MA 243 HOMEWORK 7

SOLUTIONS

B: Exercises

(1) Find an affine transformation of \mathbb{A}^2 taking the set $\{(3,4), (4,6), (6,11)\}$ to $\{(1,-1), (2,1), (3,5)\}$.

$$T(\mathbf{x}) = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -4 \\ -7 \end{pmatrix}.$$

- (2) Recall that an affine subspace of dimension d is a subset of \mathbb{A}^n of the form $\mathbf{v} + V = {\mathbf{v} + \mathbf{w} : \mathbf{w} \in V}$ where V is a subspace of dimension d. A collection of d points in \mathbb{A}^n are *affine linearly dependent* if there is an affine subspace of dimension d - 2 containing them.
 - (a) Are the points $\{(1,0,0), (2,2,3), (5,8,12)\}$ affine linearly dependent? What does it mean geometrically for three points to be affine linearly dependent? These points are affinely linearly dependent, as they all live in the line $L = \{(1,0,0) + \lambda(1,2,3) : \lambda \in \mathbb{R}\}$. In general, three points are affine linearly dependent if and only if they are collinear.
 - (b) Give a determinantal criterion for 3 points in \mathbb{A}^2 to be affine linearly dependent (ie describe a matrix whose determinant is zero or nonzero accordingly). Let the three points have position vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2$. Form the 3×3 matrix A whose first column is $(1, x_1, x_2)$, second column is $(1, y_1, y_2)$, and whose third column is $(1, z_1, z_2)$. Then the three points are affinely linearly dependent if and only if det(A) = 0. To see this, note that they are linearly dependent if and only if there is some $\lambda \in \mathbb{R}$ with $\mathbf{z} = \mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})$, so if and only if $(1, \mathbf{z}) = (1 - \lambda)(1, \mathbf{x}) + \lambda(\mathbf{y})$, and thus if and only if the columns of A linearly dependent.
 - (c) Generalize the previous part to the case of n + 1points in \mathbb{A}^n . Form the $(n + 1) \times (n + 1)$ matrix whose columns are the vectors $(1, \mathbf{x})$ for the n + 1 points \mathbf{x} . The

SOLUTIONS

points are affinely linearly dependent if and only if the determinant of this matrix is zero.

- (3) Find the intersection of the following pairs of lines in \mathbb{P}^2 : $L = W/\sim$, $L' = W'/\sim$, where
 - (a) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_0 + x_1 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : 2x_0 + x_1 x_2 = 0 \}$

This is the point (1:-1:1).

- (b) $W = \{ \mathbf{x} \in \mathbb{R}^3 : x_2 = 0 \}, W' = \{ \mathbf{x} \in \mathbb{R}^3 : x_3 = x_2 \}$ This the point (1:0:0).
- (4) Prove that 3 lines L, M, N of \mathbb{P}^n that intersect in pairs are either concurrent (have a common point) or coplanar.

Suppose that L, M, N are not concurrent. Then in particular the three lines are distinct, and there are points $A, B, C \in \mathbb{P}^n$ such that A is the intersection of L and M, B is the intersection of L and N, and C is the intersection of M and N. Pick lifts **a**, **b**, **c** $\in \mathbb{R}^{n+1}$ of A, B, and C. Let W be the span of **a**, **b**, and **c**. Note that **a**, **b**, and **c** are linearly independent, since otherwise the points A, B, and C would all lie on a line L', which would be equal to L, since $A, B \in L'$, and also equal to M, since $A, C \in L'$, and also equal to N, since $B, C \in L'$, contradicting the lines being distinct. Thus the span W of **a**, **b**, and **c** is three-dimensional, so W/ \sim is a plane in \mathbb{P}^n . Since $A, B \in W/ \sim$, $L \in W/ \sim$. Similarly $A, C \in W/ \sim$ implies that $M \in W/ \sim$, and $B, C \in W/ \sim$ implies that $N \in W/ \sim$. So L, M, N all live in the plane W/ \sim , so are coplanar.