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Abstract. We study an optimal control problem for viscosity solutions of a Hamilton-Jacobi equation describing

the propagation of a one dimensional graph with the control being the speed function. The existence of an optimal

control is proved together with an approximate controllability result in the H−1 norm. We prove convergence of a

discrete optimal control problem based on a monotone finite difference scheme and describe some numerical results.
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1. Introduction. We are concerned with the formulation and numerical approximation of an
optimal control problem for first order quasi-linear equations of Hamilton-Jacobi type describing
the motion of a front in an inhomogeneous medium. Thus we are concerned with the initial value
problem,

VΓ = a(1.1)

Γ(0) = Γ0(1.2)

where VΓ denotes the normal velocity of an evolving surface Γ(t) ∈ Rn+1 from an initial surface Γ0.
The strictly positive velocity function a is taken to be spatially dependent. It is known for such an
initial value problem that when formulated as finding Φ(x, t) satisfying

Φt = a|∇Φ|, Φ(x, 0) = Φ0(x)

and Γ(t) is the zero level set of Φ(·, t) that there is a unique viscosity solution.
Such a problem arises in etching out a surface Γ(t) with a prescribed etch rate which may depend
on the medium, [12, 3, 2]. It is natural to control the final surface at time T say using the etch
rate. Suppose that the surface can be written as a graph in the plane, i.e.

Γ(t) = {(x, y(x, t)) |x ∈ R} ⊂ R2.

The issue is the control of the location of the graph at a given time evolving from a planar surface
by choice of the prescribed velocity. We suppose that the speed function is positive and depends
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only on the horizontal direction so that a = a(x) > 0. Then (1.1) takes the form

yt = a(x)
√

1 + y2
x, x ∈ R, t ∈ (0, T ).(1.3)

Taking the speed to depend on x implies that we are considering a vertically striated medium in
which etching takes place at differing rates. An example would be a vertically layered medium
in which the etch speed is piecewise constant. We wish to fix the speed function in order that a
particular etched shape is achieved at a fixed time T . Actually by scaling the time scale in the
equation we can choose this time to be T = 1.
The setting is that of a control problem for a first order quasi-linear partial differential equation
of Hamilton-Jacobi type. In general it is known that optimal control for nonlinear hyperbolic
equations is a difficult topic. Solutions of our state equation are considered in the context of
viscosity solutions. In Section 2 we formulate this as a control problem with a quadratic objective
function and the graph eikonal equation as the state equation. The idea is that we seek the speed
function a to minimize the quadratic energy functional J (a) where

J (a) =
1
2

∫
I

|ya(x, T )− yT (x)|2dx+ δ

∫
I

a2
xdx(1.4)

under certain constraints on a where yT is the graph of the target etch shape, ya is the solution of
the state equation and δ ≥ 0. The first term of the energy is a fidelity term whereas the second is
a regularization for the speed in order to ensure that the state equation is well posed. If we allow
the speed to depend only on a finite number of parameters this term can be omitted. Let us note
that a related problem involving a stationary eikonal equation for the first arrival time of a front
was studied numerically in [11]. We also refer to [13, 4] for results concerning the optimal control
of first order conservation equations.
We begin by proving the existence of optimal controls for differing assumptions concerning the
speed function. Since the solutions of the state equation are non-smooth and non-unique in general
we need to consider viscosity solutions of the state equation. It is classical that there exists a unique
viscosity solution when the speed function is continuous. When considering optimal control in this
case one can apply W 1,∞ constraints on the set of admissable functions which then would need
to be applied when applying iterative descent methods for the optimization. This can be avoided
by regularising the functional (1.4) by adding a quadratic term in the gradient, that is taking δ

positive. On the other hand it is also interesting to consider discontinuous piece-wise constant a
and this is the main focus of the paper. In this case we use the well-posedness theory of [7, 8] in
order to prove existence of an optimal control. An interesting question is whether the target is
achievable. Our next contribution is to show approximate controllability by showing convergence
in the H−1 norm as the number of sub-intervals increases.
In order to realise the optimal control we turn to numerical discretization. The idea is to discretize
the state equation and the functional in such a way that the discrete optimization problem has a
minimizer. This leaves the interesting and difficult question as to whether the discrete minimizers
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approximate a minimizer of the control problem. Our next result is to show convergence as the
mesh size converges to zero. This relies on the use of monotone finite difference schemes for the
Hamilton Jacobi equation. We formulate this in the case of the discontinuous piece-wise constant
speed function. We choose to implement monotone finite difference schemes which are differentiable
with respect to the solution so that the discrete minimization problem can be solved iteratively by
a descent method based on a discrete adjoint equation. We found that this method worked very
well in practice.
Our paper is organized as follows: Section 2 discusses existence and uniqueness of the state equation
together with an existence result for the optimal control. An approximate controllability result in
the H−1 norm is proved in Section 3. The numerical solution is considered in Section 4 with a
convergence result being proved for a monotone discretization of the state equation. We conclude
with some numerical results.

2. Formulation and existence.

2.1. Mathematical setting. Let I = [−1, 1] and 0 < α < β <∞. We shall assume that the
control function a belongs to one of the following sets:

(K1)

K : = {a : I → R | a(x) = ai, x ∈ (x̂i−1, x̂i), a(x̂i) =
ai + ai+1

2
, i = 1, . . . , L− 1,

a(−1) = a(1) =
a1 + aL

2
, α ≤ a(x) ≤ β, x ∈ I}

where −1 = x̂0 < x̂1 < ... < x̂L−1 < x̂L = 1 is a partition of I.

