MA 243 HOMEWORK 7

SOLUTIONS

B: ExERCISES

(1) Find an affine transformation of \mathbb{A}^{2} taking the set $\{(3,4),(4,6),(6,11)\}$ to $\{(1,-1),(2,1),(3,5)\}$.

$$
T(\mathrm{x})=\left(\begin{array}{rr}
3 & -1 \\
2 & 0
\end{array}\right) \mathrm{x}+\binom{-4}{-7}
$$

(2) Recall that an affine subspace of dimension d is a subset of \mathbb{A}^{n} of the form $\mathbf{v}+V=\{\mathbf{v}+\mathbf{w}: \mathbf{w} \in V\}$ where V is a subspace of dimension d. A collection of d points in \mathbb{A}^{n} are affine linearly dependent if there is an affine subspace of dimension $d-2$ containing them.
(a) Are the points $\{(1,0,0),(2,2,3),(5,8,12)\}$ affine linearly dependent? What does it mean geometrically for three points to be affine linearly dependent? These points are affinely linearly dependent, as they all live in the line $L=\{(1,0,0)+\lambda(1,2,3): \lambda \in \mathbb{R}\}$. In general, three points are affine linearly dependent if and only if they are collinear.
(b) Give a determinantal criterion for 3 points in \mathbb{A}^{2} to be affine linearly dependent (ie describe a matrix whose determinant is zero or nonzero accordingly). Let the three points have position vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{2}$. Form the 3×3 matrix A whose first column is ($1, x_{1}, x_{2}$), second column is $\left(1, y_{1}, y_{2}\right)$, and whose third column is $\left(1, z_{1}, z_{2}\right)$. Then the three points are affinely linearly dependent if and only if $\operatorname{det}(A)=0$. To see this, note that they are linearly dependent if and only if there is some $\lambda \in \mathbb{R}$ with $\mathbf{z}=\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x})$, so if and only if $(1, \mathbf{z})=(1-\lambda)(1, \mathbf{x})+\lambda(\mathbf{y})$, and thus if and only if the columns of A linearly dependent.
(c) Generalize the previous part to the case of $n+1$ points in \mathbb{A}^{n}. Form the $(n+1) \times(n+1)$ matrix whose columns are the vectors $(1, \mathbf{x})$ for the $n+1$ points \mathbf{x}. The
points are affinely linearly dependent if and only if the determinant of this matrix is zero.
(3) Find the intersection of the following pairs of lines in $\mathbb{P}^{2}: L=W / \sim, L^{\prime}=W^{\prime} / \sim$, where
(a) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{0}+x_{1}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: 2 x_{0}+x_{1}-\right.$ $\left.x_{2}=0\right\}$
This is the point $(1:-1: 1)$.
(b) $W=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{2}=0\right\}, W^{\prime}=\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{3}=x_{2}\right\}$ This the point $(1: 0: 0)$.
(4) Prove that 3 lines L, M, N of \mathbb{P}^{n} that intersect in pairs are either concurrent (have a common point) or coplanar.
Suppose that L, M, N are not concurrent. Then in particular the three lines are distinct, and there are points $A, B, C \in \mathbb{P}^{n}$ such that A is the intersection of L and M, B is the intersection of L and N, and C is the intersection of M and N. Pick lifts $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{n+1}$ of A, B, and C. Let W be the span of \mathbf{a}, \mathbf{b}, and \mathbf{c}. Note that \mathbf{a}, \mathbf{b}, and \mathbf{c} are linearly independent, since otherwise the points A, B, and C would all lie on a line L^{\prime}, which would be equal to L, since $A, B \in L^{\prime}$, and also equal to M, since $A, C \in L^{\prime}$, and also equal to N, since $B, C \in L^{\prime}$, contradicting the lines being distinct. Thus the span W of \mathbf{a}, \mathbf{b}, and \mathbf{c} is three-dimensional, so W / \sim is a plane in \mathbb{P}^{n}. Since $A, B \in W / \sim, L \in W / \sim$. Similarly $A, C \in W / \sim$ implies that $M \in W / \sim$, and $B, C \in W / \sim$ implies that $N \in W / \sim$. So L, M, N all live in the plane W / \sim, so are coplanar.

