MA 243 HOMEWORK 3

SOLUTIONS

B: Exercises

- 1. What is the composition of two reflections? Let T and S be two reflections about lines L and M.
 - (a) Show that if L and M intersect then the composition $T \circ S$ is a rotation. What is the angle? Prove your answer. Choose coordinates so that the point of intersection is the origin, and M is the x-axis. Let the angle between L and M be θ . Consider the frame $\{(0,0), (1,0), (0,1)\}$, which is taken by $T \circ S$ to $\{(0,0), (\cos(2\theta), \sin(2\theta)), (\cos(\pi/2 + 2\theta), \sin(\pi/2 + 2\theta)) = (-\sin(2\theta), \cos(2\theta))\}$. Thus the effect on the frame of $T \circ S$ is the same as anti-clockwise rotation by 2θ about the origin, so $T \circ S$ is this rotation. In a coordinate-free description, the rotation is about the point of intersection, by twice the angle between the lines, in the direction from M to L.
 - (b) Show that if L and M do not intersect then $T \circ S$ is translation. By what vector does it translate? Prove your answer. Choose coordinates so that Mx is taken to the x-axis, and L is the line y = a for a > 0. Then the frame $\{(0,0), (1,0), (0,1)\}$ is taken to $\{(0,2a), (1,2a), (0,2a+1)\}$. Thus $T \circ S$ is the translation by (0,2a), or in coordinate independent form by a vector perpendicular to M pointing towards L with length twice the distance between L and M.
- 2. Show that a rotation followed by a translation is another rotation. Explicitly, if S is the rotation about the origin by angle θ anti-clockwise, and T is a translation by a vector b, what is the centre of the rotation $T \circ S$? What is the angle? Prove your anwer. In coordinates $T \circ S(\mathbf{x}) = Ax + \mathbf{b}$, where

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

This is equal to

$$T \circ S(\mathbf{x}) = A(\mathbf{x} - \mathbf{u}) + \mathbf{u},$$

for $\mathbf{u} = (1/2b_1 - 1/2b_2 \cot(\theta/2), 1/2b_1 \cot(\theta/2) + 1/2b_2)$, so is rotation by θ anti-clockwise about the point \mathbf{u} . To find \mathbf{u} one need only solve the equation $T(\mathbf{x}) = \mathbf{x}$, and use repeatedly the identity $(1 - \cos(\theta))/\sin(\theta) = \tan(\theta/2)$.

3. Show that the composition of two rotations is another rotation. Explicitly, if S is the rotation about the origin by an angle θ anti-clockwise, and T is the rotation about a point v by an angle ω , what is the centre of the rotation $T \circ S$? What is the angle? Prove your answer. Hint: you might find the previous question helps. Write $S(\mathbf{x}) = A_{\theta}\mathbf{x}$, and $T(\mathbf{x}) = A_{\omega}(\mathbf{x} - \mathbf{v}) + \mathbf{v}$. Then

$$T \circ S(\mathbf{x}) = \qquad A_{\omega}(A_{\theta}\mathbf{x} - \mathbf{v}) + \mathbf{v}$$

=
$$A_{\theta+\omega}\mathbf{x} + (\mathbf{v} - A_{\omega}\mathbf{v}),$$

=
$$A_{\theta+\omega}(\mathbf{x} - \mathbf{u}) + \mathbf{u},$$

where

$$\mathbf{u} = \begin{pmatrix} (1/2(\mathbf{v} - A_{\omega}\mathbf{v})_1 - 1/2\cot((\theta + \omega)/2)(\mathbf{v} - A_{\omega}\mathbf{v})_2\\ 1/2(\mathbf{v} - A_{\omega}\mathbf{v})_1\cot((\theta + \omega)/2) + 1/2(\mathbf{v} - A_{\omega}\mathbf{v})_2) \end{pmatrix}$$

4. Show that a rotation followed by a reflection about a line passing through the centre of the rotation is a reflection. Explicitly, if S is a rotation about the origin by an angle of θ anti-clockwise, and T is a reflection in the line y = cx for some constant c (we usually take $c = \tan(\omega/2)$), what is line of reflection? Prove your answer. (Hint: you might find the first question helps, though this is harder).

Write $S(\mathbf{x}) = A_{\theta}\mathbf{x}$, and $T(\mathbf{x}) = B_{\omega}\mathbf{x}$, where A_{θ} is the matrix for rotation by θ , and B_{ω} is the matrix for reflecting in the line

so $T \circ S$ is the reflection in the line $y = \tan((\omega - \theta)/2)x$.