(K2) K := {a : I → R | a(x) =
∑L
i=1 aiφi(x), α ≤ a(x) ≤ β, x ∈ I}, where {φi}Li=1 satisfy

φi ∈W 1,∞(I), φi(−1) = φi(1), φi(x) ≥ 0, i = 1, . . . , L and
∑L
i=1 φi(x) = 1, x ∈ I.

(K3) K := {a ∈W 1,2(I) |α ≤ a(x) ≤ β, x ∈ I, a(−1) = a(1)}.
In what follows we think of the function a as being extended to a 2-periodic function on R. Given
a ∈ K we then consider the eikonal equation

yt = a(x)
√

1 + y2
x in R× (0, T ](2.1)

y(·, 0) = 0 in R(2.2)

y(x, t) = y(x+ 2, t) x ∈ R, 0 ≤ t ≤ T.(2.3)

According to Theorem 2.3 in Section 2.2 the initial value problem (2.1)-(2.3) has a unique solution
y ∈ W 1,∞(R × (0, T )) which we shall denote by ya in order to indicate its dependence on a ∈ K.
Let us now consider the following control problems:

• (P) minJ (a) =
1
2

∫
I

|ya(x, T )− yT (x)|2dx

subject to a ∈ K, where K is given either by (K1) or (K2).
3



• (Pδ) minJ (a) =
1
2

∫
I

|ya(x, T )− yT (x)|2dx+ δ

∫
I

a2
xdx

subject to a ∈ K, where K is the set given in (K3).
Here, yT ∈ L2(I) is a given function and δ > 0.

Remark 2.1. In the definition of (K1) the choice of the values of a at the end points of the intervals
can be replaced by a(x̂i) = a∗i where a∗i is any value in the interval [min(ai, ai+1),max(ai, ai+1)].

2.2. Existence and uniqueness for the state equation. Let us begin by recalling the
notion of viscosity solution originally introduced by Crandall & Lions ([5]) (see also [6]). Since the
function a is possibly discontinuous we use a generalized definition due to Ishii ([9]). Applied to
our situation this results in the following
Definition 2.2. A function y ∈ C0(R× (0, T ]) is called a viscosity subsolution of (2.1) if for each
ζ ∈ C∞(R× (0,∞)): if y − ζ has a local maximum at a point (x0, t0) ∈ R× (0, T ], then

ζt(x0, t0) ≤ a∗(x0)
√

1 + ζx(x0, t0)2.

A function y ∈ C0(R × (0, T ]) is called a viscosity supersolution of (2.1) if for each ζ ∈ C∞(R ×
(0,∞)): if y − ζ has a local mimimum at a point (x0, t0) ∈ R× (0, T ], then

ζt(x0, t0) ≥ a∗(x0)
√

1 + ζx(x0, t0)2.

A viscosity solution of (2.1), (2.2) then is a function y ∈ C0(R × [0, T ]) which is both a viscosity
sub-and supersolution and which satisfies y(x, 0) = 0 for all x ∈ R. In the above,

a∗(x) := lim
r→0

sup{a(y) | |x− y| < r},

a∗(x) := lim
r→0

inf{a(y) | |x− y| < r}

denote the upper and lower semicontinous envelope of a respectively.

Theorem 2.3. Let a ∈ K, where K is one of the sets given in (K1)-(K3). Then there exists a
unique viscosity solution y ∈W 1,∞(R× [0, T ]) of (2.1)-(2.3) and y satisfies

‖y‖W 1,∞(R×[0,T ]) ≤ C,(2.4)

where C depends on T , α and β.
Proof. We will give the main ideas of a proof which covers the cases (K1)-(K3).

Existence: Consider the following regularised problem

yεt − ε
yεxx

1 + (yεx)2
= aε

√
1 + (yεx)2 in R× (0, T ](2.5)

yε(·, 0) = 0 in R(2.6)

yε(x+ 2, t) = yε(x, t) x ∈ R, 0 < t ≤ T.(2.7)
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Here, ε > 0 and aε is a suitable mollification of a with

α ≤ aε ≤ β in R.(2.8)

Using the Leray-Schauder principle it is possible to prove that (2.5)-(2.7) has a unique smooth
solution, [10]. The corresponding argument relies on the derivation of a-priori estimates on yεt and
yεx for a solution of (2.5)-(2.7). As these bounds also motivate why (2.4) holds we shall briefly sketch
their proof for the convenience of the reader. Differentiating (2.5) with respect to time gives

yεtt − ε
yεt,xx

1 + (yεx)2
+ 2ε

yεxxy
ε
x(

1 + (yεx)2
)2 yεt,x − aε yεx√

1 + (yεx)2
yεt,x = 0 in R× (0, T ).

The maximum principle together with (2.6) and (2.8) implies

max
R×[0,T ]

|yεt | = max
R

|yεt (·, 0)| = max
R

aε ≤ β.(2.9)

In order to derive an estimate on yεx we introduce z(x, t) := (yεx(x, t))2. We can assume that µ :=
maxI×[0,T ] z > 0. There exists a point (x0, t0) ∈ I× [0, T ] such that z(x0, t0) = µ. Then zx(x0, t0) =
2yεx(x0, t0) yεxx(x0, t0) = 0. Since µ > 0, yεx(x0, t0) cannot vanish and we infer yεxx(x0, t0) = 0.
Substituting this information into (2.5) gives

yεt (x0, t0) = aε(x0)
√

1 + z(x0, t0)

and therefore by (2.9) and (2.8)

max
I×[0,T ]

|yεx| = z(x0, t0)
1
2 ≤

√
yεt (x0, t0)2

aε(x0)2
− 1 ≤

√(β
α

)2 − 1.(2.10)

Since the estimates (2.9) and (2.10) are uniform in ε there exists a subsequence εj ↘ 0 and a
function y ∈W 1,∞(R× [0, T ]), which is 2-periodic in space such that

yεj → y uniformly in R× [0, T ].

