MA 243 HOMEWORK 2

SOLUTIONS

B: ExERCISES

(1) Let $T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ be a motion. Fix a choice of coordinates $\phi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$.
(a) Show that $\phi \circ T: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ is another choice of coordinates. Since ϕ and T are both bijections, their composition is as well. In addition, $|\phi \circ T(P)-\phi \circ T(Q)|=$ $d(T(P), T(Q))=d(P, Q)$, so $\phi \circ T$ is distance preserving, and is thus a choice of coordinates.
(b) Define $T^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T^{\prime}=\phi \circ T \circ \phi^{-1}$. Show that T^{\prime} is a distance preserving map (so $\left|T^{\prime}(\mathbf{x})-T^{\prime}(\mathbf{y})\right|=$ $|\mathrm{x}-\mathrm{y}|$).
We have $\mid T^{\prime}(\mathbf{x})-T^{\prime}\left(\mathbf{y}\left|=\left|\phi \circ T \circ \phi^{-1}(\mathbf{x})-\phi \circ T \circ \phi^{-1}(\mathbf{y})\right|\right.\right.$. Since ϕ is distance preserving, this equals $d\left(T \circ \phi^{-1}(\mathbf{x}), T \circ\right.$ $\left.\phi^{-1}(\mathbf{y})\right)$. Since T is a motion, this is $d\left(\phi^{-1}(\mathbf{x}), \phi^{-1}(\mathbf{y})\right)$. Again, since ϕ is distance-preserving, this equals $|\mathbf{x}-\mathbf{y}|$ as required.
(c) Show that if $\psi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ is another choice of coordinates, then $T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ defined by $T=\phi^{-1} \circ \psi$ is a motion. We have $d(T(P), T(Q))=d\left(\phi^{-1} \circ \psi(P), \phi^{-1} \circ\right.$ $\psi(Q))=d(\psi(P), \psi(Q))=d(P, Q)$, where the second equality is because ϕ is distance preserving, and the third is because ψ is.
(2) Let T be motion obtained by rotating by θ anti-clockwise about a point P in \mathbb{E}^{2}, and let S be the motion obtained by rotating by ω anti-clockwise about the same point P. Write down the matrices A and B for T and S in some choice of coordinates.

$$
A=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \quad B=\left(\begin{array}{rr}
\cos (\omega) & -\sin (\omega) \\
\sin (\omega) & \cos (\omega)
\end{array}\right) .
$$

Describe the motion $T \circ S$ geometrically, and write down its matrix in the same choice of coordinates. The
motion $T \circ S$ is rotation by $\theta+\omega$ anti-clockwise. Its matrix is:

$$
\left(\begin{array}{rr}
\cos (\theta+\omega) & -\sin (\theta+\omega) \\
\sin (\theta+\omega) & \cos (\theta+\omega)
\end{array}\right) .
$$

Compare this to the matrix $A B$ (unsimplified) and explain your answer.

$$
A B=\left(\begin{array}{rr}
\cos (\theta) \cos (\omega)-\sin (\theta) \sin (\omega) & -\cos (\theta) \sin (\omega)-\sin (\theta) \cos (\omega) \\
\cos (\theta) \sin (\omega)+\sin (\theta) \cos (\omega) & \cos (\theta) \cos (\omega)-\sin (\theta) \sin (\omega)
\end{array}\right) .
$$

The equality of the two previous matrices follows from the trigonometric angle-sum formula.
(3) Let T be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point P, and let S be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point Q distance one from P. Fix a coordinate choice in which P is taken to $(0,0)$, and Q is taken to $(1,0)$.
(a) Write down the expression for T in these coordinates.

$$
T(\mathbf{x})=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \mathbf{x} .
$$

(b) Write down the expression for S in these coordinates.

$$
S(\mathbf{x})=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \mathbf{x}+\binom{1}{-1}
$$

(c) Write down the composition $S \circ T$ in these coordinates

$$
S \circ T(\mathbf{x})=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \mathbf{x}+\binom{1}{-1} .
$$

(d) Describe $S \circ T$ geometrically. Rotation by π about the point ($1 / 2,-1 / 2$).

