MA 243 HOMEWORK 5

SOLUTIONS

B: ExERCISES

1. Use the main formula of spherical trig to calculate the distance from London to Christchurch, NZ on the surface of the earth, using that London is approximately 51° North, and Christchurch is approximately 43° South, 172° East. Recall that latitude is measured from the equator 0° north to the North Pole $=90^{\circ} \mathrm{N}$, and longitude is measured from the Greenwich observatory, which is in London. The circumference of the earth is $40,000 \mathrm{~km}$ by the definition of kilometer.

Consider the triangle with vertices the North Pole (N), London (L), and Christchurch (C). The angle between the lines $N L$ and $N C$ is 172°. The distance $N L$ is $40000(90-51) / 360=4333$ kilometres, while the distance $N C$ is $40000(90+43) / 360=14777$ kilometres. Then from the main formula of spherical trig (the spherical cosine law) we have

$$
\begin{aligned}
d(C, L)= & (40000 / 2 \pi) \cos ^{-1}((\cos (2 \pi(90-51) / 360) \cos (2 \pi(90+43) / 360) \\
& +\sin (2 \pi(90-51) / 360) \sin (2 \pi(90+43) / 360) \cos (172)))=18925 \text { kilometres. }
\end{aligned}
$$

Note when you compare this to reality that this calculation used several approximations (for example, rounding longitudes/latitudes to the nearest degree). Anyone who gave an answer more than 40000 kilometres is advised to pause and think!
2. Prove that $P, Q, R \in S^{2}$ are collinear if and only if either $d(P, Q)+d(Q, R)=d(P, R)$ after relabelling, or $d(P, Q)+$ $d(Q, R)+d(P, R)=2 \pi$.

Suppose that P, Q, R are collinear. Let $\mathbf{p}, \mathbf{q}, \mathbf{r}$ be the corresponding points in \mathbb{R}^{3}. Then after relabelling the angle $P Q R$ is equal to π, so by the spherical cosine law we have $\cos (d(P, R))=$ $\cos (d(P, Q)) \cos (d(Q, R))-\sin (d(P, Q)) \sin (d(Q, R))=\cos (d(P, Q)+$ $d(Q, R)$, so either $d(P, R)=d(P, Q)+d(Q, R)$, or $d(P, R)=$ $2 \pi-(d(P, Q)+d(Q, R))$, and thus $d(P, Q)+d(P, R)+d(Q, R)=2 \pi$.
3. Show that if $T(x)=A x$ is a linear map from \mathbb{R}^{2} to itself (so A is a 2×2 matrix) with the property that T maps \mathbb{H}^{1} to itself and preserves distance, then A has one of the following two forms:

$$
A=\left(\begin{array}{cc}
\cosh (s) & \sinh (s) \\
\sinh (s) & \cosh (s)
\end{array}\right), \quad A=\left(\begin{array}{cc}
\cosh (s) & -\sinh (s) \\
\sinh (s) & -\cosh (s)
\end{array}\right)
$$

Since T maps \mathbb{H}^{1} to itself, we must have $T(1,0) \in \mathbb{H}^{1}$, and thus $T(1,0)=(\cosh (s), \sinh (s))$ for some s. Since T preserves distance we must have $\mathbf{v} \cdot{ }_{L} \mathbf{w}=\mathbf{v}^{T} J \mathbf{w}=(A \mathbf{v}) \cdot{ }_{L}(A \mathbf{w})=\mathbf{v} A^{T} J A \mathbf{v}$, for all $\mathbf{v}, \mathbf{w} \in \mathbb{H}^{1}$, where

$$
J=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

In particular, if $\mathbf{v}=(1,0)$ we have $\mathbf{v} \cdot{ }_{L} \mathbf{w}=-w_{1}$, and $T(\mathbf{v}) \cdot{ }_{L}$ $T(\mathbf{w})=-\cosh (s)\left(A_{11} w_{1}+A_{12} w_{2}\right)+\sinh (s)\left(A_{21} w_{1}+A_{22} w_{2}\right)$. Since $T(1,0)=(\cosh (s), \sinh (s)), A_{11}=\cosh (s)$, and $A_{21}=\sinh (s)$, so this expression is $\left(-\cosh (s)^{2}+\sinh (s)^{2}\right) w_{1}+\left(-A_{12} \cosh (s)+\right.$ $\left.A_{22} \sinh (s)\right) w_{2}$, so assuming that $w_{2}>0$ we can conclude that $-A_{12} \cosh (s)+A_{22} \sinh (s)=0$, so $\left(A_{12}, A_{22}\right)=\lambda(\sinh (s), \cosh (s))$ for some λ. Finally, we note that this means that $T(\mathbf{v}) \cdot{ }_{L} T(\mathbf{w})=$ $-v_{1} w_{1}+\lambda^{2} v_{2} w_{2}$, so $\lambda= \pm 1$. Thus

$$
A=\left(\begin{array}{cc}
\cosh (s) & \sinh (s) \\
\sinh (s) & \cosh (s)
\end{array}\right), \text { or } \quad A=\left(\begin{array}{cc}
\cosh (s) & -\sinh (s) \\
\sinh (s) & -\cosh (s)
\end{array}\right) .
$$

4. Show that if L is a hyperbolic line then there is a distance preserving bijection from L to \mathbb{H}^{1}.

In the notes on the webpage it is shonw that given any two points $P, Q \in \mathbb{H}^{2}$ there is a map $T(\mathbf{x})=A \mathbf{x}$ with $T(P)=(1,0,0)$ and $T(Q)=(\cosh (s), \sinh (s), 0)$, and the map T preserves distance. Thus any line can be taking by a distance preserving bijection to the line $L^{\prime}=\{y=0\} \cap \mathbb{H}^{2}$. The distance on \mathbb{H}^{1} is then the same as the distance on L^{\prime} in \mathbb{H}^{2}, so the result follows.