It can be shown that y is a viscosity solution of (2.1)-(2.3) (see [6] if a is continuous and e.g. [7, 8]
for the case of discontinuous a).
Uniqueness: This follows from the results in [6] and [8] respectively. When using the latter result,
note that a satisfies assumption (A2) in [8], p. 1164 while (A1) is not needed for the uniqueness
proof.
Corollary 2.4. Suppose that a, ã ∈ K with a ≤ ã a.e. in I. Then

ya ≤ yã in R× [0, T ].
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Proof. Let us denote by yε and ỹε the solutions of (2.5)-(2.7) corresponding to aε, ãε respectively.
Here, aε, ãε are mollifications of a, ã so that aε ≤ ãε in R. Recalling the proof of Theorem 2.3 we
may assume that for some sequence εj ↘ 0, j →∞

yεj → ya, ỹεj → yã uniformly in R× [0, T ].

The functions vj := yεj − ỹεj are 2-periodic in space and satisfy a differential inquality of the form

vjt − bjvjxx + cjvjx ≤ 0 in R× [0, T ]

for suitable functions cj and bj > 0. Since vj(·, 0) = 0 the maximum principle implies that vj ≤ 0
in R× [0, T ] and the result follows after sending j →∞.
Corollary 2.5. Let K be defined by (K1) and suppose that a ∈ K satisfies ak = β for some
k ∈ {1, . . . , L}. Then

ya(x, t) = βt, x ∈ [x̂k−1, x̂k], t > 0.

Proof. Define ã ∈ K by ãi = β, i = 1, . . . , L. Clearly, yã ≡ βt so that Corollary 2.4 implies that
ya(x, t) ≤ βt, x ∈ R, t > 0. Let aε and yε be as in the proof of Theorem 2.3, so that

aεn → a a.e. in I, yεn → ya uniformly in R× [0, T ]

for some suitable sequence (εn)n∈N with εn ↘ 0, n → ∞. Recalling (2.6) and (2.5) we obtain for
t ∈ (0, T ]∫ x̂k

x̂k−1

|βt− ya(·, t)| =
∫ x̂k

x̂k−1

(βt− ya(·, t)) = lim
n→∞

∫ x̂k

x̂k−1

(aεnt− yεn(·, t))

= lim
n→∞

∫ t

0

∫ x̂k

x̂k−1

(
aεn − yεnt

)
≤ limn→∞

∫ t

0

∫ x̂k

x̂k−1

(
aεn
√

1 + (yεnx )2 − yεnt
)

= limn→∞
(
(−εn)

∫ t

0

∫ x̂k

x̂k−1

yεnxx
1 + (yεnx )2

)
= limn→∞

(
(−εn)

∫ t

0

arctan(yεnx )|x̂kx̂k−1

)
→ 0, n→∞,

which implies the desired result.

2.3. Existence for the optimal control problem.
Theorem 2.6. The control problems (P) and (Pδ) have at least one solution a ∈ K.
Proof. Let us first consider (P) and suppose that (am)m∈N ⊂ K is a minimizing sequence so that

J (am)↘ inf
a∈K
J (a), as m→∞.

The corresponding solutions ym = yam of the state equation satisfy in view of (2.4)

‖ym‖W 1,∞(R×[0,T ]) ≤ C = C(T, α, β).
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Combining this estimate with the observation that for (K1), (K2) the set K is contained in a finite-
dimensional space we obtain a subsequence (mk)k∈N and functions a ∈ K, y ∈ W 1,∞(R × [0, T ])
such that

amk → a uniformly in I, ymk → y uniformly in R× [0, T ].

We claim that y = ya. We show first that y is a viscosity subsolution in the sense of Definition
2.2. Let ζ ∈ C∞(R× (0,∞)) and suppose that y− ζ has a local maximum at some point (x0, t0) ∈
R× (0, T ]. Using standard arguments we can assume that (x0, t0) is a strict maximum from which
we deduce the existence of a sequence (xk, tk) with the properties that

lim
k→∞

(xk, tk) = (x0, t0) and ymk − ζ has a local maximum at (xk, tk).

Since ymk is a viscosity solution of (2.1) we infer that

ζt(xk, tk) ≤ (amk)∗(xk)
√

1 + (ζx(xk, tk))2.

Observing that

lim supk→∞(amk)∗(xk) ≤ a∗(x0)

we obtain after passing to the limit k →∞,

ζt(x0, t0) ≤ a∗(x0)
√

1 + (ζx(x0, t0))2.

In a similar way one proves that y is a viscosity supersolution, so that y = ya. Finally we infer
from the uniform convergence of ymk to y that J (a) = inf

ã∈K
J (ã).

In the case of (Pδ) where K is given as in (K3) we observe that a minimizing sequence am is
bounded uniformly in H1(I) so that there is a subsequence (mk)k∈N and a ∈ K such that

amk → a uniformly in I, amkx ⇀ ax in L2(I).

The remainder of the proof follows in a fashion similar to the previous case.

3. Approximate controllability in the (H1)′ norm. Let us consider problem (P) for a
given target yT ∈ C0(I). We assume that the set K is given by (K1), so that the admissible control
functions are constant on Ii = (x̂i−1, x̂i), where −1 = x̂0 < x̂1 < . . . < x̂L−1 < x̂L = 1 is a partition
of I. It is natural to expect that yT can be reached in a better way as we decrease the fineness of
the partition. It turns out that this can be made mathematically precise if one works in a weak
norm and allows the speeds to become small, but still positive. In what follows we fix the upper
bound β on the speeds in such a way that

β >
1
T

max
x∈I

yT (x).(3.1)
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Let us introduce the set

Kβ := {a : I → R | a(x) = ai, x ∈ (x̂i−1, x̂i), a(x̂i) =
ai + ai+1

2
, i = 1, . . . , L− 1,

a(−1) = a(1) =
a1 + aL

2
, 0 < ai ≤ β, i = 1, . . . , L}.

