MA 243 HOMEWORK 2

DUE: THURSDAY, OCTOBER 16, 2008, BY 12PM

Hand in the problems in Section B *only* to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : WARM-UP PROBLEMS

- (1) Which of the following sets of three points are collinear?
 (a) {(1,0,0), (1,2,3), (1,4,6)},
 - (b) $\{(1,1,1), (1,1,3), (1,5,4)\},\$
 - (c) $\{(1,1,1), (1,1,3), (1,1,4)\},\$
- (2) Fix two points P and Q of \mathbb{E}^2 and describe in coordinates the motion given by first rotating by an angle of $\pi/4$ about P, and then reflecting in the line \overline{PQ} .
- (3) Show that the composition of two motions is a motion.

B: EXERCISES

- (1) Let $T : \mathbb{E}^n \to \mathbb{E}^n$ be a motion. Fix a choice of coordinates $\phi : \mathbb{E}^n \to \mathbb{R}^n$.
 - (a) Show that $\phi \circ T : \mathbb{E}^n \to \mathbb{R}^n$ is another choice of coordinates.
 - (b) Define $T' : \mathbb{R}^n \to \mathbb{R}^n$ by $T' = \phi \circ T \circ \phi^{-1}$. Show that T' is a distance preserving map (so $|T'(\mathbf{x}) - T'(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$).
 - (c) Show that if $\psi : \mathbb{E}^n \to \mathbb{R}^n$ is another choice of coordinates, then $T : \mathbb{E}^n \to \mathbb{E}^n$ defined by $T = \phi^{-1} \circ \psi$ is a motion.
- (2) Let T be the motion obtained by rotating by θ anti-clockwise about a point P in \mathbb{E}^2 , and let S be the motion obtained by rotating by ω anti-clockwise about the same point P. Write down the matrices A and B for T and S in some choice of coordinates. Describe the motion $T \circ S$ geometrically, and write down its matrix in the same choice of coordinates. Compare this to the matrix AB (unsimplified) and explain your answer.
- (3) Let T be the motion of \mathbb{E}^2 of anti-clockwise rotation by $\pi/2$ about a point P, and let S be the motion of \mathbb{E}^2 of anti-clockwise rotation by $\pi/2$ about a point Q distance one from P. Fix a coordinate choice in which P is taken to (0,0), and Q is taken to (1,0).

DUE: THURSDAY, OCTOBER 16, 2008, BY 12PM

- (a) Write down the expression for T in these coordinates.
- (b) Write down the expression for S in *these* coordinates. (Hint: You may want to choose a more convenient coordinate choice and then rewrite in these coordinates).
- (c) Write down the composition $S \circ T$ in these coordinates
- (d) Describe $S \circ T$ geometrically.

C: EXTENSIONS

(1) In \mathbb{E}^2 we know some important motions are translation, rotation, and reflection. What other motions can you obtain by composing these motions (eg a translation followed by a rotation)? We will discuss this in class over the next weeks.