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Abstract

In a Type-II superconductor the magnetic field penetrates the superconducting
body through the formation of vortices. In an extreme Type-II superconductor
these vortices reduce to line singularities. Because the number of vortices is large
it seems feasible to model their evolution by an averaged problem, known as the
mean-field model of superconductivity. We assume that the evolution law of an
individual vortex, which underlies the averaging process, involves the current of
the generated magnetic field as well as the curvature vector. In the present paper
we study a two-dimensional reduction, assuming all vortices to be perpendicular
to a given direction. Since both the magnetic field H and the averaged vorticity ω
are curl-free, we may represent them via a scalar magnetic potential q and a scalar
stream function ψ , respectively. We study existence, uniqueness and asymptotic
behaviour of solutions (ψ, q) of the resulting degenerate elliptic-parabolic system
(with curvature taken into account or not) by means of viscosity and weak solutions.
In addition we relate (ψ, q) to solutions (ω,H ) of the mean-field equations without
curvature. Finally we construct special solutions of the corresponding stationary
equations with two or more superconducting phases.
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1. Introduction

We study the degenerate parabolic elliptic system

psit − |∇ψ |
(
σ∇ ·

( ∇ψ
|∇ψ |

)
+ q − ψ

)
= 0 in �×]0, T [,

−1q + χ�q = χ�ψ in R
2×]0, T [,

together with a homogeneous Neumann boundary condition for ψ on ∂�×]0, T [
and a Neumann condition q∞ for q at infinity. Here � is a bounded domain in R

2

and σ is a non-negative constant.
This system couples the level-set method for evolving interfaces by curvature

to a nonlocal term. The nonlocal term contains information not only of the level
line in question, but of all other level lines.

This model arises in the mean field theory of superconductivity. To this end,
assume that a Type-II superconductor occupies a region D ⊂ R

3. The three-
dimensional mean-field model consists in determining a vorticity fieldω : D×]0, T [
→ R

3, a magnetic fieldH : R
3×]0, T [→ R

3 and a velocity field v : D×]0, T [→
R

3 which satisfy
ωt + curl(ω × v) = 0 in D,

v = curlH × ω

|ω| in D,

curl2H +H = ω in D, curlH = 0 in Dc, [H × ν] = 0 on ∂D,

∇ ·H = 0 in R
3.

Here ν is the exterior normal to D. These equations are supplemented by the
boundary conditions

ω × ν = 0 on ∂�,

H → H∞ as x → ∞.

Here H∞ is a given divergence-free applied field. This mean field model was
derived formally by Chapman [2] as an average of the following discrete problem:
find a finite collection of evolving line vortices Γ i and magnetic fields H i in D
such that

curl2H i +H i = ∑
j |=i

δΓ j ,

Vi = curlH i × τ i ,

where Vi and τ i denote the velocity and the tangent of Γ i , respectively. For the
case of straight-line vortices treated as point vortices in two dimensions, the model
has also been derived by E [7].

This discrete model in return has been obtained by Richardson [14] via
asymptotic expansions of the time dependent Ginzburg-Landau equations assuming
that the Ginzburg-Landau parameter κ is large. For the case of straight-line vortices
we refer as well to E [6] and Peres & Rubinstein [13]. In fact Richardson
derives a more general rule for the velocity of an individual vortex that contains
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a self-induced current proportional to the curvature vector and to a nonlocal term.
In the present paper we incorporate the curvature term, but we neglect the current
given by the nonlocal term. The latter is justified since the nonlocal term is of higher
order (in κ) and thus smaller than the curvature part of the self-induced energy. Thus
we use the velocity law

V i = σCiνi + curlH i × τ i

whereCi and νi denote the curvature and normal of Γ i , respectively and σ is a non-
negative constant. Using the modified velocity law for the discrete model changes
the velocity law of the mean field model into

v = σ curl

(
ω

|ω|
)

× ω

|ω| + curlH × ω

|ω| .

The averaging process may be understood in the following way: assume that
the number of vortices is n and that the order of vortex spacing is ζ . Then the
averaged vorticity ω is obtained as the limit n → ∞ (and consequently ζ → 0)
of the scaled discrete vortex densities ωn(x) := ζ 2∑n

i=1
1

|Bη(x)| 〈δΓ i , Bη(x)〉 =
3

4π
ζ 2

η2

∑n
i=1

1
η

∫
Γ i∩Bη(x) τ i dH 1. Here η = η(ζ ) is chosen much larger than ζ , but

still converging to 0. Thus ω is the L1 density of the weak∗ limit of the measures
ζ 2∑n

i=1 δΓ i . In the same mannerH is obtained as a properly scaled averaged limit
of any of theH i . We observe that ωn is approximately parallel to τ i . Thus we may
replace τ i by ωn|ωn| . In addition, we note that the curvature vector Ciνi is given by
curl τ i × τ i . Thus, as long as there are no drastic changes in the direction of the
vortices, it seems reasonable to pass to the limit n → ∞ in the discrete model,
thereby justifying the mean-field model. We finally observe that the first equation
of the averaged model is a conservation law for the vorticity, which has its discrete
analogue in the fact that no vortices merge or nucleate.

In the present paper we study a two-dimensional reduction of this three dimen-
sional model. We assume the superconductor to occupy a domain D = � × R,
and we look for solutions of the mean field model that have the special two-
dimensional structure ω = (ω, 0) and H = (H , 0) with ω : �×]0, T [→ R

2

and H : R
2×]0, T [→ R

2. We are thus studying a geometry where we assume
all vortices to be perpendicular to the z direction. The two-dimensional mean-field
model with curvature thus consists in solving

ωt − ∇⊥(|ω|
(
σ∇⊥ · ω|ω| + ∇⊥ ·H

))
= 0 in �,

− ∇⊥(∇⊥ ·H )+H = ω in �, ∇⊥ ·H = 0 in �c,

[H · ν⊥] = 0 on ∂�, ∇ ·H = 0 in R
2,

with boundary conditions

ω × ν = 0 on ∂�,

H → H∞ as x → ∞.

Here ∇⊥ = (−∂y, ∂x) and ν is the exterior normal to �.
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In fact, any solution of this two-dimensional reduction is a solution of the fully
three-dimensional problem in the infinite cylinderD with an applied fieldH∞ and
with an initial datum ω0 perpendicular to the z-direction and only depending on
(x, y).

SinceH is divergence-free, we can find a scalar magnetic potential q : R
2×]0,

T [→ R such that H = ∇⊥q. Owing to the stationary equation for H in �, which
is known as London’s equation, we see that ω as well is divergence free in �, and
we may thus find a scalar stream functionψ : �×]0, T [→ R such that ω = ∇⊥ψ .
This last observation is only valid as long as � is simply-connected. Substituting
these relations into the system of equations implies

∇⊥
(
ψt − |∇ψ |

(
σ∇ ·

( ∇ψ
|∇ψ |

)
+1q

))
= 0,

∇⊥ (−1q + q − ψ) = 0 in �, −1q = 0 in �c, [∇q · ν] = 0 on ∂�,

∇ψ · ν = 0 on ∂�,

∇q → ∇q∞ as x → ∞.

Upon changingψ and q by adding functions depending only on time, we eventually
find the system of equations we consider in the present paper.

In return, any solution (ψ, q) gives a solution (ω,H ) of the two-dimensional
mean-field equations. This holds true even for domains � which are not simply-
connected. But it restricts the class of initial data we may consider.

We stress that assuming the two-dimensional structure of the solution we are
able to show well-posedness of the problem, even without the curvature term. This
may no longer be the case without the assumption on the two-dimensional structure
as suggested by an eigenvalue analysis of Richardson [15] for the evolution
law of an individual vortex. In addition, the fully three-dimensional problem is
substantially more difficult than the two-dimensional reduction, owing to the fact
that we then have to work with vector potentials ψ and q of ω andH , respectively.
In this case the system of equations inD, with the curvature term taken into account,
reads

ψ t + curlψ ×
(
σ curl

(
curlψ

| curlψ |
)

× curlψ

| curlψ | + q − ψ

)
= 0,

curl2 q + q − ψ = 0.

We finally note that there exists another two-dimensional reduction of the mean-
field model which was studied by Chapman, Rubinstein & Schatzman [3]
and Styles [17]. It consists in searching for solutions of the form ω = ωez,
H = Hez, with both ω andH depending on x ∈ R

2. Hence, this two-dimensional
reduction assumes that all vortices are lines pointing in the z direction. Chapman,
Rubinstein & Schatzman show existence and regularity of solutions of a
resulting stationary free-boundary-value problem. Styles proves existence of a
weak solution, and uniqueness in the special case of � being essentially one-
dimensional. In addition, she proposes a numerical scheme to solve the problem
and shows its convergence in one space dimension.
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We now describe our results. In Section 2, we prove the existence of a unique
solution (ψ, q) of the two-dimensional degenerate parabolic-elliptic system, either
assuming that σ = 0 or that σ is a positive constant. The dynamic equation is
solved in the viscosity sense while the elliptic equation is solved in the weak sense.
To this end we introduce the solution operator q = Hψ of the elliptic equation with
homogeneous Neumann condition at ∞. Then we interpret the dynamic equation
in the viscosity sense, replacing q by Hψ + q∞. The solution operator has the
property that inf ψ 5 Hψ 5 supψ . This observation is crucial for a comparison
principle to hold for the dynamic equation. Due to this comparison principle we are
able to prove existence for initial data of ψ which are only continuous. In addition
we show that as t → ∞ the solution tends uniformly to a stationary state.

