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Finite element analysis of a current density–electric field formulation of
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We study a current density–electric field formulation of Bean’s model for the experimental set-up of an
infinitely long cylindrical superconductor subject to a transverse magnetic field. We introduce a fully
practical finite-element approximation of the model and prove an error between the exact solution and the
approximate solution for the current density of order(h + ∆t)1/2. Numerical simulations for a variety of
given source currents are presented.
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1. Introduction

In this paper we consider a critical state model for type-II superconductors formulated in terms of
the current density and the electric field intensity. The physical setting is that of an infinitely long
cylinder of type-II superconducting material subject to an applied transverse magnetic field. We take
the cylindrical superconductor to occupy the regionD = Ω × R, whereΩ is a bounded simply
connected domain inR2 that denotes the cross section of the superconductor. In this set-up the current
densityJ = (0, 0,J (x, t)) lies parallel to the axis of the cylinder. Surrounding the superconductor
we have cylindrical sources of currentDw = Ωw × R, such thatΩw = ∪k

i=1Ωwi , where eachΩwi is
a simply connected bounded domain inR

2, see Fig. 1. In this region we apply a given source current
Js = (0, 0, Js(x, t)) and outside ofD ∪ Dw the current is zero.

An evolutionary variational inequality formulation of the model involving the current densityJ was
derived and analysed by Prigozhin (1996a,b, 1997). In these works a numerical method was developed
and computations presented. Engineering applications of this approach, relating to the modelling of
superconducting induction motors, may be found in Barneset al. (1999, 2000).

In a recent paper (Elliottet al., 2004) we gave a finite-element approximation of the model and
proved error estimates between the exact solution and the approximate solution for the current density
and the magnetic field. As observed by Bossavit (1994b), Bean’s critical state model can be formulated
as a degenerate Stefan problem; see also Maslouhet al. (1997) and Prigozhin (1997). In this paper we
study a Stefan problem involving the current density and the electric field equivalent to the variational
inequality. We formulate the model in Section 2 and state the relationship between solutions of the model
and the unique solution of the variational inequality studied in Elliottet al. (2004). In Sections 3 and
4 respectively we consider continuous in time and fully discrete finite-element approximations of the
model. We show an error estimate between the exact solution of the model and the solution of the fully
discrete model. We observe that the discretizations of the variational inequality and Stefan problems are
equivalent. The error bound in this paper is for a practical fully discrete scheme involving numerical
integration in the nonlinear term and this differs from the fully discrete discretization analysed in Elliott
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FIG. 1. Infinitely long superconducting cylinder and copper windings.

et al. (2004). In Section 5 we present a Gauss–Seidel iteration to solve the fully discrete approximation
and we show the convergence of this iteration. Finally, in Section 6 we present some numerical results
and in Section 7 we make some concluding remarks.

2. Formulation of the model

Weuse the eddy current form of Maxwell’s equations (see Bossavit, 1998) given by

∂t B + curl E = 0 in R
3 × [0, T ] (2.1)

curl H = J in R
3 × [0, T ] (2.2)

∇ · B = 0 in R
3 × [0, T ], (2.3)

whereB is the magnetic flux density,E is the electric field,J is the current andH is the magnetic field.
Weassume that the fieldsB andJ are independent ofx3 and thatB = (B1, B2, 0). Here

J = J + Js

where

J = (0, 0, J ) ≡ 0 in R
3\D × [0, T ]

Js = (0, 0, Js) ≡ 0 in R
3\Dw × [0, T ].

Weassume thatH ∼ 0 asx ∼ ∞ and impose, using (2.2),∫
R2

(J + Js) = 0.

Inside the superconductor the electric field intensity is related to the current density by a constitutive
relation which is a critical state form of Ohm’s law:

E = (0, 0, E) E(x, t) ∈ β(J (x, t)), (2.4)
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whereβ(·) is the multi-valued maximal monotonic mapping defined by, forr ∈ [−Jc, Jc],

β(r) =



(−∞, 0] if r = −Jc

0 if |r | < Jc

[0, ∞) if r = Jc

(2.5)

with Jc being the critical current magnitude.

REMARK Note that inR3\(D∪Dw) the conductance is taken to be zero so thatJ = 0 in R
3\(D∪Dw).

Also, sinceJ is prescribed inDw, it is only appropriate to apply a constitutive relation (such as Ohm’s
law) betweenE andJ in the superconductor, see Bossavit (1998).