The following lemma says that if the speed is sufficiently small on some subinterval Ii, then the
mean value of the corresponding solution over Ii will lie below minx∈I yT (x).

Lemma 3.1. Let yT ∈ C0(I) be positive. Then there exists 0 < α <
1
T

min
x∈I

yT (x) such that for

every a ∈ Kβ: if ai = α̃ for some i ∈ {1, ..., L} and α̃ ≤ α then
1
|Ii|

∫
Ii

ya(·, T ) < min
x∈I

yT (x).

Proof. Let a ∈ Kβ and suppose that ai = α̃ ≤ α for some i ∈ {1, ..., L}, where α will be determined
later. Corollary 2.4 implies that

ya(x, t) ≤ yâ(x, t), (x, t) ∈ R× [0,∞),

where â ∈ K is given by âi = α and âk = β for k 6= i. It is therefore sufficient to prove the claim
for â. One checks that yâ is given on I × [0, T ] by the formula

yâ(x, t) =



βt, x̂k−1 ≤ x ≤ x̂k, k 6= i,

βt− γ(x− x̂i−1), x̂i−1 ≤ x ≤ x̂i−1 + ct,

αt, x̂i−1 + ct ≤ x ≤ x̂i − ct,

βt+ γ(x− x̂i), x̂i − ct ≤ x ≤ x̂i,

where

γ =

√
β2

α2
− 1 and c =

β − α
γ

.

Here, α is chosen a-priori so small that 2cT ≤ infi(x̂i − x̂i−1). A straightforward calculation shows
that ∫

Ii

yâ(·, T ) = 2(β − α)cT 2 − γc2T 2 + α(x̂i − x̂i−1)T

= γc2T 2 + α|Ii|T =
α(β − α)

3
2T 2

(β + α)
1
2

+ α|Ii|T ≤ αβT 2 + α|Ii|T.

Hence we have that
1
|Ii|

∫
Ii

ya(·, T ) < min
x∈I

yT (x) provided that

αβT

|Ii|
+ α <

1
T

min
x∈I

yT (x),

which can be achieved for α > 0 sufficiently small.
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We can now formulate the main result of this section.
Theorem 3.2. Let yT ∈ C0(I) be positive and −1 = x̂0 < x̂1 < . . . < x̂L−1 < x̂L = 1. Then

inf
a∈Kβ

‖ya(·, T )− yT ‖(H1)′ ≤
(√

2βT + ‖yT ‖L2(I)

)
max

i=1,...,L
(x̂i − x̂i−1).

Proof. Choose 0 < α <
1
T

min
x∈I

yT (x) according to Lemma 3.1 and set Ω := (α, β)L ⊂ RL. We define

F : Ω̄→ R
L by

F (a)i :=
1

T |Ii|

∫
Ii

ya(·, T ), i = 1, ..., L,

where a = (a1, . . . , aL)t and a : I → R is the corresponding piecewise constant function. Using
similar arguments as in Section 2 one can show that F is continuous. Let b ∈ RL be given by

bi =
1

T |Ii|

∫
Ii

yT , i = 1, ..., L.

Recalling (3.1) we have

α <
1
T

min
x∈I

yT (x) ≤ bi ≤
1
T

max
x∈I

yT (x) < β, i = 1, ..., L,(3.2)

so that b ∈ Ω. We now consider the following homotopy H : Ω̄× [0, 1]→ R
L:

H(a, σ) := σF (a) + (1− σ)a− b.

Denoting by deg the Brouwer degree we have

deg(H(·, 0),Ω, 0) = deg(id− b,Ω, 0) = deg(id,Ω, b) = 1,

since b ∈ Ω. In order to verify that H is an admissible homotopy we have to show that 0 /∈ H(∂Ω, σ)
for all σ ∈ (0, 1]. Assume that there exist a ∈ ∂Ω and σ ∈ (0, 1] such that H(a, σ) = 0, i.e.

bi = σ
1

T |Ii|

∫
Ii

ya(·, T ) + (1− σ)ai, i = 1, ..., L.(3.3)

We distinguish two cases:
Case 1: ai = β for some i ∈ {1, ..., L}. Corollary 2.5 implies that ya(x, T ) = βT, x ∈ Ii so that
(3.3) yields bi = β, a contradiction to (3.2).

Case 2: ai = α for some i ∈ {1, ..., L}. In this case we conclude with the help of (3.3) and Lemma
3.1

bi = σ
1

T |Ii|

∫
Ii

ya(·, T ) + (1− σ)α < σ
1
T

min
x∈I

yT (x) + (1− σ)
1
T

min
x∈I

yT (x) ≤ bi,
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which is again a contradiction. Thus, H is an admissible homotopy so that deg(H(·, 1),Ω, 0) = 1
and by the properties of the Brouwer degree there exists a ∈ Ω such that H(a, 1) = 0, or equivalently∫

Ii

ya(·, T ) =
∫
Ii

yT , i = 1, ..., L.(3.4)

Let ϕ ∈ H1(I). For the state corresponding to a we deduce∫
I

(ya(·, T )− yT )ϕ =
L∑
i=1

∫
Ii

(ya(·, T )− yT )ϕ =
L∑
i=1

∫
Ii

(ya(·, T )− yT )
(
(ϕ− 1

|Ii|

∫
Ii

ϕ
)

by (3.4). Using Poincaré’s inequality we deduce that

∣∣ ∫
I

(ya(·, T )− yT )ϕ
∣∣ ≤ L∑

i=1

(
‖ya(·, T )‖L2(Ii) + ‖yT ‖L2(Ii)

)
(x̂i − x̂i−1) ‖ϕ′‖L2(Ii)

≤ max
i=1,...,L

(x̂i − x̂i−1)
(
‖ya(·, T )‖L2(I) + ‖yT ‖L2(I)

)
‖ϕ′‖L2(I)

≤ max
i=1,...,L

(x̂i − x̂i−1)
(√

2‖ya(·, T )‖L∞(I) + ‖yT ‖L2(I)

)
‖ϕ′‖L2(I).