In Section 3, we relate (ψ, q) to solutions of the two-dimensional mean-field
model derived by Chapman. We show (for σ = 0) that (ω,H ) = (∇⊥ψ,∇⊥q)
locally in � is a weak solution of the mean-field model. In addition, we show
that this (ω,H ) is the unique limit of a viscous approximation of the mean-field
equations. The mean-field model is hyperbolic in nature, and we show that it only
admits very few entropy pairs. As a consequence, we are not able to give a notion
of general weak solutions of the mean-field model, incorporating the boundary
condition ω × ν = 0.

In Section 4 we study the corresponding stationary problem with σ = 0. We
present special model solutions, admitting a functional dependence of the stream
function ψ on the magnetic potential q. In particular, we construct domains� that
allow for solutions with more than two superconducting phases.

2. Existence and Uniqueness

2.1. Notation. Let 0 < T < ∞ and ∅ |= � ⊂⊂ R
2 be open with ∂� ∈ C2,β

for some β > 0, and let ν be the outer unit normal to ∂�. We use the notation
�T := �×]0, T [ and �∞ := �×]0,∞[. We study the system of equations

ψt − |∇ψ |
(
σ∇ ·

( ∇ψ
|∇ψ |

)
+ q − ψ

)
= 0 in �×]0, T [,

−1q + χ�q = χ�ψ in R
2×]0, T [,

(1)

with σ = 0. On ψ , we impose a homogeneous Neumann boundary condition

∇ψ · ν = 0 on ∂�×]0, T [, (2)

and on q, we impose

∇(q − q∞) ∈ L2(R2) (3)

for all 0 < t < T . Here q∞ is a given function which we assume to be harmonic
outside a large ball. We will later normalize q∞ to satisfy a differential equation in
R

2 (cf. 2.3(a)).
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The initial values of ψ are given by ψ0, which we assume to be Lipschitz
continuous (with the exception of Remark 2.17, where we discuss existence and
uniqueness for continuous initial data).

We choose Λ > 0 such that

σ, ‖ ν ‖C1(U
Λ−1 (∂�))

, ‖ ψ0 ‖C0,1(�), |�| 5 Λ, (4)

where UΛ−1(∂�) is the set of all points whose distance to ∂� is less than Λ−1.

We first investigate the elliptic equation.

2.2. Lemma. For any ψ ∈ L2(�), there exists a unique solution q ∈ H1,2
loc (R

2) of
the elliptic equation

−1q + χ�q = χ�ψ in R
2, ∇(q − q∞) ∈ L2(R2). (1)

Proof. Since only the values of q∞ near infinity are relevant for the equation, and
since q∞ is harmonic outside a large ball, we may assume that q∞ ∈ C∞(R2).
When q is replaced by q − q∞, (1) is equivalent to

−1q + χ�q = f in R
2, ∇q ∈ L2(R2),

where f := χ�ψ −1q∞ + χ�q∞. Thus f ∈ L2(R2) and f has compact support
in R

2. We consider the Hilbert space X := {p ∈ H1,2
loc (R

2) | ∇p ∈ L2(R2)} with
scalar product 〈q, p〉 := ∫

R2 ∇q · ∇p + ∫
�
qp. It is easily seen that X is indeed

a Hilbert space with this scalar product. Further F(p) := ∫
R2 fp is a continuous

linear functional on X. By the Riesz Representation Theorem, there is a unique
q ∈ X with 〈q, p〉 = F(p) for all p ∈ X, which gives the unique solution to the
original elliptic equation. ut
2.3. Remarks. (a) Since the elliptic problem 2.2(1) remains unchanged when q∞ is
replaced by a q̃∞ that satisfies ∇(q∞ − q̃∞) ∈ L2(R2) we may normalize q∞. We
choose q̃∞ to be the unique solution of 2.2(1) with ψ = 0. Thus in the following,
we will always assume that

−1q∞ + χ�q∞ = 0. (1)

Elliptic regularity theory implies that q∞ ∈ H2,p
loc (R

2) for all p = 1, and we may
enlarge Λ so that

‖ q∞ ‖C1,α(�)5 Λ, (2)

for some 0 < α < 1.

(b) Assume that q∞ = 0 in 2.2(1). Then the solution operator is a linear continuous
operator H : L2(�) → X. We see that∫

�

ψ Hψ̃ = 〈Hψ,Hψ̃〉. (3)
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This yields that H : L2(�) → X ↪→ L2(�) is a positive, selfadjoint operator on
L2(�) with ‖ H ‖= 1, since ‖ Hψ ‖X=‖ Hψ ‖L2(�) and H1 = 1.

Finally, we establish

inf ψ 5 Hψ 5 supψ for ψ ∈ L∞(�). (4)

Since H1 = 1, it suffices to prove that q = Hψ = 0 for ψ = 0. Multiplying
equation 2.2(1) by q− := min(q, 0), we get∫

R2
|∇q−|2 +

∫
�

|q−|2 =
∫
�

ψq− 5 0.

Therefore q− is constant on R
2, q− = 0 on�, and hence vanishes on the whole of

R
2. This yields q = 0. ut

(c) For general q∞ as in (a), we can represent the solution q of 2.2(1) in terms of
H by

q = Hψ + q∞. (5)

2.4. Remark. In the same way as in Lemma 2.2, we may consider the equation

−1q = χ�ψ in R
2, ∇(q − q∞) ∈ L2(R2). (1)

Replacing q by q − q∞ as before, we see that (1) is equivalent to

−1q = f in R
2, ∇q ∈ L2(R2), (2)

where f := χ�ψ−1q∞ ∈ L2(R2), with compact support in R
2. Now, since coer-

civity is lacking on the whole ofX, we instead considerY := {p ∈ H1,2
loc (R

2) | ∇p ∈
L2(R2),

∫
�
p = 0} ⊂ X. As in Lemma 2.2 there exists a unique q ∈ Y such that∫

R2 ∇q · ∇p = ∫
R2 fp for all p ∈ Y . We conclude that there is a solution of (1) if

and only if ∫
�

ψ =
∫

R2
1q∞,

and this solution is unique up to a constant.
As a corollary, for two functions q∞ and q̃∞ which are smooth in R

2, which
are harmonic outside a large ball and which satisfy ∇(q∞ − q̃∞) ∈ L2(R2), we get∫

R2
1q∞ =

∫
R2
1q̃∞.

In particular, the normalization as in Remark 2.3(a) does not change the integral of
the Laplacian of q∞ over R

2, provided the original q∞ was smooth.

2.5. Definition. We will consider 2.1(1) in the viscosity sense. To this end, we have
to specify the functional dependence of ψ, ∇ψ and D2ψ , where we have to take
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into account that q in 2.1(1) appears through the coupling of the equations. For a
given q ∈ C0(�T ), we set

K(q)(x, t, r, a, p,X) := a − σ tr

((
I − p ⊗ p

|p|2
)
X

)
+ |p|(r − q(x, t)),

where (x, t, r, a, p,X) ∈ � × [0, T ] × R × R × (R2 − {0}) × S(2) and S(2)
denotes the set of all symmetric (2 × 2)-matrices. Associated with K(q) are
K?(q), K?(q), K

+(q), K−(q), which agree with K(q) when p |= 0, and which
are defined for p = 0 by

K?(q)(x, t, r, a, p,X) := a − σ inf|b|=1
tr ((I − b ⊗ b)X),

K?(q)(x, t, r, a, p,X) := a − σ sup
|b|=1

tr ((I − b ⊗ b)X),

K+(q)(x, t, r, a, p,X) := a − σ inf
|b|51

tr ((I − b ⊗ b)X),

K−(q)(x, t, r, a, p,X) := a − σ sup
|b|51

tr ((I − b ⊗ b)X).

It requires a calculation to verify that K? and K? are respectively the upper and
lower semicontinuous envelopes of K(q) which are defined, for example, by

K?(q)(x, t, r, a, p,X)

:= inf
{

lim inf
j→∞ K(q)(xj , tj , rj , aj , pj ,Xj ) | (xj , tj , rj , aj , pj ,Xj )

→ (x, t, r, a, p,X)
}
.

Viscosity solutions are stable under certain limit procedures (cf. [5, Lemma 6.1]).
For a family of functions Kδ : D ⊆ R

N → R we define

K := ( lim
δ→0

)?Kδ

by
K(z0) := inf{lim inf

j→∞ Kδj (zj ) | δj → 0, zj → z0}.

(limδ→0)
?Kδ is defined analogously.

In our case, we approximate K(q) by

Kδ(q)(x, t, r, a, p,X)

:= a − 2δfδ(p)tr(X)− σ tr

((
I − p ⊗ p

fδ(p)2

)
X

)
+ fδ(p)(r − q(x, t)),

where fδ(p) := √
δ2 + |p|2. An elementary computation yields that

( lim
δ→0

)?Kδ(qδ) = K−(q), ( lim
δ→0

)?Kδ(qδ) = K+(q) (1)

if qδ → q uniformly on �T .
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2.6. Definition. Let ψ ∈ C0(�T ) and set q := Hψ + q∞. Then ψ is called
a viscosity subsolution of problem 2.1(1,2,3), if for all (x, t) ∈ �T , and for all
(a, p,X) ∈ P 2,+

�T
ψ(x, t),

K?(q)(x, t, ψ(x, t), a, p,X) 5 0,

and for all (x, t) ∈ (∂�)×]0, T [, and for all (a, p,X) ∈ P 2,+
�T

ψ(x, t),

min(K?(q)(x, t, ψ(x, t), a, p,X), p ν(x)) 5 0.

