MA 243 HOMEWORK 7

SOLUTIONS

B: Exercises

1. Show that if $L = \Pi \cap \mathbb{H}^2$ is a line in \mathbb{H}^2 then there are an infinite number of vectors $\mathbf{v} \in \Pi$ with $q_L(\mathbf{v}) = 1$. Deduce that given a line L and a point P not on L there are an infinite number of lines L' passing through P and not intersecting L. Compare with \mathbb{E}^2 and S^2 .

Let $\mathbf{f}_0 \in L$, so $q_L(\mathbf{f}_0) = -1$. We can find a Lorentz basis $\mathbf{f}_0, \mathbf{f}_1, \mathbf{f}_2$ with $\mathbf{f}_1 \in \Pi$. Since $\mathbf{f}_0 \cdot_L \mathbf{f}_1 = 0$, we have $q_L(\mathbf{f}_1) = \lambda > 0$. Then for $a > \sqrt{1/\lambda}$ the vector $\mathbf{w}_a = 1/(\lambda a^2 - 1)(\mathbf{f}_0 + a\mathbf{f}_1) \in \Pi$ satisfies $q_L(\mathbf{w}_a) = 1$, so there are an infinite number of vectors \mathbf{v} in Π with $q_L(\mathbf{v}) = 1$.

Let P have position vector \mathbf{w} , and let $\Pi_a = \operatorname{span}(\mathbf{w}, \mathbf{w}_a)$. Then $P \in L_a = \Pi_a \cap \mathbb{H}^2$, and $\Pi_a \cap \Pi = \operatorname{span}(\mathbf{w}_a)$, so $L \cap L_a = \emptyset$, and $L_a \neq L_{a'}$ if $a \neq a'$. This contrasts with \mathbb{E}^2 , where there is a unique line through a point P not intersecting a given line L, and S^2 , where there are no lines not intersecting a given line L.

- 2. (a) Show that if T(x) = Ax is a hyperbolic motion then det(A) = ±1 (thus hyperbolic motions are either orientation preserving or reversing!)
 Since A^TJA = J, det(A^TJA) = -det(A)² = -1, so det(A)² = 1, and thus det(A) = ±1.
 - (b) Conclude that either 1 or -1 is an eigenvalue of A. (See below for a continuation of this question). We will make repeated use of the following fact. Let \mathbf{x}, \mathbf{y} be two vectors in \mathbb{R}^3 or \mathbb{C}^3 , with $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = \mu \mathbf{y}$, where again λ, μ can be real or complex. Then either $\lambda \mu =$ 1, or $\mathbf{x}^T J \mathbf{y} = 0$. This follows from the fact that $\mathbf{x}^T J \mathbf{y} =$ $(A\mathbf{x})^T J(A\mathbf{y}) = \lambda \mu \mathbf{x}^T J \mathbf{y}$. In particular if $A\mathbf{v} = \lambda \mathbf{v}$, where λ, \mathbf{v} may be complex, then either $\lambda^2 = 1$, so $\lambda = \pm 1$ as required, or $\mathbf{v}^T J \mathbf{v} = 0$. So we may assume from now that if \mathbf{v} is an eigenvector, then $\mathbf{v}^T J \mathbf{v} = 0$.

In fact the same is true for generalized eigenvectors: if $(A - \lambda I)^k \mathbf{x} = 0$ for some k, and $A\mathbf{y} = \mu \mathbf{y}$ with $\lambda \mu \neq 1$ then

SOLUTIONS

 $\mathbf{x}^T J \mathbf{y} = 0$. This follows by induction on k, with the base case k = 1 above, since if $(A - \lambda I)^k \mathbf{x} = 0$, then $\mathbf{x}' = A\mathbf{x} - \lambda \mathbf{x}$ satisfies $(A - \lambda I)^{k-1} \mathbf{x}' = 0$, so $\mathbf{x}^T J \mathbf{y} = (A\mathbf{x})^T J (A\mathbf{y}) = \mu (\lambda \mathbf{x} + \mathbf{x}')^T J \mathbf{y} = \mu \lambda \mathbf{x}^T J \mathbf{y}$.

If there is only one eigenvalue λ for A, then we have $\lambda^3 = \pm 1$, and λ real (since A is a 3×3 matrix), so $\lambda = \pm 1$ as required. Otherwise let $\lambda_1, \lambda_2, \lambda_3$ be the eigenvalues of A, where we may have $\lambda_2 = \lambda_3$, but we may assume $\lambda_1 \neq \lambda_i$ for i = 2, 3. We assume that none of the λ_i is ± 1 , so no product $\lambda_i \lambda_j$ is equal to ± 1 either. Let \mathbf{x}_i be a basis of (generalized) eigenvectors for \mathbb{R}^3 (or \mathbb{C}^3 if λ_i, \mathbf{x}_i are complex), so $(A - \lambda_i I)^3 \mathbf{x}_i = 0$ for i = 1, 2, 3. Then by above we have $\mathbf{x}_1^T J \mathbf{x}_i = 0$ for i = 1, 2, 3, so $\mathbf{x}_1^T J \mathbf{w} = 0$ for all $\mathbf{w} \in \mathbb{R}^3$. But this is only possible if $\mathbf{x}_1 = \mathbf{0}$, contradicting \mathbf{x}_1 being an eigenvector. We thus conclude that some λ_i is ± 1 as required.

3. Consider the line $L = \{t = 2x\} \cap \mathbb{H}^2$ in \mathbb{H}^2 . Show that in the Poincaré disk model of \mathbb{H}^2 , L is taken to an arc of the circle of radius $\sqrt{(3)}$ centred at the point (2,0) (using the identification of projecting from (-1,0,0) as in the diagram on p70 of Cannon, Floyd, Kenyon and Parry, which is linked on the main webpage under announcements).

The line L consists of the points $(2x, x, \sqrt{3x^2 - 1})$ for x > 0. The line through $(2x, x, \sqrt{3x^2 - 1})$ and (-1, 0, 0) passes through $(0, x/(2x + 1), \sqrt{3x^2 - 1}/(2x + 1))$, so the line L is equal to the points $\{(x/(2x + 1), \sqrt{3x^2 - 1}/(2x + 1)) : x > 0\}$ in the Poincaré disk model. The result now follows from the calculation

$$(x/(2x+1)-2)^2 + (\sqrt{3x^2 - 1/(2x+1)})^2 = 3.$$