Since 0 ≤ ya(x, T ) ≤ βT, x ∈ I we obtain

‖ya(·, T )− yT ‖(H1)′ ≤
(√

2βT + ‖yT ‖L2(I)

)
max

i=1,...,L
(x̂i − x̂i−1)

and the theorem is proved.

4. Numerical approximation. Let us choose space and time steps h and τ respectively and
let

xj = jh− 1, j ∈ Z,

tn = nτ, 0 ≤ n ≤ N,

where h = 2/J and τ = T/N . Furthermore we set Gh,τ := {(xj , tn) ∈ R×[0, T ] | j ∈ Z, 0 ≤ n ≤ N}.
For a grid function Y : Gh,τ → R we denote by Y nj its value at the point (xj , tn). It is convenient
to define the difference operators

δ+
h Y

n
j :=

Y nj+1 − Y nj
h

, δ−h Y
n
j :=

Y nj − Y nj−1

h
, δtY

n
j :=

Y n+1
j − Y nj

τ
.(4.1)

In what follows we aim to find approximate solutions of (P) where K is given by (K1). We begin
by discussing the discretisation of the state equation.

4.1. Discretisation of the state equation. The solution of the state equation (2.1)-(2.3) is
approximated by the grid function Y : Gh,τ → R which for a given a ∈ K satisfies

δtY
n
j = a(xj)Fε

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
, j = 1, . . . , J, n = 0, . . . , N − 1(4.2)

Y 0
j = 0, j ∈ Z(4.3)

Y nj+J = Y nj , j ∈ Z, n = 1, . . . , N,(4.4)
10



where we have chosen the discrete Hamiltonian to be

Fε(p, q) =
√

1 + (
√

(p+)2 + ε2 − ε)2 +
√

1 + (
√

(q−)2 + ε2 − ε)2 − 1.

Here, ε > 0 is a regularization parameter and p+ = max(p, 0), q− = min(q, 0). The purpose of
introducing a regularization is to ensure that Fε is differentiable. The relation (4.2) can be written
in the form

Y n+1 = G(Y n), 0 ≤ n ≤ N − 1,(4.5)

where,

G(V )j := Vj + τa(xj)Fε
(
δ+
h Vj , δ

−
h Vj

)
, j = 1, . . . , J ; G(V )j+J = G(V )j , j ∈ Z(4.6)

for a grid function V : R/hZ→ R.
Following [1] we need to show that (4.2)-(4.4) gives rise to a consistent, monotone and stable
approximation of the state equation. The first point follows from the estimate

|Fε(p, p)−
√

1 + p2| = |
√

1 + (
√
p2 + ε2 − ε)2 −

√
1 + p2|

≤ |
√
p2 + ε2 − ε− |p| | ≤ ε, p ∈ R.(4.7)

Let us next address the monotonicity of the scheme.

Lemma 4.1. Suppose that τ ≤ h

2β
. Then G is monotone, i.e. V ≤W implies that G(V ) ≤ G(W ).

Proof. Let V ≤W . A calculation shows that for ε > 0, p, q ∈ R,

0 ≤ ∂Fε
∂p

(p, q) ≤ 1, −1 ≤ ∂Fε
∂q

(p, q) ≤ 0.

As a consequence we have for j = 1, . . . , J

G(W )j−G(V )j

= Wj − Vj + τa(xj)
(
Fε
(
δ+
hWj , δ

−
hWj

)
−Fε

(
δ+
h Vj , δ

−
h Vj

))
= (Wj − Vj)

(
1− τ

h
ξa(xj) +

τ

h
ηa(xj)

)
+
τ

h
a(xj)

(
ξ(Wj+1 − Vj+1)− η(Wj−1 − Vj−1)

)
for some ξ ∈ [0, 1], η ∈ [−1, 0]. Recalling that a(xj) ≤ β, τ ≤ h

2β as well as W ≥ V we deduce that
G(W )j ≥ G(V )j .

Finally, we have the following stability bounds which reflect corresponding estimates for the con-
tinuous problem.

Corollary 4.2. Let a ∈ K and suppose that τ ≤ h

2β
. Then the solution Y of (4.2)-(4.4) satisfies:

a) 0 ≤
Y n+1
j − Y nj

τ
≤ β, j ∈ Z, n = 0, . . . , N − 1;

11



b)
∣∣∣∣Y nj+1 − Y nj

h

∣∣∣∣ ≤ β

α
+ ε, j ∈ Z, n = 0, . . . , N .

Proof. The lower bound in a) follows immediately from the definition of the scheme and the fact
that a and Fε are nonnegative. We prove the upper bound by induction on n. The assertion
is clear for n = 0. Let us suppose that it holds for some n ∈ {0, . . . , N − 2}. Then we have
Y n+1
j ≤ Y nj +βτ, j ∈ Z so that Lemma 4.1 together with the relation G(V +c)j = G(V )j+c (c ∈ R)

yields

Y n+2
j = G(Y n+1)j ≤ G(Y n)j + βτ = Y n+1

j + βτ.