The sets of superdifferentials P 2,+
�T

and P 2,+
�T

are defined in the next subsection.

ψ is called a weak viscosity subsolution if the above is satisfied when K? is
replaced by K−.

Viscosity and weak viscosity supersolutions are defined analogously by replac-
ing K? and K− by K? and K+ and by considering the set of subdifferentials P 2,−
instead of P 2,+.

ψ is called a solution when it is both a sub- and a supersolution.

2.7. Definition. For ∅ |= Q ⊆ R
n×]0, T [, v : Q → R, and (x0, t0) ∈ Q, we define

the sets of superdifferentials

P
2,+
Q v(x0, t0) := {

(a, p,X) ∈ R × R
n × S(n) | v(x, t) 5 v(x0, t0)+ a(t − t0)

+p(x − x0)+ 1
2 (x − x0)

T X(x − x0)+ o(|t − t0| + |x − x0|2)
as t → t0, x → x0, (x, t) ∈ Q},

P
2,+
Q v(x0, t0) := {

(a, p,X) ∈ R × R
n × S(n) | ∃(xj , tj ) ∈ Q :

∃(aj , pj ,Xj ) ∈ P 2,+v(xj , tj ) : (aj , pj ,Xj ) → (a, p,X),

(xj , tj ) → (x0, t0), v(xj , tj ) → v(x0, t0)
}
.

The sets of subdifferentials P 2,− and P
2,−

are defined analogously.

2.8. Remark. It is seen easily that for ϕ ∈ C2,1(U(Q))with v−ϕ 5 (v−ϕ)(x0, t0)

in Q and U(Q) a neighbourhood of Q, the triple of derivatives (∂tϕ,∇ϕ,D2ϕ)

· (x0, t0) ∈ P 2,+
Q v(x0, t0).

Conversely, for all superdifferentials (a, p,X) ∈ P 2,+
Q v(x0, t0), there is a ϕ ∈

C2,1(U(Q)) with v − ϕ 5 (v − ϕ)(x0, t0) in Q and (a, p,X) = (∂tϕ,∇ϕ,D2ϕ)

· (x0, t0). A proof of the second statement can be found in [16, Section 14A].

2.9. Theorem. For any ψ0 ∈ C0,1(�) and for any q∞ which is harmonic outside a
large ball, there exists a unique viscosity solution ψ ∈ C0(�×], 0,T[) of problem
2.1(1,2,3) with initial data ψ(·, 0) = ψ0 in �. This solution can be extended
globally in time and satisfies the estimates

‖ ψ ‖L∞(�∞), ‖ ∇ψ ‖L∞(�∞),
∫ ∞

0

∫
�

|ψt |2, ‖ ψ ‖Hα,α/2(�∞) 5 C(Λ), (1)

for some 0 < α < 1.
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2.10. Remark.We will approximate this equation by a smooth quasilinear parabolic
equation and pass to the limit. We will replace the modulus |·|by the smooth function
fδ(p) := √|p|2 + δ2, set Aδ(p) := δ|p|2 + σfδ(p) and obtain the equation

ψt − 2δfδ(∇ψ)1ψ − σ tr

((
I − ∇ψ ⊗ ∇ψ

fδ(∇ψ)2
)
D2ψ

)
+ fδ(∇ψ)(ψ − q) = 0,

i.e., Kδ(q)(x, t, ψ,ψt ,∇ψ,D2ψ) = 0 and q = Hψ + q∞. This equation is not
in divergence form, but as for the original equation, the second-order term has
the form fδ(∇ψ)∇A′

δ(∇ψ). This will enable us to estimate the time derivative by
multiplying with ∂tψ/fδ(∇ψ). Then the divergence can be integrated in time, and
we get

∫
�T

|∂tψ |2
fδ(∇ψ) +

∫
�

Aδ(∇ψ(T ))+ · · · .

A difficulty arises when passing to the limit, since (limδ→0)
?
?Kδ |= K?

? . Therefore,
our approximation yields only weak viscosity solutions. To get the full result, we
will establish the uniqueness result for the weak viscosity solutions and approximate
again. The second approximation will be fully quasilinear (we do not account for the
partial divergence form of the equation) and will yield a proper viscosity solution.
On the other hand, the second approximation does not give the estimate on the
time derivative in 2.9(1) which will be important when considering the asymptotic
behaviour for t → ∞.

Note that the regularization usingKδ is of the form used by Evans & Spruck
[9] in their study of mean curvature flow and that their definition of solutions
coincides with our definition of a weak viscosity solution. On the other hand, our
definition of viscosity solution coincides with that of Chen, Giga & Goto [4]
for mean-curvature flow.

2.11. Proof of Theorem 2.9. According to 2.3(5) we write q = Hψ + q∞ and
regularize the equation as pointed out in Remark 2.10. To this end we define
fδ(p) := √

δ2 + |p|2 and Aδ(p) := δ|p|2 + σfδ(p). We thus use the initial-
boundary-value problem

ψt

fδ(∇ψ) − ∇ · A′
δ(∇ψ)+ (ψ −Hψ − q∞) = 0 in �×]0, T [,
∂νψ = 0 on ∂�×]0, T [,
ψ = ψ0,δ in �× {0},

(1)

where ψ0,δ ∈ C∞(�) with ‖ ψ0,δ ‖C0,1(�)5 C(Λ) and ∂νψ0,δ = 0 on ∂�, and

ψ0,δ → ψ0 uniformly on �. Since Aδ depends only on the modulus, we see that
A′
δ(∇ψ) · ν = 0 on ∂�. Differentiating the second-order term, we write equation

as

ψt − aδij (∇ψ)∂ijψ + fδ(∇ψ)(ψ −Hψ − q∞) = 0, (2)
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where aδ(p) := fδ(p)D
2Aδ(p). We collect the following properties of aδ:

aδij (p) = 2δfδ(p)δij + σ(δij − pipj

fδ(p)2
),

aδ(p) = 2δfδ(p)I,

∂la
δ
ij (p) = 2δ

pl

fδ(p)
δij + σ(− δilpj

fδ(p)2
− δjlpi

fδ(p)2
+ 2

pipjpl

fδ(p)4
).

(3)

We observe that equation (2) is a smooth quasilinear parabolic equation with a
compact perturbation. From standard parabolic theory (cf., e.g., [12]) and the Leray-
Schauder Theorem, we obtain a solution ψδ ∈ H 2+α,1+α/2(�T ) ∩ C∞

loc(�T ).
To simplify the notation, we now drop the index δ.
First, we establish a uniform L∞ bound on ψ . We set M := sup� ψ0,δ and

ψ̃ := ψ − δtQ, where Q is any number strictly bigger than sup� q∞. We get

ψ̃t + δQ− aij (∇ψ̃)∂ij ψ̃ + f (∇ψ̃)(ψ̃ −Hψ̃ − q∞) = 0.

We choose ψ̃(x0, t0) = sup�T ψ̃ , and we assume this supremum to be bigger than
M . We obtain 0 < t0 5 T ; Hopf’s Theorem implies that x0 ∈ �. This yields
∂t ψ̃ = 0,∇ψ̃ = 0, and D2ψ̃ 5 0 at (x0, t0). Since fδ(0) = δ, we conclude by
using the equation

0 = δQ+ δ(ψ̃ −Hψ̃ − q∞)(x0, t0).

From 2.2(4), we infer thatHψ̃(x0, t0) 5 supHψ̃(., t0) 5 sup ψ̃(., t0) = ψ̃(x0, t0).
Therefore 0 = Q−q∞(x0, t0). This contradicts the choice ofQ, and thus sup�T ψ̃ 5
M . Using a similar argument for the infimum eventually gives

sup
�T

|ψ | 5 sup
�

|ψ0,δ| + δT sup
�

|q∞|. (4)

Next, we establish a uniform L∞ bound on ∇ψ . We define z := fδ(p)
2 = |∇ψ |2 +

δ2. We know that z ∈ H 1+α, 1+α
2 (�T ) ∩ C∞

loc(�T ). The derivatives of z are given
by

∂t z = 2∂tψkψk, ∂iz = 2∂iψkψk,

∂ij z = 2∂ijψkψk + 2∂iψk∂jψk,

where ψk = ∂kψ . Differentiating equation (2) and multiplying its derivative by
2ψk , we obtain

∂t z− aij (∇ψ)∂ij z+ 2aij (∇ψ)∂iψk∂jψk − ∂laij (∇ψ)∂ijψ∂lz

+ ∂kz√
z
∂kψ(ψ − q)+ 2

√
z(|∇ψ |2 − ∇q∇ψ) = 0
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in �t . Using (3), we get

2aij (∇ψ)∂iψk∂jψk − ∂laij (∇ψ)∂ijψ∂lz

= 2δ
√
z|D2ψ |2 − 2δ

∂lψ ∂lz1ψ√
z

+ σ
(
∂iz∂ijψ∂jψ

z
+ ∂j z∂ijψ∂iψ

z
− 2

∂iψ∂jψ∂lψ

z2
∂ijψ∂lz

)

= 2δ
√
z|D2ψ |2 − 2δ

(∇ψ ∇z)1ψ√
z

+ σ(
|∇z|2
z

− |∇ψ∇z|2
z2

)

= −C(Λ)δ |∇z|
2

√
z
.

