MA 243 HOMEWORK 7

SOLUTIONS

B: Exercises

1. Show that if $L=\Pi \cap \mathbb{H}^{2}$ is a line in \mathbb{H}^{2} then there are an infinite number of vectors $\mathbf{v} \in \Pi$ with $q_{L}(\mathbf{v})=1$. Deduce that given a line L and a point P not on L there are an infinite number of lines L^{\prime} passing through P and not intersecting L. Compare with \mathbb{E}^{2} and S^{2}.

Let $\mathbf{f}_{0} \in L$, so $q_{L}\left(\mathbf{f}_{0}\right)=-1$. We can find a Lorentz basis $\mathbf{f}_{0}, \mathbf{f}_{1}, \mathbf{f}_{2}$ with $\mathbf{f}_{1} \in \Pi$. Since $\mathbf{f}_{0} \cdot{ }_{L} \mathbf{f}_{1}=0$, we have $q_{L}\left(\mathbf{f}_{1}\right)=\lambda>0$. Then for $a>\sqrt{1 / \lambda}$ the vector $\mathbf{w}_{a}=1 /\left(\lambda a^{2}-1\right)\left(\mathbf{f}_{0}+a \mathbf{f}_{1}\right) \in \Pi$ satisfies $q_{L}\left(\mathbf{w}_{a}\right)=1$, so there are an infinite number of vectors \mathbf{v} in Π with $q_{L}(\mathbf{v})=1$.

Let P have position vector \mathbf{w}, and let $\Pi_{a}=\operatorname{span}\left(\mathbf{w}, \mathbf{w}_{a}\right)$. Then $P \in L_{a}=\Pi_{a} \cap \mathbb{H}^{2}$, and $\Pi_{a} \cap \Pi=\operatorname{span}\left(\mathbf{w}_{a}\right)$, so $L \cap L_{a}=\emptyset$, and $L_{a} \neq L_{a^{\prime}}$ if $a \neq a^{\prime}$. This contrasts with \mathbb{E}^{2}, where there is a unique line through a point P not intersecting a given line L, and S^{2}, where there are no lines not intersecting a given line L.
2. (a) Show that if $T(\mathbf{x})=A \mathbf{x}$ is a hyperbolic motion then $\operatorname{det}(A)= \pm 1$ (thus hyperbolic motions are either orientation preserving or reversing!)
Since $A^{T} J A=J, \operatorname{det}\left(A^{T} J A\right)=-\operatorname{det}(A)^{2}=-1$, so $\operatorname{det}(A)^{2}=$ 1 , and thus $\operatorname{det}(A)= \pm 1$.
(b) Conclude that either 1 or -1 is an eigenvalue of A. (See below for a continuation of this question).
We will make repeated use of the following fact. Let \mathbf{x}, \mathbf{y} be two vectors in \mathbb{R}^{3} or \mathbb{C}^{3}, with $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=\mu \mathbf{y}$, where again λ, μ can be real or complex. Then either $\lambda \mu=$ 1 , or $\mathbf{x}^{T} J \mathbf{y}=0$. This follows from the fact that $\mathbf{x}^{T} J \mathbf{y}=$ $(A \mathbf{x})^{T} J(A \mathbf{y})=\lambda \mu \mathbf{x}^{T} J \mathbf{y}$.
In particular if $A \mathbf{v}=\lambda \mathbf{v}$, where λ, \mathbf{v} may be complex, then either $\lambda^{2}=1$, so $\lambda= \pm 1$ as required, or $\mathbf{v}^{T} J \mathbf{v}=0$. So we may assume from now that if \mathbf{v} is an eigenvector, then $\mathbf{v}^{T} J \mathbf{v}=0$. In fact the same is true for generalized eigenvectors: if $(A-$ $\lambda I)^{k} \mathbf{x}=0$ for some k, and $A \mathbf{y}=\mu \mathbf{y}$ with $\lambda \mu \neq 1$ then
$\mathbf{x}^{T} J \mathbf{y}=0$. This follows by induction on k, with the base case $k=1$ above, since if $(A-\lambda I)^{k} \mathbf{x}=0$, then $\mathbf{x}^{\prime}=A \mathbf{x}-\lambda \mathbf{x}$ satisfies $(A-\lambda I)^{k-1} \mathbf{x}^{\prime}=0$, so $\mathbf{x}^{T} J \mathbf{y}=(A \mathbf{x})^{T} J(A \mathbf{y})=\mu(\lambda \mathbf{x}+$ $\left.\mathbf{x}^{\prime}\right)^{T} J \mathbf{y}=\mu \lambda \mathbf{x}^{T} J \mathbf{y}$.
If there is only one eigenvalue λ for A, then we have $\lambda^{3}= \pm 1$, and λ real (since A is a 3×3 matrix), so $\lambda= \pm 1$ as required. Otherwise let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvalues of A, where we may have $\lambda_{2}=\lambda_{3}$, but we may assume $\lambda_{1} \neq \lambda_{i}$ for $i=2,3$. We assume that none of the λ_{i} is ± 1, so no product $\lambda_{i} \lambda_{j}$ is equal to ± 1 either. Let \mathbf{x}_{i} be a basis of (generalized) eigenvectors for \mathbb{R}^{3} (or \mathbb{C}^{3} if $\lambda_{i}, \mathbf{x}_{i}$ are complex), so $\left(A-\lambda_{i} I\right)^{3} \mathbf{x}_{i}=0$ for $i=1,2,3$. Then by above we have $\mathbf{x}_{1}^{T} J \mathbf{x}_{i}=0$ for $i=1,2,3$, so $\mathbf{x}_{\mathbf{1}}{ }^{T} J \mathbf{w}=0$ for all $\mathbf{w} \in \mathbb{R}^{3}$. But this is only possible if $\mathbf{x}_{1}=\mathbf{0}$, contradicting \mathbf{x}_{1} being an eigenvector. We thus conclude that some λ_{i} is ± 1 as required.
3. Consider the line $L=\{t=2 x\} \cap \mathbb{H}^{2}$ in \mathbb{H}^{2}. Show that in the Poincaré disk model of \mathbb{H}^{2}, L is taken to an arc of the circle of radius $\sqrt{(} 3)$ centred at the point $(2,0)$ (using the identification of projecting from $(-1,0,0)$ as in the diagram on p70 of Cannon, Floyd, Kenyon and Parry, which is linked on the main webpage under announcements).

The line L consists of the points $\left(2 x, x, \sqrt{3 x^{2}-1}\right)$ for $x>0$. The line through $\left(2 x, x, \sqrt{3 x^{2}-1}\right)$ and ($-1,0,0$) passes through $\left(0, x /(2 x+1), \sqrt{3 x^{2}-1} /(2 x+1)\right)$, so the line L is equal to the points $\left\{\left(x /(2 x+1), \sqrt{3 x^{2}-1} /(2 x+1)\right): x>0\right\}$ in the Poincaré disk model. The result now follows from the calculation

$$
(x /(2 x+1)-2)^{2}+\left(\sqrt{3 x^{2}-1} /(2 x+1)\right)^{2}=3
$$