Since Fε(p, q) ≥ max(p+, |q−|)− ε we deduce from a) for j ∈ Z

β ≥
Y n+1
j − Y nj

τ
= a(xj)Fε

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
≥ αmax

(
|(δ+

h Y
n
j )+|, |(δ−h Y

n
j )−|

)
− αε.

Observing that δ+
h Y

n
j = δ−h Y

n
j+1, b) follows.

We extend the solution Y of (4.2)-(4.4) to a function Yh,τ ∈W 1,∞(R× (0, T )) via

Yh,τ (x, t) :=
tn+1 − t

τ

(
xj+1 − x

h
Y nj +

x− xj
h

Y nj+1

)
+
t− tn
τ

(
xj+1 − x

h
Y n+1
j +

x− xj
h

Y n+1
j+1

)
if (x, t) ∈ [xj , xj+1] × [tn, tn+1]. Note that Yh,τ (x + 2, t) = Yh,τ (x, t). Furthermore, Corollary 4.2
implies that

‖Yh,τ‖W 1,∞ ≤ C(T, α, β) for τ ≤ h

2β
, 0 < ε ≤ 1.(4.8)

We are now in position to prove a convergence result for the approximation of the state equation.
Theorem 4.3. Let (h, τ, ε) denote a sequence such that τ ≤ h

2β , h → 0, ε → 0 and let Yh,τ be the
corresponding solutions of (4.2)-(4.4). Then Yh,τ → ya uniformly in R× [0, T ].
Proof. In view of (4.8) and Arzela’s theorem there exists a subsequence (hk, τk, εk)k∈N with
limk→∞ hk = limk→∞ εk = 0, τk ≤ hk

2β and a function y ∈ C0(R × [0, T ]), which is 2-periodic
in space such that

Y(k) := Yhk,τk → y uniformly in R× [0, T ].(4.9)

We claim that y is the viscosity solution of (2.1)-(2.3), i.e. y = ya. To see this, suppose that
ζ ∈ C∞(R × (0,∞)) and that y − ζ has a local maximum at a point (x0, t0) ∈ R × (0, T ]. Using
standard arguments from the theory of viscosity solutions we may assume that this maximum is
strict and global. In view of (4.9) there exists a sequence of gridpoints (xjk , tnk) ∈ Ghk,τk such that
limk→∞(xjk , tnk) = (x0, t0) and

ξk := Y nk(k),jk
−Wnk

jk
= max
Ghk,τk

(Y(k) −W ).

12



Here, Wn
j = ζ(xj , tn). In particular, Y nk−1

(k) ≤Wnk−1 + ξk so that Lemma 4.1 implies

Y nk(k),jk
= (G(Y nk−1

(k) ))jk ≤ (G(Wnk−1))jk + ξk = Wnk−1
jk

+ τka(xjk)Fεk
(
δ+
hW

nk−1
jk

, δ−hW
nk−1
jk

)
,

and hence, recalling the definitions of Wn
j and ξk,

ζ(xjk , tnk)− ζ(xjk , tnk − τk)
τk

≤ a(xjk)Fεk
(
δ+
hW

nk−1
jk

, δ−hW
nk−1
jk

)
.

Sending k →∞ we obtain ζt(x0, t0) ≤ a∗(x0)
√

1 + ζ2
x(x0, t0), where we have used the smoothness

of ζ, the fact that limk→∞(xjk , tnk) = (x0, t0) and (4.7). Hence, y is a viscosity subsolution of (2.1)
and in a similar way one proves that y is also a viscosity supersolution. Since the solution is unique,
the whole sequence (Yh,τ ) converges to ya. The relations (2.2) and (2.3) follow immediately from
(4.9) and the definition of the scheme.

4.2. Discrete optimal control problem. In what follows we shall identify the function
a ∈ K with its values aj , j = 1, . . . , L and abbreviate a = (a1, . . . , aL)t. We denote by Ya the
solution of (4.2)-(4.4), where we always assume that τ ≤ h

2β . In addition we suppose that the
target yT satisfies yT (−1) = yT (1) and denote by Y T the piecewise linear function on I with values

Y Tj := yT (xj), j = 0, . . . , J.(4.10)

A discrete objective function is defined by

Jh(a) :=
h

2

J∑
j=1

(
Y Na,j − Y Tj

)2
.

We consider the following discrete control problem:

(Ph,τ ) minimize Jh(a), subject to a ∈ [α, β]L.

Since the solution of the state equation depends continuously on a there exists a minimizer of the
finite dimensional optimization problem (Ph,τ ), which we denote by a∗h.

Theorem 4.4. Suppose that yT ∈ H1(I), yT (−1) = yT (1). There exists a sequence h → 0, ε → 0
such that a∗h → a∗ and the associate function a∗ ∈ K is a minimum of J .
Proof. Combining the bounds α ≤ a∗h,j ≤ β with (4.8) we obtain a sequence h → 0, ε → 0 and
a∗ ∈ [α, β]L, y ∈ C0(R× [0, T ]), which is 2-periodic in space such that

a∗h → a∗, Ya∗h → y uniformly in R× [0, T ].(4.11)

Similarly as in the proof of Theorem 4.3 it can be shown that y = ya∗ . Our aim is to prove that
J (a∗) ≤ J (a) for all a ∈ K. Since Jh(a∗h) ≤ Jh(a) for all a ∈ K the claim follows provided that

13



we can show that

Jh(a)→ J (a), Jh(a∗h)→ J (a∗).(4.12)

To begin, note that for a piecewise linear function η : I → R with η(−1) = η(1) we have∣∣∣∣∣∣
∫
I

η2 − h

2

J∑
j=1

(
η(xj−1)2 + η(xj)2

)∣∣∣∣∣∣ ≤ Ch2‖η′‖2L2(I).