Sinceq = Hψ+q∞ according to 2.3(5), we get from 2.3(2) and (4) that |q|, |∇q| 5
C(Λ). If z > max(C(Λ), 1), we obtain |∇ψ |2 = z− δ2 = 2

3z = C(Λ), and hence

∂kz√
z
∂kψ(ψ − q)+ 2

√
z(|∇ψ |2 − ∇q∇ψ) = −C(Λ)|∇z| + z

√
z.

On {z > C(Λ)} ∩�T these estimates yield

∂t z− aij (∇ψ)∂ij z 5 −z√z+ C(Λ)|∇z| + C(Λ)δ
|∇z|2√
z
. (5)

Next we estimate ∂νz on ∂�T . We know that ∇ψ · ν = ∂νψ = 0. Therefore ∇ψ
is a tangential vector at ∂�. This yields

0 = ∇ψ · ∇(∇ψ · ν) = ∇ψ ·D2ψν + ∇ψ ·Dν∇ψ,

∂νz = 2∇ψ ·D2ψν = −2∇ψ ·Dν∇ψ 5 C(Λ)z, (6)

since we have |Dν| 5 C(Λ) using 2.1(4).
Since ∂� ∈ C2, we again use 2.1(4) to show that there exists a function ϕ ∈

C2(�) that satisfies

∂νϕ = 1 on ∂�, ‖ ϕ ‖C2(�)5 C(Λ), ϕ = 0 in �. (7)

We define w := ze−C(Λ)ϕ . The derivatives of w are given by

∂tw = ∂t ze
−C(Λ)ϕ, ∂iw = ∂ize

−C(Λ)ϕ − wC(Λ)∂iϕ,

∂ijw = ∂ij ze
−C(Λ)ϕ − ∂iwC(Λ)∂jϕ − ∂jwC(Λ)∂iϕ

−wC(Λ)∂ijϕ − wC(Λ)∂iϕ∂jϕ.

From (6) we get

∂νw = e−C(Λ)ϕ(∂νz− C(Λ)z∂νϕ) < 0. (8)
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Since 0 5 w 5 z, we obtain from (5) that

e−C(Λ)ϕ
(

− z
√
z+ C(Λ)|∇z| + δ√

z
|∇z|2

)
= e−C(Λ)ϕ(∂t z− aij (∇ψ)∂ij z)

= ∂tw − aij (∇ψ)∂ijw + bi∂iw − aij (∇ψ)∂ijϕC(Λ)w
− aij (∇ψ)∂iϕ∂jϕC(Λ)w,

(9)

on {w > C(Λ)} ∩ �T , where bi are functions depending on a, w, and ∇ϕ. Now
we choose w(x0, t0) = sup�T w =: M = C(Λ). Since w(., 0) 5 z(., 0) =
|∇ψ0,δ|2 + δ2 5 C(Λ), we conclude that 0 < t0 5 T , and w is of class C2

in a neighbourhood of (x0, t0). From (8), we get x0 ∈ �. This yields ∂tw =
0,∇w = 0, |∇z| 5 C(Λ)z , and D2w 5 0 at (x0, t0). Taking into account that
|aij (∇ψ)| 5 C(Λ)(1 + δ

√
z), we get from (9) that

0 5 ∂tw − aij (∇ψ)∂ijw + bi∂iw 5 e−C(Λ)ϕ(−z√z+ C(Λ)z+ C(Λ)δz
√
z)

at (x0, t0), which is a contradiction when δ < c0(Λ). Hence w 5 C(Λ) and

‖ ∇ψδ ‖L∞(�T )5 C(Λ), (10)

for δ < c0(Λ, T ).
Finally, for passing to the limit, we need an estimate on the time derivative of

ψδ . To this end we multiply (1) by ∂tψ and, taking into account thatA′
δ(∇ψδ) ·ν =

0 on ∂�, we obtain∫
�T

|∂tψ |2
f (∇ψ) +

∫
�

A(∇ψ(T )) =
∫
�

A(∇ψ0)+
∫
�T

(ψ −Hψ − q∞)∂tψ.

Since H is self-adjoint (see 2.3(3)) we compute for the last term that

∫
�T

(ψ −Hψ − q∞)∂tψ =
∫
�

( 1
2 |ψ |2 − 1

2ψHψ − q∞ψ)
∣∣∣∣
T

t=0
.

Observing (4), we see that it is bounded in modulus byC(Λ). Sincef (∇ψ) 5 C(Λ)

by (10), we conclude that ∫
�T

|∂tψδ|2 5 C(Λ). (11)

As in the proof of Theorem 3.4 of [8], this together with (10) yields that
‖ ψδ ‖Hα,α/2(�T )

5 C(Λ) for some 0 < α < 1. Furthermore, since ∂tq = H∂tψ ,
we get ‖ ∂tqδ ‖L2(�T )

5 C(Λ). Since |∇qδ| 5 C(Λ) follows from (4), we likewise
obtain ‖ qδ ‖Hα,α/2(�T )

5 C(Λ). Therefore subsequences of (ψδ)δ and (qδ)δ con-
verge uniformly in�T , and we can pass to the limit in (1) using Lemma 6.1 of [5].
In view of 2.5(1), this yields a weak viscosity solution.

From (4), (10), and (11), we get (1) for finite T > 0. Since Λ does not depend
on T , we obtain the full estimates.
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Before concluding the existence proof, we establish the comparison principle
for weak viscosity solutions in the next theorem.

2.12. Theorem. Let ψ1 and ψ2 be two weak viscosity solutions of problem
2.1 (1,2,3) with initial data ψ0,1 and ψ0,2, respectively. Assume that ψ1 or ψ2
is uniformly Lipschitz continuous in space. Then ψ0,1 5 ψ0,2 implies that ψ1 5
ψ2 on �∞.

Proof. For the sake of notational convenience we put

F(p,X) := −σ tr

((
I − p ⊗ p

|p|2
)
X

)
p |= 0,

F+(p,X) :=


F(p,X) p |= 0,

−σ inf
0<|b|51

tr ((I − b ⊗ b)X) p = 0,

and we define F− in a similar way.
Now assume that the assertion of the theorem were not true, i.e., assume that

sup
�T

(ψ1 − ψ2) > 0.

We choose γ > 0, and for i = 1, 2 we set ψ̃i(t, x) := e−γ tψi(t, x). Then ψ̃i are
weak viscosity solutions for

K
γ
±(qi)(x, t, r, a, p,X) := a + γ r − F+− (p,X)+ |p| (eγ t r − qi(x, t)

)
,

and if γ is big enough, then

sup
�

(ψ̃1 − ψ̃2)(·, T ) < M := sup
�T

(ψ̃1 − ψ̃2), (1)

and M > 0.
We now drop the tilde again.
We proceed as in [10]. We set Φ(t, x, y) := (ψ1(x, t)− ψ2(y, t))− Ψ (x, y),

where

Ψ (x, y) := 1

ε
Ξ(x, y)+ δg(x, y),

Ξ(x, y) := |η|4g(x, y),
η := x − y,

g(x, y) := φ(x)+ φ(y)+ 2β.

(2)

We choose β ∈]0, c0(Λ)[ small enough, and for this β we choose φ ∈ C2(�) with
− 1

2β 5 φ 5 0 in� as well as φ = 0 and ∇φ = ν on ∂�. Thus β 5 g 5 2β. With
these definitions, Lemma 3.1 and Proposition 3.2, all formulae of Section 3 of [10]
as well as Proposition 4.2(i)–(iv) hold.

Obviously, for all 0 < ε 5 ε0, 0 < δ 5 δ0 there exists (t̂ , x̂, ŷ) ∈ [0, T ]×�×�
such that

Φ(t, x, y) 5 Φ(t̂, x̂, ŷ) for all (t, x, y) ∈ [0, T ] ×�×�. (3)
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Setting x = y in (3) and first taking limits in δ and then the limit in ε implies that
for any accumulation point (x0, t0) of (x̂ε,δ, t̂ε,δ),

(ψ1 − ψ2)(x, t) 5 (ψ1 − ψ2)(x0, t0). (4)

Here we used that by Proposition 4.2(iii),(iv) of [10], Ξ(x̂ε,δ, ŷε,δ)/ε → 0 and
|x̂ε,δ − ŷε,δ| → 0 as ε → 0 uniformly in δ. Thus (x0, t0) is some point where
ψ1 − ψ2 attains its supremum over �T . By (1) we know that t0 < T and since
(ψ1 −ψ2)(·, 0) ≡ 0, we know that 0 < t0. As a consequence of this argument, we
may assume that

1
2M < ψ1(x̂, t̂)− ψ2(ŷ, t̂), 0 < t̂ < T (5)

for all 0 < δ < δ0 and all 0 < ε 5 ε0.
Now, if x̂ ∈ ∂�, y ∈ �, then ν(x̂) ·∇xΨ (x̂, y) = δ, whereas, if ŷ ∈ ∂�, x ∈ �,

then ν(ŷ) · ∇Ψy(x, ŷ) = δ, by Lemma 3.1 of [10]. Hence, we can apply Lemma
3.3 of [10] and obtain that for any 0 < ε 5 ε0, 0 < δ = δ0 and for any λ > 0 there
exist symmetric matrices X and Y such that, putting

px := 1

ε
∇xΞ(x̂, ŷ)+ δ∇φ(x̂),

py := 1

ε
∇yΞ(x̂, ŷ)+ δ∇ψ(ŷ),

(6)

we get

0 = γ
(
ψ1(x̂, t̂)− ψ2(ŷ, t̂)

)− F−(px,X)+ F+(−py,−Y )
+ |px |(eγ t̂ (ψ1 −Hψ1)(x̂, t̂)− q∞(x̂)

)
− |py |(eγ t̂ (ψ2 −Hψ2)(ŷ, t̂)− q∞(ŷ)

) (7)

and

−
(

1

λ
+ ‖A‖

)
I 5

(
X 0

0 Y

)
5 A+ λA2, (8)

where A := 1
ε
L(x̂, ŷ) + δD2g(x̂, ŷ). To justify this choice of A we use that

D2Ξ(x, y) 5 L(x, y) with L(x, y) as in (3.3) of [10].
Next, for all 0 < ε 5 ε0 there exists a subsequence δj → 0 such that(

t̂ε,δj , x̂ε,δj , ŷε,δj
) −→ (

t̂ε, x̂ε, ŷε
)
,

pxε,δj −→ pxε := 1

ε
∇xΞ(x̂ε, ŷε), p

y
ε,δj

−→ pyε := 1

ε
∇yΞ(x̂ε, ŷε),(

Xε,δj , Yε,δj
) −→ (Xε, Yε)

Aε,δj −→ Aε := 1

ε
L(x̂ε, ŷε).

