MA 243 HOMEWORK 2

DUE: THURSDAY, OCTOBER 16, 2008, BY 12PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : Warm-up problems

(1) Which of the following sets of three points are collinear?
(a) $\{(1,0,0),(1,2,3),(1,4,6)\}$,
(b) $\{(1,1,1),(1,1,3),(1,5,4)\}$,
(c) $\{(1,1,1),(1,1,3),(1,1,4)\}$,
(2) Fix two points P and Q of \mathbb{E}^{2} and describe in coordinates the motion given by first rotating by an angle of $\pi / 4$ about P, and then reflecting in the line $\overline{P Q}$.
(3) Show that the composition of two motions is a motion.

B: Exercises

(1) Let $T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ be a motion. Fix a choice of coordinates $\phi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$.
(a) Show that $\phi \circ T: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ is another choice of coordinates.
(b) Define $T^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T^{\prime}=\phi \circ T \circ \phi^{-1}$. Show that T^{\prime} is a distance preserving map (so $\left|T^{\prime}(\mathbf{x})-T^{\prime}(\mathbf{y})\right|=|\mathbf{x}-\mathbf{y}|$).
(c) Show that if $\psi: \mathbb{E}^{n} \rightarrow \mathbb{R}^{n}$ is another choice of coordinates, then $T: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ defined by $T=\phi^{-1} \circ \psi$ is a motion.
(2) Let T be the motion obtained by rotating by θ anti-clockwise about a point P in \mathbb{E}^{2}, and let S be the motion obtained by rotating by ω anti-clockwise about the same point P. Write down the matrices A and B for T and S in some choice of coordinates. Describe the motion $T \circ S$ geometrically, and write down its matrix in the same choice of coordinates. Compare this to the matrix $A B$ (unsimplified) and explain your answer.
(3) Let T be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point P, and let S be the motion of \mathbb{E}^{2} of anti-clockwise rotation by $\pi / 2$ about a point Q distance one from P. Fix a coordinate choice in which P is taken to $(0,0)$, and Q is taken to $(1,0)$.
(a) Write down the expression for T in these coordinates.
(b) Write down the expression for S in these coordinates. (Hint: You may want to choose a more convenient coordinate choice and then rewrite in these coordinates).
(c) Write down the composition $S \circ T$ in these coordinates
(d) Describe $S \circ T$ geometrically.

C: Extensions

(1) In \mathbb{E}^{2} we know some important motions are translation, rotation, and reflection. What other motions can you obtain by composing these motions (eg a translation followed by a rotation)? We will discuss this in class over the next weeks.