Hence,

|J (a)− Jh(a)| ≤ Ch2‖Y Na,x − Y Tx ‖2L2(I) +
1
2

∣∣∣ ‖Y Na − Y T ‖2L2(I) − ‖ya(·, T )− yT ‖2L2(I)

∣∣∣
≤ Ch2

(
1 + ‖yT ‖2H1(I)

)
+ C

(
‖Y Na − ya(·, T )‖L2(I) + h‖yT ‖H1(I)

)
→ 0, as h, ε→ 0,

where we have used (4.8) and Theorem 4.3. Recalling (4.11), the second convergence in (4.12) can
be shown in a similar way so that the result follows.

4.3. Adjoint equation. In order to compute the derivative of Jh with respect to a we for-
mulate the following discrete adjoint equation. For fixed a ∈ K let Ya be as above. We then denote
by P : Gh,τ → R the solution of the following backward problem:

PNj = Y Na,j − Y Tj , j ∈ Z,(4.13)

−δtPn+1
j = a(xj−1)

∂Fε
∂p

(
δ+
h Y

n
a,j−1, δ

−
h Y

n
a,j−1

)
Pn+1
j−1 − a(xj)

∂Fε
∂p

(
δ+
h Y

n
a,j , δ

−
h Y

n
a,j

)
Pn+1
j

+a(xj)
∂Fε
∂q

(
δ+
h Y

n
a,j , δ

−
h Y

n
a,j

)
Pn+1
j − a(xj+1)

∂Fε
∂q

(
δ+
h Y

n
a,j+1, δ

−
h Y

n
a,j+1

)
Pn+1
j+1

j = 1, . . . , J, n = N − 1, . . . , 0.(4.14)

Pnj+J = Pnj , j ∈ Z.(4.15)

Lemma 4.5. Let a ∈ K and P : Gh,τ → R be the solution of (4.13), (4.14). Then

∂Jh
∂ai

(a) = hτ

N−1∑
n=0

J∑
j=1

χijFε
(
δ+
h Y

n
a,j , δ

−
h Y

n
a,j

)
Pn+1
j , i = 1, . . . , L

where

χij =


1 if xj ∈ (x̂i−1, x̂i)

1
2 if xj = x̂i−1 or xj = x̂i

0 otherwise.
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Proof. Fix i ∈ {1, . . . , L}. We define Z : Gh,τ → R by Znj =
∂Y na,j
∂ai

(a). In what follows we simply

write Y = Ya. Recalling (4.13) and observing that Z0
j = 0 we have

∂Jh
∂ai

(a) = h

J∑
j=1

(Y Nj − Y Tj )ZNj = h

J∑
j=1

PNj Z
N
j

= h

N−1∑
n=0

J∑
j=1

(Pn+1
j Zn+1

j − Pnj Znj )(4.16)

= h

N−1∑
n=0

J∑
j=1

(Pn+1
j − Pnj )Znj + h

N−1∑
n=0

J∑
j=1

Pn+1
j (Zn+1

j − Znj ).

Differentiating (4.2) with respect to ai yields

δtZ
n
j = χijFε

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
(4.17)

+a(xj)
∂Fε
∂p

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
δ+
h Z

n
j + a(xj)

∂Fε
∂q

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
δ−h Z

n
j .

Hence from (4.16), (4.17) and (4.14) we obtain

∂Jh
∂ai

(a) = τ

N−1∑
n=0

J∑
j=1

Znj

{
−a(xj−1)

∂Fε
∂p

(
δ+
h Y

n
j−1, δ

−
h Y

n
j−1

)
Pn+1
j−1 + a(xj)

∂Fε
∂p

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
Pn+1
j

− a(xj)
∂Fε
∂q

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
Pn+1
j + a(xj+1)

∂Fε
∂q

(
δ+
h Y

n
j+1, δ

−
h Y

n
j+1

)
Pn+1
j+1

}
+hτ

N−1∑
n=0

J∑
j=1

χijFε
(
δ+
h Y

n
j , δ

−
h Y

n
j

)
Pn+1
j

+τ
N−1∑
n=0

J∑
j=1

Pn+1
j a(xj)

∂Fε
∂p

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
(Znj+1 − Znj )

+τ
N−1∑
n=0

J∑
j=1

Pn+1
j a(xj)

∂Fε
∂q

(
δ+
h Y

n
j , δ

−
h Y

n
j

)
(Znj − Znj−1)

= hτ

N−1∑
n=0

J∑
j=1

χijFε
(
δ+
h Y

n
j , δ

−
h Y

n
j

)
Pn+1
j

by shifting indices and using the periodicity of Z and P .

4.4. Optimisation method. We set PS(a)i = max(α,min(ai, β)) for i = 1, 2, . . . , L and now
define a projected gradient algorithm to solve the problem (Ph,τ ):
Step 1 Choose a0 ∈ [α, β]L, γ ∈ (0, 1) and tol.
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Step 2 For k = 0, 1, 2, . . ., do Steps 3-6.

Step 3 Set sk = −∇Jh(ak) = −
(
∂Jh
∂a1

(ak), · · · , ∂Jh
∂aL

(ak)
)
.

Step 4 Choose the minimum σk ∈ {1, 1
2 ,

1
4 , . . .} for which

Jh(PS(ak + σksk))− Jh(ak) ≤ − γ

σk
‖PS(ak + σksk)− ak‖22.

Step 5 Set ak+1 = PS(ak + σks
k).

Step 6 If ‖ak+1 − ak‖2 < tol then STOP.
Here, ‖ · ‖2 denotes the euclidian norm in R

L.