Moreover, (8) holds for (Aε,Xε, Yε) and (7) holds for (t̂ , x̂, ŷ, px, py,X, Y )ε.
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Next, for a subsequence εj → 0,(
t̂εj , x̂εj , ŷεj

) −→ (t0, x0, y0) .

By Proposition 4.2(iii) of [10], x0 = y0 and (5) is satisfied for δ = 0.
We proceed by showing that x̂ε |= ŷε. Assume to the contrary that x̂ε = ŷε. Then

by formulae (3.2) and (3.3) of [10] pxε = p
y
ε = 0 and Aε = 0. Thus (8) implies

that

(
Xε 0
0 Yε

)
5 0 and consequently Xε 5 0 5 −Yε. Using the monotonicity of

F− and F+ we obtain from (7) that

0 = 1
2γM + F−(0, Xε)− F+(0,−Yε)

= 1
2γM + F−(0, 0)− F+(0, 0) > 0.

(9)

This is a contradiction. Thus |ηε| = |x̂ε − ŷε| > 0 and we obtain from (3.2) and
(4.2) of [10] with constants C, c0 > 0 which are independent of ε that

C
1

ε
|ηε|3 = |pxε |, |pyε | = c0

1

ε
|ηε|3,

pxε + pyε = 1

ε
|ηε|4

(∇φ(x̂ε)+ ∇φ(ŷε)
)
,

|pxε + pyε | 5 C
1

ε
|ηε|4 5 C

1

ε
Ξ(x̂ε, ŷε) −→ 0,

∣∣∣∣ pxε|pxε |
+ p

y
ε

|pyε |
∣∣∣∣ 5 2

min(|pxε |, |pyε |)
|pxε + pyε | 5 C|ηε|.

(10)

We use (8) and Proposition 3.2(ii) of [10] and we observe that F satisfies
condition (F4) of [10] (cf. Lemma 5.1 of [10]) to conclude that

F(pxε ,Xε)− F(−pyε ,−Yε)

= −K1ν0

∣∣∣∣ pxε|pxε |
+ p

y
ε

|pyε |
∣∣∣∣
2

−K2µ−K3ζ

∣∣∣∣ pxε|pxε |
+ p

y
ε

|pyε |
∣∣∣∣−K4

∣∣pxε + pyε

∣∣ ,
with ν0 = C 1

ε
|ηε|2, µ = C

(
1
ε
|ηε|4 + λ

ε2

)
and ζ = C 1

ε
|ηε|3. Thus

F(pxε ,Xε)− F(−pyε ,−Yε) = −C
(

1

ε
|ηε|4 + λ

ε2

)
,

and we conclude that

lim
ε→0

F(pxε ,Xε)− F(−pyε ,−Yε) = 0, (11)

provided that λ is chosen such that λ/ε2 → 0.



Viscosity Solutions for the Mean-Field Theory of Superconductivity 115

Next we obtain∣∣ |pxε |q∞(x̂ε)+ |pyε |q∞(ŷε)
∣∣

5 |pxε + pyε | ||q∞||L∞(�) + |pxε | |ηε| ||∇q∞||L∞(conv �) −→ 0
(12)

by (10).
Finally we estimate

|pxε | (ψ1 −Hψ1) (x̂ε, t̂ε)− |pyε | (ψ2 −Hψ2) (ŷε, t̂ε)

= −|pxε + p
y
ε |
(||ψ1||L∞(�) + ||Hψ1||L∞(�)

)
+ |pyε |

(
(ψ1 −Hψ1)(x̂ε, t̂ε)− (ψ2 −Hψ2)(ŷε, t̂ε)

)
.

We observe that

(ψ1 −Hψ1)(x̂ε, t̂ε)− (ψ2 −Hψ2)(ŷε, t̂ε) −→ (ψ1 − ψ2 −H(ψ1 − ψ2)) (x0, t0).

Since (ψ1 − ψ2) (x0, t0) = sup� (ψ1 − ψ2) (·, t0) by (4), 2.3(4) implies that 0 5
(ψ1 − ψ2 −H(ψ1 − ψ2)) (x0, t0). Since, by assumption, one ofψ1 and ψ2 is Lip-
schitz continuous in space, we find by (3) and (6) with δ = 0 that one of |pxε | and
|pyε | is bounded. But, since pxε − p

y
ε → 0, both |pyε | and |pxε | remain bounded.

Thus we eventually find that

lim
ε→0

|pxε | (ψ1 −Hψ1) (x̂ε, t̂ε)− |pyε | (ψ2 −Hψ2) (ŷε, t̂ε) = 0. (13)

Putting (11)–(13) together leads to a contradiction. ut
2.13. Remark. This comparison principle immediately implies uniqueness of weak
viscosity solutions for Lipschitz continuous initial data, since the solutions con-
structed in 2.11 are uniformly Lipschitz continuous in space.

We use the comparison principle now to prove that the solution operator of
Theorem 2.9 is a contraction semi-group on L∞(�).
2.14. Corollary. Let ψ1 and ψ2 be two weak viscosity solutions as defined in 2.6
with Lipschitz continuous initial dataψ0,1 and ψ0,2, respectively. Then for all t > 0,

‖ ψ2(t)− ψ1(t) ‖L∞(�)5‖ ψ0,2 − ψ0,1 ‖L∞(�) .

Proof. SinceH1 = 1, we observe thatψ2+ ‖ ψ0,2−ψ0,1 ‖L∞(�) is a weak viscosity
solution with initial data ψ0,2+ ‖ ψ0,2 − ψ0,1 ‖L∞(�)= ψ0,1. The Comparison
Principle 2.12 yields

ψ2 − ψ1 =‖ ψ0,2 − ψ0,1 ‖L∞(�),

and by symmetry, we get the assertion. ut
2.15. Conclusion of the Proof of Theorem 2.9. So far, we have only established
that there exists a unique weak viscosity solution. Therefore it remains to show that
there also exists a proper viscosity solution. This time we approximate

ψt − σ tr

((
I − ∇ψ ⊗ ∇ψ

|∇ψ |2
)
D2ψ

)
+ |∇ψ |(ψ − q) = 0
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by choosing smooth function aδij such that

aδ(p) = 2δI + σ

∫
R2

|q| ηδ(p − q)dq for |p| 5 1
2 , (1)

where ηδ(p) := δ−2η(
p
δ
) with η ∈ C∞

0 (R
2), η = 0, and

∫
R2 η = 1. Further, we

assume that

aδij (p) = 2δδij + σ

(
δij − pipj

|p|2
)
,

∂la
δ
ij (p) = σ

(
− δilpj

|p| − δjlpi

|p| + 2
pipjpl

|p|4
) (2)

for |p| > 1. On the whole of R
2, we assume that aδ(p) = 2δI and aδij (p) →

δij − pipj/|p|2 for p |= 0. With this choice, we observe that

( lim
δ→0

)??(a
δ
ij (p)Xij ) =

((
δij − pipj

|p|2 Xij
)?
?

.

When passing to the limit as outlined in Lemma 6.1 of [5], this identity ensures
that we obtain a proper viscosity solution of our equation. We obtain the initial-
boundary-value problem

ψt − aδij (∇ψ)∂ijψ + fδ(∇ψ)(ψ −Hψ − q∞) = 0 in �×]0, T [,
∂νψ = 0 on ∂�×]0, T [, ψ = ψ0,δ in �× {0},

(3)

where fδ is smooth and satisfies

fδ(p) → |p|, fδ(p) = δ, fδ(0) = δ, fδ(p) = |p| for |p| = 1.

