MA 243 HOMEWORK 4

SOLUTIONS

B: Exercises

(1) Prove that if triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have $d(A, B)=$ $d\left(A^{\prime}, B^{\prime}\right)$, and the angles at A and B equal the angles at A^{\prime} and B^{\prime} respectively: $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}, \angle A C B=$ $\angle A^{\prime} C^{\prime} B^{\prime}$, then $A B C$ is congruent to $A^{\prime} B^{\prime} C^{\prime}$. Use the language and definitions of this module.

Fix a choice of coordinates so that A is the origin, B lies on the positive x-axis, and C lies in the upper half plane. Let $\left\{P_{0}, P_{1}, P_{2}\right\}$ be the Euclidean frame given by setting $P_{0}=A^{\prime}$, P_{1} is on the line $A^{\prime} B^{\prime}$ in the direction of B^{\prime}, and P_{2} lies on the same side of the line $A^{\prime} B^{\prime}$ as C^{\prime}. Let T be the motion that takes the standard frame $\{(0,0),(1,0),(0,1)\}$ to $\left\{P_{0}, P_{1}, P_{2}\right\}$. Then $T(A)=A^{\prime}$ by construction. Since $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, and the line $A B$ is taken to the line $A^{\prime} B^{\prime}$, we have $T(B)=B^{\prime}$. Since motions preserve angles, and $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}$, the line $A C$ is taken to the line $A^{\prime} C^{\prime}$. Similarly the line $B C$ is taken to the line $B^{\prime} C^{\prime}$. Thus the point C, which is the intersection of the two lines $A C$ and $B C$, is taken to the intersection of the lines $A^{\prime} C^{\prime}$ and $B^{\prime} C^{\prime}$, which is C^{\prime}. So $T(A)=A, T(B)=B$, and $T(C)=C^{\prime}$, so there is a motion taking $A B C$ to $A^{\prime} B^{\prime \prime} C^{\prime}$ and so the two triangles are congruent.
(2) Let T be the motion of \mathbb{E}^{3} given in coordinates by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{3},-x_{2}, x_{1}\right)$. Write T as the composition of rotations and reflections and a translation as described in class. Then write T as the composition of at most four reflections as described in class.

$$
T(\mathbf{x})=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is the composition of the reflection in the $x_{1} x_{3}$ plane and the rotation by $3 \pi / 2$ anti-clockwise about the positive x_{2} axis.

To write T as a product of reflections, note that $\operatorname{Fix}(T)=$ $\{0\}$. Let $P_{1}=\mathbf{e}_{2}$, so $Q_{1}=T\left(P_{1}\right)=-\mathbf{e}_{2}$. Let S_{1} be the reflection in the plane $x_{2}=0$, which is the perpendicular bisector of $P_{1} Q_{1}$, and let $T_{1}=S_{1} \circ T$. We then have

$$
T_{1}(\mathbf{x})=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) .
$$

Letting $P_{2}=\mathbf{e}_{1}$, and $Q_{2}=T\left(P_{2}\right)=-\mathbf{e}_{3}$. Let S_{2} be the reflection in the plane $x_{1}+x_{3}=0$, which is the perpendicular bisector of $P_{2} Q_{2}$, and let $T_{2}=S_{2} \circ T_{1}$. Then

$$
S_{2}(\mathbf{x})=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

so

$$
T_{2}(\mathbf{x})=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Note that T_{2} is the reflection in the $x_{1} x_{2}$-plane (with equation $x_{3}=0$. So $T=S_{1} \circ S_{2} \circ T_{2}$ is the composition of first reflection in the plane $x_{3}=0$, then the plane $x_{1}+x_{3}=0$, then the plane $x_{2}=0$.
(3) Recall that the perpendical bisector of $P, Q \in \mathbb{E}^{n}$ is the set $\left\{R \in \mathbb{E}^{n}: d(P, R)=d(Q, R)\right\}$. Show that this is an affine hyperplane in \mathbb{E}^{n}. Choose coordinates so that $P=$ $\mathbf{0}$, and $Q=a \mathbf{e}_{1}$ for $a>0$. Given $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, $d(P, \mathbf{x})=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$, and $d(Q, \mathbf{x})=\sqrt{\left(x_{1}-a\right)^{2}+\sum_{i=2}^{n} x_{i}^{2}}$, so $d(P, \mathbf{x})=d(Q, \mathbf{x})$ if and only if $\left(x_{1}-a\right)^{2}=x_{1}^{2}$, so $x_{1}=a / 2$. Thus the affine bisector of P and Q is the affine hyperplane $x_{1}=a / 2$. This can also be rewritten as $a / 2 \mathbf{e}_{1}+\operatorname{span}\left(\mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)$.
(4) Write an equation for the perpendicular bisector Π of the line between $(2,0,0)$ and $(2,1,3)$. Write down in coordinates the motion of reflecting in the plane Π. The perpendicular bisector of $(2,0,0)$ and $(2,1,3)$ is

$$
\Pi=\{(x, y, z): y+3 z=5\} .
$$

The reflection in Π is given by

$$
T(\mathbf{x})=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 4 / 5 & -3 / 5 \\
0 & -3 / 5 & -4 / 5
\end{array}\right) \mathbf{x}+\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) .
$$

