MA 243: HYPERBOLIC DISTANCE

DIANE MACLAGAN

This note is to provide a contained proof of the fact that the distance in the hyperbolic plane \mathbb{H}^2 is well-defined. Recall that the Lorentz inner product of vectors $\mathbf{v} = (t_1, x_1, y_1), \mathbf{w} = (t_2, x_2, y_2) \in \mathbb{R}^3$ is

$$\mathbf{v} \cdot_L \mathbf{w} = -t_1 t_2 + x_1 x_2 + y_1 y_2.$$

We define the distance between $\mathbf{v}, \mathbf{w} \in \mathbb{H}^2 = \{(t, x, y) \in \mathbb{R}^3 : -t^2 + x^2 + y^2 = -1, t > 0\}$ to be

$$d(\mathbf{v}, \mathbf{w}) = \cosh^{-1}(-\mathbf{v} \cdot_L \mathbf{w}).$$

For this definition to be well-defined we need to know that $\mathbf{v} \cdot_L \mathbf{w} \leq -1$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{H}^2$.

Our proof will use the following lemma. Define $q_L(\mathbf{v}) = \mathbf{v} \cdot_L \mathbf{v}$.

Lemma 1. If $\mathbf{v} = (t_1, x_1, y_1)$, $\mathbf{w} = (t_2, x_2, y_2) \in \mathbb{R}^3$ with $q_L(\mathbf{v}) < 0$ and $\mathbf{v} \cdot_L \mathbf{w} = 0$ then $q_L(\mathbf{w}) > 0$.

Proof. We have $-t_1^2 + x_1^2 + y_1^2 < 0$ and $-t_1t_2 + x_1x_2 + y_1y_2 = 0$. Thus $(-t_2^2 + x_2^2 + y_2^2)t_1^2 = -t_1^2t_2^2 + t_1^2(x_2^2 + y_2^2)$ $= -(x_1x_2 + y_1y_2)^2 + t_1^2(x_2^2 + y_2^2)$ $> -(x_1x_2 + y_1y_2)^2 + (x_1^2 + y_1^2)(x_2^2 + y_2^2)$ $= ((x_1, y_1) \cdot (x_2, y_2))^2 + |(x_1, y_1)|^2|(x_2, y_2)|^2$ > 0,

where the last equality is the Cauchy-Schwartz inequality. Since $q_L(\mathbf{v}) < 0$ we must have $t_1 > 0$, so $-t_2^2 + x_2^2 + y_2^2 = q_L(\mathbf{w}) \ge 0$.

We use this to show that we can choose coordinates well so that P = (1, 0, 0) and $Q = (\cosh(s), \sinh(s), 0)$ for any $P, Q \in \mathbb{H}^2$. This will use the analogue for the Lorentz inner product of the *Gram-Schmidt* algorithm to construct an orthonormal basis of a vector space. Google **Gram-Schmidt** for a list of good resources on this topic.

Lemma 2. Fix $\mathbf{v} = (t_1, x_1, y_1) \neq \mathbf{w} = (t_2, x_2, y_2) \in \mathbb{R}^3$. Then there is a linear map $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ that preserves the Lorentz inner product,

so $(\mathbf{x} \cdot_L \mathbf{y}) = \phi(\mathbf{x} \cdot_L \phi(\mathbf{y}))$, and such that $\phi(\mathbf{v}) = (1, 0, 0)$ and $\phi(\mathbf{w}) = (\cosh(r), \sinh(r), 0)$ for some r > 0.

Proof. Let $\mathbf{f}_0 = \mathbf{v}$. Note that $q_L(\mathbf{f}_0) = -1$, since $\mathbf{v} \in \mathbb{H}^2$. Set $\mathbf{w}' = \mathbf{w} + (\mathbf{w} \cdot_L \mathbf{f}_0)\mathbf{f}_0$. Then $\mathbf{w}' \cdot_L \mathbf{f}_0 = \mathbf{w} \cdot_L \mathbf{f}_0 + (\mathbf{w} \cdot_L \mathbf{f}_0)\mathbf{f}_0 \cdot_L \mathbf{f}_0 = 0$, so $q_L(\mathbf{w}') > 0$ by Lemma 1. Set

$$\mathbf{f}_1 = rac{\mathbf{w}'}{\sqrt{q(\mathbf{w}')}}$$

Then $\mathbf{w} = c\mathbf{f}_0 + s\mathbf{f}_1$, for $c = -(\mathbf{w} \cdot_L \mathbf{f}_0)$ and $s = \sqrt{(\mathbf{w}')} > 0$. Choose $\mathbf{u} \in \mathbb{R}^3$ not in the span of \mathbf{v} and \mathbf{w} . Set

$$\mathbf{w}'' = \mathbf{u} + (\mathbf{u} \cdot_L \mathbf{f}_0) \mathbf{f}_0 - (\mathbf{u} \cdot_L \mathbf{f}_1) \mathbf{f}_1.$$

Again $q(\mathbf{w}'') > 0$. Set $\mathbf{f}_2 = \mathbf{w}'' / \sqrt{q(\mathbf{w}'')}$.

Now let A be the 3 matrix with columns \mathbf{f}_0 , \mathbf{f}_1 , \mathbf{f}_2 . Note that A is invertible. Let $T(\mathbf{x}) = A\mathbf{x}$. Let J be the matrix

$$J = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Then

$$T(\mathbf{x}) \cdot T(\mathbf{y}) = (A\mathbf{x}) \cdot_L (A\mathbf{y})$$
$$= \mathbf{x}^T A^T J A \mathbf{y}$$
$$= \mathbf{x}^T J \mathbf{y}$$
$$= \mathbf{x} \cdot_L \mathbf{y},$$

since $A^T J A = J$. Thus T preserves \cdot_L . Let $S = T^{-1}$. Then S also preserves \cdot_L , and $S(\mathbf{v}) = (1, 0, 0)$, and $S(\mathbf{v}) = (c, s, 0)$, with s > 0. Now S is a continuous function preserving q, so it preserves the branches of the hyperboloid $q(\mathbf{x}) = -1$. Since $t_2 > 0$ we have $S(Q)_1 = c > 0$. Since c, s > 0 and $-c^2 + s^2 = -1$, there is r > 0 for which $c = \cosh(r), s = \sinh(r)$.

Corollary 3. We have $-\mathbf{v} \cdot_L \mathbf{w} \ge 1$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{H}^2$.