The initial data are chosen to satisfy ψ0,δ ∈ C∞(�) with ‖ ψ0,δ ‖C0,1(�)5
C(Λ) and ∂νψ0,δ = 0 on ∂�, and ψ0,δ → ψ0 uniformly on �. As before, this
problem admits a solution ψδ ∈ H 2+α,1+α/2(�T ) ∩ C∞

loc(�T ). Again as before,
one can establish

‖ ψδ ‖L∞(�T ), ‖ ∇ψδ ‖L∞(�T )5 C(Λ),

for 0 < δ < c0(Λ, T ).
Since this approximation does not maintain the partial divergence form of our

original equation, we have to proceed in a different way to estimate the time deriva-
tive of ψ . To this end, we differentiate (3) with respect to time, set γ := ∂tψ ∈
Hα,α/2(�T ) ∩ C∞(�T ) and obtain

γt − aδij (∇ψ)∂ij γ − ∂la
δ
ij (∇ψ)∂ijψ ∂lγ

+ ∂lfδ(∇ψ)(ψ −Hψ − q∞)∂lγ + fδ(∇ψ)(γ −Hγ ) = 0 in �×]0, T [,
∂νγ = 0 on ∂�×]0, T [.
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Certainly, this equation admits a maximum principle, and we conclude that

‖ ∂tψδ ‖L∞(�T )5‖ ∂tψδ(., 0) ‖L∞(�)5 C(Λ)(1+ ‖ ψ0,δ ‖C1,1(�)).

This yields existence of a solution for initial data ψ0 ∈ C1,1(�). Since according
to Corollary 2.14 the solution operator is an L∞ contraction, we obtain a solution
for all ψ0 ∈ C0,1(�), concluding the proof. ut
2.16. Proposition. Let ψ be as in Theorem 2.9. Then ψ(t) tends uniformly on� to
a stationary state.

Proof. From 2.9(1), we see that {ψ(t)}t=0 is uniformly bounded inC0,1(�). There-

fore, there exists a sequence tj → ∞, such that ψ(tj ) → ψ∞ uniformly on �. We
define ψj (t) := ψ(tj + t). These are solutions with initial data ψ(tj ). Certainly,
they satisfy the bounds 2.9(1). Hence they tend uniformly on �T for all T > 0 to
the solution ψ∞(.) with initial data ψ∞. We obtain

∫
�∞

|∂tψ∞|2 5 lim inf
j→∞

∫
�∞

|∂tψj |2 = lim inf
j→∞

∫ ∞

tj

∫
�

|∂tψ |2 = 0;

hence ψ∞(t) = ψ∞ for all t = 0, that is, ψ∞ is a stationary state. Since by
Corollary 2.14 the solution operator is an L∞-contracting semi-group, we have
that

‖ ψ(t)− ψ∞ ‖L∞(�)5‖ ψ(tj )− ψ∞ ‖L∞(�)→ 0 for t > tj ,

and hence get the convergence of the whole family. ut
2.17. Remark. Finally, the above results can be extended to the case of initial data
which are only continuous. Existence of solutions for continuous initial data is
immediate following Corollary 2.14.

Uniqueness and a comparison result are obtained as follows. Forψ0,1 5 ψ0,2 ∈
C0(�), we choose ψ0,i,ε ∈ C0,1(�) with ψ0,i,ε → ψ0,i in L∞(�) for i = 1, 2,
and without loss of generality we may assume that ψ0,1,ε 5 ψ0,1 5 ψ0,2 5
ψ0,2,ε. For two solutions ψi with initial data ψ0,i for i = 1, 2, we conclude from
Theorem 2.12 that ψ1,ε 5 ψ1 and ψ2 5 ψ2,ε, where ψi,ε are the unique solutions
Lipschitz continuous in space obtained above. First, if ψ0,1 = ψ0,2, we get from
Corollary 2.14 that ‖ ψ1 − ψ2 ‖L∞(0,T ;L∞(�))5‖ ψ1,ε − ψ2,ε ‖L∞(0,T ;L∞(�))5‖
ψ0,1,ε − ψ0,2,ε ‖L∞(�)→ 0, proving uniqueness. In any case, this implies that
ψi,ε → ψi uniformly on �T , hence ψ1 5 ψ2. Now the contraction principle
extends immediately.

Lastly, letψ be a solution with initial dataψ0. Again we chooseψ0,ε ∈ C0,1(�)

converging uniformly on � to ψ0 and consider the Lipschitz continuous in space
solution ψε with initial data ψ0,ε. From Corollary 2.14, we get for any ε that
‖ ψ(t)− ψ(s) ‖L∞(�)5 2 ‖ ψ0 − ψ0,ε ‖L∞(�) + ‖ ψε(t)− ψε(s) ‖L∞(�). Since
ψε(t) is a Cauchy family for all ε, we conclude that ψ(t) has a unique asymptotic
limit as t → ∞.
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3. Applications to the Mean-Field Model

3.1. The Mean-Field Model. Throughout this section we assume in addition that
� is simply-connected. In this case we study the relationship between the problem
2.1(1,2,3) and the two-dimensional mean-field model without curvature:

∂tω − ∇⊥(|ω|∇⊥ ·H ) = 0 in �×]0, T [,
ω × ν = 0 on ∂�×]0, T [,
ω = ω0 on �× {0}

−1H +H = ω in �, ∇⊥ ·H = 0 in �c, [H × ν] = 0 on ∂�,

∇ ·H = 0 in R
2,

H −H∞ ∈ L2(R2).

(1)

This is a hyperbolic-elliptic system of equations. In this section, we approximate
this system by introducing a viscosity and show that the limit is unique as the
viscosity tends to zero. The key point in this procedure is that ω and H can be
represented as curls if � is simply-connected.

3.2. Definition. We say that ω ∈ L1(�; R
2) is locally weakly divergence-free

(∇ · ω = 0 in �), if for all ϕ ∈ C1
0(�),∫
�

ω · ∇ϕ = 0.

3.3. Theorem. Letω0 ∈ L∞(�) be locally weakly divergence-free in� and letH∞
be locally divergence-free in R

2 and harmonic outside a ball. Then there exists a
unique solutionωδ ∈ L2(0, T ;H 1,2(�))∩L∞(�T ) andH δ ∈ L2(0, T ;H 1,2

loc (R
2))

of the system

∂tω − δ1ω − ∇⊥(|ω|∇⊥ ·H ) = 0 in �×]0, T [,
ω × ν = 0 on ∂�×]0, T [,
ω = ω0 in �× {0},

−1H +H = ω in �, ∇⊥ ·H = 0 in �
c
,

[H × ν] = 0 on ∂�, ∇ ·H = 0 in R
2,

H −H∞ ∈ L2(R2).

(1)

Moreover, (ωδ,H δ)δ has a unique weak? limit (ω,H ) in L∞(�T ) as δ tends to 0.

3.4. Remark. The essence of Theorem 3.3 is that the viscous approximation 3.3(1)
has a unique solution and a unique limit (ω,H ). We obtain uniqueness of ω in
identifying it with the curl of the unique solution ψ of 2.1(1). In addition, we may
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conclude that (ω,H ) satisfies the differential equations of 3.1(1). On this basis we
might define the unique zero-viscosity limit to be the solution of the hyperbolic-
elliptic system 3.1(1). But this is unsatisfactory since we do not know in which sense
the boundary conditions for ω are met. In addition, we cannot prove uniqueness of
weak solutions of 2.1(1), since this hyperbolic system only admits a small variety
of entropies, as we will point out in the next subsection. Entropies were introduced
in [11] to get unique entropy solutions for scalar hyperbolic equations.

3.5. Remark. We now examine the variety of entropies which are admitted by the
hyperbolic system 3.1(1). With ϕ := (−ω2,ω1), 3.1(1)1 takes the form

∂tϕ + ∇(|ϕ|V ) = 0,

or likewise

∂tϕi + ∂xj f
j
i (ϕ) = 0, (1)

where f ji (ϕ) = δij |ϕ|V for some V not depending on ϕ.
(η, q) is called an entropy pair (cf. [11]) if η is convex. Multiplying equation (1)

by ∂iη(ϕ) yields η(ϕ)t + ∂xj q
j (ϕ) = g(ϕ) for some g. Hence, with f (ϕ) = |ϕ|V ,

∂kq
j (ϕ)∂jϕk = ∂iη(ϕ)∂kf

j
i (ϕ)∂jϕk = ∂jη(ϕ)∂kf (ϕ)∂jϕk (2)

has to be satisfied.
If we require (2) to hold for any function ϕ, we get ∂kqj (ϕ) = ∂jη(ϕ)∂kf (ϕ).

Differentiating (2) with respect to ϕl and observing that f (ϕ) = |ϕ|V , we infer
that ∂jlη(ϕ)ϕk is symmetric in k and l, or likewise ∇∂jη(ϕ) · (−ϕ2, ϕ1) = 0, and
hence ∇η is rotationally symmetric. Differentiating, we conclude that ∂ij η(ϕ) =
ηj (|ϕ|)ϕi is symmetric in i and j . This is impossible unless η is affine.

From ∇ · ω = 0 now we get that ∇ϕ is symmetric, and (2) is satisfied for any
solution if the symmetric parts of ∂jqk and ∂jη∂kf coincide. For aij := ∂iη∂jf ,
this gives

∂1q1 = a11, ∂2q2 = a22, ∂1q2 + ∂2q1 = a12 + a21.

Differentiating, these equations yields

0 = ∂221q1 + ∂112q2 − ∂12(∂1q2 + ∂2q1) = ∂22a11 + ∂11a22 − ∂12(a12 + a21).

Recalling that aij = ∂iη∂jf , we get

∂11η∂22f + ∂22η∂11f − 2∂12η∂12f = 0.

Observing that f (ϕ) = |ϕ|V , we compute

∂11f = ϕ2
2

|ϕ|3V, ∂12f = −ϕ1ϕ2

|ϕ|3 V, ∂22f = ϕ2
1

|ϕ|3V.