4.5. Numerical experiments. We consider six numerical experiments, using the following
values of yT (x):

yT (x) = 1 + 0.7 cos(π(x+ 0.5))(4.18)

yT (x) = 0.3 + (1− x2)(1 + x)(4.19)

yT (x) =



2.5, −1 ≤ x ≤ −0.5

2.5− 3|x+ 1
2 |, −0.5 ≤ x ≤ 0

2.5− 3|x− 1
2 |, 0 ≤ x ≤ 0.5

2.5, 0.5 ≤ x ≤ 1

(4.20)

yT (x) =



1.0, −1 ≤ x ≤ −0.5

1.0 + 3|x+ 1
2 |, −0.5 ≤ x ≤ 0

1.0 + 3|x− 1
2 |, 0 ≤ x ≤ 0.5

1.0, 0.5 ≤ x ≤ 1

(4.21)

yT (x) =


2.5, −1 ≤ x < −0.25

1.0, −0.25 ≤ x ≤ 0.25

2.5, 0.25 < x ≤ 1

(4.22)
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yT (x) =


1.0, −1 ≤ x < −0.25

2.5, −0.25 ≤ x ≤ 0.25

1.0, 0.25 < x ≤ 1.

(4.23)

In all our computations we take T = 1, α = 0.1, β = 4, h = 0.005, τ = h
2β , tol = 10−9, γ = 0.1 and

ε = h2. Then for each of the six experiments we take L = 5, 10 and 25.
The computational results for yT given by (4.18) are displayed in Figure 4.1. We see six subplots,
the upper three plots show Y T (dashed line) and Y Na (bold line), while the lower three plots show
a. In the left hand plots we took L = 5, in the centre plots we took L = 10 and in the right hand
plots we took L = 25. Figures 4.2 - 4.6 take the same form as Figure 4.1 except that (4.19)-(4.23)
were used in place of (4.18). In Figures 4.1-4.6 it is not always easy to distinguish Y Na from Y T ;
we therefore display plots of the error Y Na − Y T for the above six choices of yT in Figures 4.7 - 4.9.
The left hand plot of Figure 4.7 shows the difference Y Na − Y T for L = 5 (dashed line), L = 10
(dotted line) and L (solid line), for yT being given by (4.18). In the right hand plot of Figure
4.7 and Figures 4.8 and 4.9 we show corresponding results for the choices (4.19)-(4.23) of yT . We
conclude with Figures 4.10 - 4.12 in which we look at the convergence of Jh(ak) as k increases; in
Figure 4.10 we took yT given by (4.18) and compared the value of Jh(ak), with k large, for three
values of L; L = 5, 10 and 25. Each plot shows Jh(ak) plotted against the iteration number k, the
left hand plot displays results for L = 5, the centre plot L = 10 and the right hand plot L = 25.
Figures 4.11 and 4.12 take the same form as Figure 4.10 except that (4.20) and (4.23) were used in
place of (4.18). From Figures 4.10 - 4.12 we see that for each value of L, Jh(ak) converges, say to
Jh(a∗), and that as L increases Jh(a∗) decreases.

5. Conclusion. We have formulated an optimal control problem in which the final shape of
a one dimensional graph evolving with a prescribed inhomogeneous speed is controlled by varying
the speed function. The problem is one of controlling a first order Hamilton Jacobi equation. The
mathematical formulation is one of a quadratic objective functional with a state equation which is
posed in the sense of viscosity solutions. Existence is shown for several variants for constraints on
the speed function. An approximate controllability result in the H−1 norm is proved with respect
to the number of intervals defining a piece-wise constant speed function. A discrete version of the
control problem was formulated and shown to be convergent as the mesh size goes to zero. Our
numerical method was based on a scheme for the state equation which was differentiable with respect
to the discrete state. This allowed the derivation of an adjoint equation. Finally we displayed some
numerical results.
This is an example of an optimal control problem in which the nonlinear state equation is not
formulated in a classical manner but in the sense of viscosity solutions and in which the solution of
the state equation is not differentiable with respect to the control variable. The approach of this
article could be extended to consideration of higher space dimensional problems.

17



!1 0 1

0.5

1

1.5

2

!1 0 1

0.5

1

1.5

2

!1 0 1

0.5

1

1.5

2

!1 0 1

0.5

1

1.5

2

!1 0 1

0.5

1

1.5

2

!1 0 1

0.5

1

1.5

2

Fig. 4.1. Results for (4.18), upper plots show Y T (dashed line) and Y N
a (solid line), lower plots show a.
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Fig. 4.2. Results for (4.19), upper plots show Y T (dashed line) and Y N
a (solid line), lower plots show a.
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Fig. 4.7. Plots of Y T −Y N
a for L = 5 (dashed line), L = 10 (dotted line) and L = 25 (solid line) with yT given

by (4.18) in the left hand plot and yT given by (4.19) right hand plots.
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Fig. 4.8. Plots of Y T −Y N
a for L = 5 (dashed line), L = 10 (dotted line) and L = 25 (solid line) with yT given

by (4.20) in the left hand plot and yT given by (4.21) right hand plots.
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Fig. 4.9. Plots of Y T −Y N
a for L = 5 (dashed line), L = 10 (dotted line) and L = 25 (solid line) with yT given

by (4.22) in the left hand plot and yT given by (4.23) right hand plots.
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Fig. 4.10. Plots of Jh(ak) for L = 5 (left), L = 10 (centre) and L = 25 (right) with yT given by (4.18).
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Fig. 4.11. Plots of Jh(ak) for L = 5 (left), L = 10 (centre) and L = 25 (right) with yT given by (4.20).
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