURSDAY, OCTOBER 18, 2007, BY 12PM

(3) Write down in coordinates the motion of \mathbb{E}^3 obtained by first rotating by $\pi/3$ around the *x*-axis in a right-hand direction, then reflecting in the *xy*-plane, and finally translating by one unit in the positive *z* direction.

C: EXTENSIONS

(1) Let $\phi : \mathbb{E}^n \to \mathbb{R}^n$ and $\psi : \mathbb{E}^n \to \mathbb{R}^n$ be two choices of Euclidean coordinates. What can you say about the map $\psi \circ \phi^{-1} : \mathbb{R}^n \to \mathbb{R}^n$? If $T : \mathbb{E}^n \to \mathbb{E}^n$ is a motion given in the ϕ coordinates by $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, what is the representation of T in ψ coordinates?

 $\mathbf{2}$