Combining these equations yields

0 = ϕ2
1∂11η + ϕ2

2∂22η + 2ϕ1ϕ2∂12η = (ϕ1, ϕ2) ·D2η(ϕ1, ϕ2),
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and thus, up to a constant, η is homogeneous of degree 1. Therefore the system
3.1(1)1, 3 admits only a small variety of entropies. For example η(ϕ) := |ϕ− k| is
not part of an entropy pair, unless k is zero.

3.6. Proof of Theorem 3.3. First, we represent H∞ = ∇⊥q∞, and since H∞ is
only relevant near infinity, we assume that q∞ satisfies 2.3(2). Since � is simply-
connected, we can as well choose ψ0 ∈ C0,1(�) with ∇⊥ψ0 = ω0. Then the
system

ψt − δ1ψ − |∇ψ |(q − ψ) = 0 in �×]0, T [,
∂νψ = 0 on ∂�×]0, T [, ψ = ψ0 in �× {0},

−1q + χ�q = χ�ψ in R
2,

∇(q − q∞) ∈ L2(R2)

(1)

has a solution. This can easily be seen by approximating ψ0 and | · | smoothly and
passing to the limit. Moreover, as in the proof of Theorem 2.9, we can establish the
bounds

‖ ψδ ‖L∞(�T ), ‖ ∇ψδ ‖L∞(�T ), ‖ ∂tψδ ‖L2(�T )
, ‖ ψδ ‖

H
α, α2 (�T )

5 C, (2)

where C is independent of δ. The proof is even simpler, since now aδ(p) = δI is
independent of p. In defining ωδ := ∇⊥ψδ and H δ := ∇⊥qδ , we obtain a solution
of the system 3.3(1).

To prove uniqueness of this solution, we assume thatωi ∈ L2(0, T ;H 1,2(�))∩
L∞(�T ) are two solutions of 3.3(1) for i = 1, 2. We defineω := ω2−ω1 and H :=
H 2 −H 1. We want to useω as a test function in 3.3(1). To this end we approximate
ω by η = ηn with η ∈ C2

0 (�). Since ω× ν = 0 on ∂�, we may choose η with the
property that ∇⊥·η → ∇⊥·ω strongly in L2(�). Sinceω is weakly divergence-free
in �, we find that∫
�

∇ω · ∇η = −
∫
�

ω1η = −
∫
�

ω(∇⊥∇⊥ · η + ∇(∇ · η)) =
∫
�

∇⊥ · ω ∇⊥ · η.

Thus, if we use η as a test function and then pass to the limit, we obtain

1
2

∫
�

|ω(t0)|2 + δ

∫ ∫
�t0

|∇⊥ · ω|2

= −
∫ ∫

�t0

(
|ω2|∇⊥ ·H 2 − |ω1|∇⊥ ·H 1

)
∇⊥ · ω

5 C

(∫ ∫
�t0

|ω||∇⊥ · ω| +
∫ ∫

�t0

|∇⊥ ·H ||∇⊥ · ω|
)

5 1
2δ

∫ ∫
�t0

|∇⊥ · ω|2 + C(δ)

∫ ∫
�t0

(|ω|2 + |∇⊥ ·H |2),

(3)

since ωi and consequently H i are in L∞(�T ).
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Since H and ω are divergence-free in R
2 and �, respectively, we can write

H = ∇⊥q and ω = ∇⊥ψ , with ∇q ∈ L2(R2) since H ∈ L2(R2). After adding
appropriate constants, we get −1q+χ�q = χ�ψ in R

2 and
∫
�
ψ = 0. Multiply-

ing (3) by −1q and integrating the product yields∫
R2

|1q|2 +
∫

R2
|∇q|2 = −

∫
�

ψ1q.

After applying Cauchy’s inequality, we obtain∫
�

|∇⊥ ·H |2 =
∫
�

|1q|2 5
∫
�

|ψ |2 5 C

∫
�

|ω|2.

Using this estimate in (3) yields∫
�

|ω(t0)|2 5 C(δ)

∫ ∫
�t0

|ω|2;

hence Gronwall’s Lemma implies that ω = 0, thereby implying uniqueness.
Certainly, (ωδ,H δ)δ has a subsequence converging in the weak? topology of

L∞(�T ), and the limit (ω,H ) is uniquely determined by (ω,H ) = (∇⊥ψ,∇⊥q),
where (ψ, q) is both the limit of (ψδ, qδ)δ and the unique viscosity solution of
2.1(1,2,3) for σ = 0. ut

4. Special Solutions of the Stationary Problem

4.1. The Stationary Problem. In this section we assume that σ = 0 and that � is
bounded. We construct special solutions to the stationary problem corresponding
to 2.1(1),(3), i.e.,

|∇ψ | (q − ψ) = 0 in �,

−1q + χ�q = χ�ψ in R
2,

∇ (q − q∞) ∈ L2(R2).

(1)

In view of the regularity of the time-dependent solutions, we will look for a Lipschitz
continuous ψ .

The domain � is decomposed into sets, where either q = ψ or ∇ψ = 0. We
set C0 := {q = ψ} ∩�. This set is relatively closed in �. The complement �\C0
is thus open, and since q |= ψ there, we find ∇ψ = 0 in this set. Thus on any
connected component�i of�\C0 we find thatψ has a constant value ci . We know
that �i ∩�j = ∅ if i |= j . Now, �i ⊂ � leads to a contradiction: We observe that
−1q + (q − ci) = 0 in�i , and since ∂�i ⊂ C0 ∩�i , we find that q = ψ = ci on
∂�i . This implies that q = ci = ψ in �i , which contradicts the definition of �i .
Hence we have shown that ∂�i ∩ ∂� |= ∅.
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We now want to construct special solutions that admit a functional dependence
of ψ on q, which is consistent with (1), i.e., we seek solutions that satisfy

ψ = q − f (q) in �,

−1q + f (q)χ� = 0 in R
2,

∇ (q − q∞) ∈ L2(R2).

(2)

For such a solution (1)1 reads (f ′(q)− 1)f (q)|∇q| = 0. We therefore set

f (q) := fαβ(q) := (q − α)− + (q − β)+

with −∞ 5 α < β 5 +∞. For a solution q of (2) we define the superconducting
phases

�− := {q < α} ∩�, �+ := {q > β} ∩�.
Then ψ = α in �−, ψ = β in �+ and α 5 q 5 β in �\(�− ∪�+).

We finally point out that there are solutions of (1) which do not satisfy (2): since
1q = 0 outside�, we may vary� without changing the solution as long as we do
not change ∂� ∩ �±. But, since ∂� ∩ �± |= ∂�, this allows us to enlarge � so
that α 5 q 5 β in �\(�− ∪�+) is violated.

We now prove existence of such solutions. In particular, we show that for certain
values of α and β there exist solutions which have one or two nonempty phases.
The properties of the solution depend on the applied field q∞, which we assume to
be normalized as in 2.3(a) (cf. 2.4 as well).

4.2. Proposition. (a) If
∫
R2 1q∞ > 0, then for all −∞ 5 α < β < +∞, there

exists a unique solution q ∈ H1,2
loc (R

2) of (4.1(2)). q ∈ H
3,p
loc (�) ∩ H2,p

loc (R
2) for

any 1 5 p < ∞ and ψ ∈ C0,1(�). Moreover �+ |= ∅.
If {q∞ < 0} ∩ � |= ∅, then there exists a positive constant c0(q∞, �), such

that

�− |= ∅ for all β − α < c0, �− = ∅ for all β − α = c0.

If q∞ = 0 in �, then

�− = ∅ for all α < β.

(b) If
∫
R2 1q∞ < 0, then similar statements hold for −∞ < α < β 5 +∞.

(c) If
∫
R2 1q∞ = 0, then for all −∞ < α < β < +∞ there exists a solution

q ∈ H1,2
loc (R

2) of (4.1(2)). This solution satisfies the same regularity properties as
in (a). In addition, β − α < osc� q̂∞ implies that �−, �+ |= ∅ and implies the
uniqueness of q, whereas β − α = osc� q̂∞ implies that q = q̂∞ + const, where
q̂∞ is harmonic in R

2 with ∇(q̂∞ − q∞) ∈ L2(R2) (cf. Remark 2.4).

Proof. Assume first that −∞ < α < β < ∞. We solve 4.1(2) by minimizing

Eα,β(q) := 1
2

∫
R2

|∇(q − q∞)|2 +
∫
�

Fαβ(q)
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over q ∈ q∞ +X, whereX is as in Lemma 2.2 and where Fαβ(q) := 1
2 (q−α)2− +

1
2 (q − β)2+ − q · q∞. This functional is bounded below by −C(�, q∞) and, since
q∞ is admissible with Eα,β(q∞) < ∞, there exists a minimizing sequence qn.
Obviously for a subsequence ∇(qn − q∞) → ∇(q − q∞) weakly in L2(R2) and
(qn−q∞) → (q−q∞) strongly in L2

loc(R
2). Thus passage to the limit implies that

q is a minimizer and consequently satisfies 4.1(2). In deriving the Euler-Lagrange
equation we used the normalization −1q∞ +q∞χ� = 0. Elliptic regularity theory
then implies that q ∈ H 3,p

loc (�) ∩ H2,p
loc (R

2). Integration of 4.1(2) gives∫
�−
(q − α)+

∫
�+
(q − β) =

∫
R2
1q∞. (1)

Proof of (a). Now assume that
∫
R2 1q∞ > 0 and −∞ < α < β < +∞. Then (1)

implies |�+| > 0. Uniqueness of the solution follows, since fαβ is monotone and
since |�+| |= 0.

In order to obtain a solution for −∞ = α we study the limit α → −∞, and
in order to understand the existence of the �−-phase, we study the limit α → β.
Thus we need several a priori estimates of the solution which are independent of α.

First we observe that by 2.3(5) and 2.3(4),

q∞ + α 5 q = q∞ +H(q − fα,β(q)) 5 q∞ + β. (2)

Next we multiply 4.1(2) by q − q̃∞, where q̃∞ is a solution of −1q̃∞ =(− 1
|�|
∫
R2 1q∞

)
χ� with ∇(q̃∞ − q∞) ∈ L2(R2) (cf. Remark 2.4). Evaluating all

terms, we obtain∫
R2

|∇(q − q̃∞)|2 +
∫
q5α,q5q̃∞

(q − α)(q − q̃∞)+
∫
q̃∞5q5α

(q − α)(q − q̃∞)

+
∫
q̃∞=q=β

(q − β)(q − q̃∞)+
∫
q=β,q=q̃∞

(q − β)(q − q̃∞)

= 1

|�|
(∫

R2
1q∞

)(∫
q=q̃∞

(q − q̃∞)+
∫
q<q̃∞

(q − q̃∞)
)
.

We now observe that we may estimate the modulus of the third and the forth terms
of the left-hand side by C(�, q∞, β), by using that |{q̃∞ 5 q 5 α}| = 0 when
α < min q̃∞. The first term of the right-hand side admits an estimate of the same
type, by using (2). All the other terms have the proper sign. We eventually find that∫

R2
|∇(q − q̃∞)|2 5 C(�, q∞, β). (3)

We now use a subscript to indicate dependence on α. Then the derivative qα,α ∈
X ∩H 2,p(�) and we may differentiate 4.1(2) with respect to α to obtain

−1qα,α + (qα,α − 1)χ�α− + qα,αχ�α+ = 0.

By the weak maximum principle we obtain qα,α = 0 and qα,α − 1 5 0.
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We may as well show the monotonicity of qα and qα − α by the following
direct argument, avoiding differentiation with respect to α. Let q := qα′ − qα with
α′ > α. Then

0 = −1q + (
fα′,β(qα′)− fα,β(qα)

)
χ� 5 −1q + (

fα,β(qα′)− fα,β(qα)
)
χ�.

Since fα,β is monotone, multiplication by q− and integration implies that q− is
a nonpositive constant. But if this constant is different from 0, then q itself is a
negative constant. Again using the equation for q, we obtain a contradiction since
�α+ |= ∅. Thus

qα′ = qα for all α′ = α. (4)

Similarly we find that

qα′ − α′ 5 qα − α for all α′ = α. (5)

We now first consider α → −∞.
Due to (4) we have �α+ ⊂ �α

′
+ if α 5 α′, and thus limα→−∞�α+ =: �−∞+

exists. Using (1) and (2) we obtain
∫
�−∞+ q∞ =

∫
R2 1q∞. Thus |�−∞+ | |= 0. We

conclude that β 5 qα 5 q∞ + β in �−∞+ , and combining this with (3) we find a
subsequence α → −∞ with ∇(qα − q∞) → ∇(q−∞ − q∞) weakly in L2(R2)

and qα → q−∞ strongly in any Lp(�) and almost everywhere. We conclude that
fα,β(qα) → f−∞,β(q−∞). Thus this approximation procedure leads to a solution
of 4.1(2) for α = −∞. This limit is unique since |�−∞+ | |= 0.

Next we study α → β.
By (2), qα converges uniformly in R

2 to a solution q of 4.1(2) with α = β. By
Remark 2.3(5), q = q∞ +Hβ = q∞ + β.

Now, if {q∞ < 0} ∩� = {q − β < 0} |= ∅, then for some positive c̃0(q∞, �)
we have {qα−β < −c̃0}∩� |= ∅ for all β−α 5 c̃0. Since qα−α < β−α− c̃0 5 0
in {qα − β < −c̃0} ∩ � for all β − α 5 c̃0, we have shown that �α− |= ∅. Since
�α− ⊂ �α

′
− for α′ = α by (5), there thus exists a positive critical number c0(q∞, �),

such that �α− |= ∅ for β − α < c0 and �α− = ∅ for β − α = c0.
If, to the contrary, q∞ = 0 in�, then q−β = 0. Due to (5), we have qα −α =

q − β = 0 and we find that �α− = ∅.
This finishes the proof of (a). For (b) we argue in a similar way.

Proof of (c). Now, let
∫
R2 1q∞ = 0 and −∞ < α < β < +∞. Then by Remark

2.4 a function q̂∞ as in (c) exists and is unique up to the addition of a constant.
If now β − α < osc� q̂∞, then |�−|, |�+| = 0 implies that q = q̂∞ + const.
and osc� q 5 β − α. Thus osc� q̂∞ = osc� q 5 β − α < osc� q̂∞. This is a
contradiction. We conclude that either |�−| or |�+| is different from 0. But in this
case, (1) implies that both sets have positive measure. If β − α = osc� q̂∞, then
q = q̂∞ + const.

4.3. Remark. The free boundary of the solution q of 4.1(1) has the following
regularity property: the set {x ∈ R

2 : q(x) = α, ∇q(x) = 0} locally consists of
finitely many points. The same applies for the free boundary q = β.
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This result is due to Caffarelli & Friedman [1]. They show that if u has
a bounded gradient in B1(0) ⊂ R

2 and satisfies |1u| 5 C1|u| +C2|∇u| in B1(0),
then {x ∈ B1−η(0) : u(x) = 0, ∇u(x) = 0} is finite for any 0 < η < 1.

This result applies in our case, since1q = fα,β(q)χ�, and |fα,β(q)| 5 |q−α|
in some neighbourhood of any point x0 with q(x0) = α. The latter observation is
true because q ∈ H2,p

loc (R
2) and thus q is continuous. In addition, ∇q is locally

bounded.

4.4. Remark. We remark that it is possible to construct solutions of 4.1(1) which
have more than two constant phases. To this end let D1 and D2 be two nonempty,
bounded domains in R

2 with disjoint closures, and let −∞ < α1 < β1 < +∞
and −∞ < α2 < β2 < +∞ be two choices of threshold values. Then there exists
q ∈ H1,2

loc (R
2), unique up to a constant, with ∇(q − q∞) ∈ L2(R2) and

−1q + fα1,β1(q)χD1 + fα2,β2(q)χD2 = 0. (1)

The proof follows the same lines as the existence proof of Proposition 4.2.
Now assume that

∫
R2 1q∞ = 0. We fix D1 and choose β1 − α1 < oscD1 q̂∞,

where q̂∞ is as in Proposition 4.2. We define q1 to be the solution of 4.1(2) with
� = D1. Then by Proposition 4.2 we find that {x ∈ D1 : q1 < α1} and {x ∈ D1 :
q1 > β1} are nonempty.

Next we choose D2 with D1 ∩D2 = ∅. We set α2 := infD2 q1 and we choose
β2 < supD2

q1. Then necessarily either �2− := {x ∈ D2 : q < α2} or �2+ :=
{x ∈ D2 : q > β2} is nonempty, since otherwise α2 5 q 5 β2 and thus
fα2,β2(q)χD2 = 0 and q = q1, which is impossible by the choice of β.

Now, if β2 → supD2
q1, then q → q1 locally uniformly. This follows by

similar arguments as in the last part of the proof of Proposition 4.2. Since q1 has
two nonempty phases in D1, this then implies that �1− := {x ∈ D1 : q < α1} and
�1+ := {x ∈ D1 : q > β1} are nonempty, if only β2 is close enough to supD2

q1.
In consequence, we have constructed a solution of 4.1(1) which has at least

three superconducting phases, i.e., domains where ψ takes constant values.
At the moment the domain D1 ∪ D2 occupied by the superconductor is not

connected. But we may even construct a connected �, for which q as above is a
solution of 4.1(1). The idea is that since −1q = 0 in Di\(�i− ∪ �i+) (i = 1, 2)
as well as in the complement of D1 ∪ D2, we may change the domain without

changing the solution. Since both ∂Di ∩ (�i− ∪�i+) (i = 1, 2), contain parts of a
graph, we may connect D1 ∪ D2 by a handle and q is also a solution of 4.1(1) in
the enlarged domain D1 ∪D2 ∪ handle.

5. Conclusion

We have studied a degenerate parabolic-elliptic system arising in the mean-field
theory of superconducting vortices. The model is two-dimensional with all vortices
perpendicular to a given direction and is formulated in terms of a scalar magnetic
potential q and a scalar stream function ψ . The equation for ψ is similar to the
level-set formulation of the mean-curvature flow, though in the right-hand side the
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coupling to the magnetic field occurs in the form of a nonlocal operator in terms of
ψ . Nevertheless it was possible to construct unique viscosity solutions in the case
of both vanishing and non-vanishing curvature coefficient σ .

For the fully three-dimensional equations this approach does not seem to be
appropriate, since then the magnetic potential and the stream function are vector-
valued.

Next, in the case of vanishing curvature coefficient σ , we related the model
formulated in terms of q and ψ to the original mean-field model formulated in
terms of the magnetic fieldH and the vorticity ω. We showed that this hyperbolic-
elliptic system admits a unique “viscous” solution (i.e., a solution obtained by a
viscous approximation). However, due to the lack of entropies, we cannot prove in
general the uniqueness of any weak solution.

Finally, we constructed special solutions of the corresponding stationary prob-
lem, assuming a functional dependence of ψ on q.
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