Weassume a linear constitutive law

B = µH (2.6)

where the permeabilityµ is piecewise constant in space, possibly taking different values inD, Dw and
R

3\(D ∪ Dw).
Using (2.3) we have the existence of a magnetic potentialA satisfying

B = curl A, (2.7)

and recalling thatB = (B1(x1, x2), B2(x1, x2), 0) we may chooseA = (0, 0, A(x1, x2)). Using (2.2),
(2.6) and (2.7) we have

J = curl

(
1

µ
curl A

)
in R

3 × [0, T ] (2.8)

which implies for our choice ofA that

J + Js = −∇ ·
(

1

µ
∇ A

)
in R

2 × [0, T ]. (2.9)

Wefix the magnetic potentialA by setting

A = G (J + Js) (2.10)

where the operatorG is the unique solution operator of the following problem.
Givenη with compact support and satisfying

∫−η = 0, findGη such that

−∇ ·
(

1

µ
∇Gη

)
= η in R

2

∇Gη ∼ 0 asx ∼ ∞,

∫
Ω
Gη = 0

and ∫
−η := 1

|suppη|
∫

R2
η.
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REMARK If µ is constant then

Gη(x) = − µ

2π

∫
R2

ln |x − x ′|η(x ′)dx ′ + µ

2π

∫
−

∫
R2

ln | · −x ′|η(x ′) dx ′. (2.11)

From (2.1) and (2.7) we have

curl (∂t A + E) = 0 in R
3 × [0, T ] (2.12)

⇒ E + ∂t A + ∇ψ = 0 in R
3 × [0, T ]. (2.13)

Using (2.13) and noting (2.4) it follows that inside the superconductorψ = λ(t)x3 and hence

E + G(∂t J + ∂t Js) + λ(t) = 0 in Ω × [0, T ]. (2.14)

REMARK Equation (2.14) together with (2.4) yields a well defined problem for{E, J } inside the
superconductor, that has a unique solution forJ , see Proposition 2.1.

Wenow extendE so that (2.14) holds everywhere inR
2. Hence we have that

∂t J − div

(
1

µ
∇E

)
= −∂t Js (2.15)

holds in the sense of distributions on the space–time cylinderR
2 × (0, T ).

This system has the initial condition

J (x, 0) = J0(x) x ∈ R
2 and

∫
− (J0(·) + Js(·, 0)) = 0,

whereJ0(x) = 0 for x /∈ Ω and we impose the boundary condition

∇E ∼ 0 asx ∼ ∞.

Wesuppose that

Js ∈ H2(0, T ; L2(R2)), Js(x, ·) = 0 for a.e.x ∈ R
2\Ωw,

∫
Ωw

Js(·, t) = 0

and we seek a weak solution defined in the following way.
(P) Find J ∈ L∞(R2 × (0, T )) andE ∈ L2(0, T ; H1

loc(R
2)) such that

∫ T

0

∫
R2

(
−J∂tη + 1

µ
∇E · ∇η

)
dx dt = −

∫ T

0

∫
R2

∂t Jsη dx dt +
∫

R2
J0(x)η(x, 0) dx (2.16)

for all
η ∈ J := {η ∈ H1(0, T ; L2(R2)) : ∇η ∈ L2(0, T ; R

2), η(·, T ) = 0}
where

J (x, t) = 0 for a.e.(x, t) /∈ Ω × (0, T )
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and

|J (x, t)| � Jc and E(x, t) ∈ β(J (x, t)) for a.e.(x, t) ∈ Ω × (0, T ). (2.17)

Wecan reformulate (2.17) as

J (·, t) ∈ K ,

∫
Ω

E(η − J ) dx � 0 for a.e.t ∈ (0, T ), ∀ η ∈ K

with

K := {η ∈ L2(Ω) : |η| � Jc}.
REMARK Differentiating (2.8) with respect to time and using (2.12) yields an equation with the
following third component:

∂t (J + Js) = −∂x1

(
1

µ
∂x3 E1

)
+ ∂x1

(
1

µ
∂x1 E3

)
+ ∂x2

(
1

µ
∂x2 E3

)
− ∂x2

(
1

µ
∂x3 E2

)
.

If E is independent ofx3 we obtain (2.15). Furthermore, since∂t B ∼ 0 at ∞ we have from (2.1) that
∇E ∼ 0 at∞. In this caseE is the third component of the electric field outside the superconductor as
well. Otherwise, the functionE solving (2.15) is only the electric field inside the superconductor.

2.1 Reduction to a bounded domain

It is convenient to work on a bounded domainBR which is a ball of radiusR such thatΩ ∪ Ωw ⊂ BR

andµ is constant outsideBR . Weobserve that forv being harmonic outsideBR and∇v ∈ L2(R2),

∫
R2

1

µ
∇v · ∇η =

∫
BR

1

µ
∇v · ∇η +

∫
∂ BR

1

µ
B(v)η ∀ η ∈ H1(R2)

whereB : H1/2(∂ BR) → H−1/2(∂ BR) is the Dirichlet to Neumann map,

B(v)

∣∣∣
∂ BR

:=
∞∑

k=1

1

π R

∫ 2π

0

∂vγ

∂φ
sink(φ − θ) dφ

wherevγ is the trace ofv on ∂ BR . It isuseful to introduce the bilinear forms

(ξ, η) :=
∫

BR

ξη, a(ξ, η) :=
(

1

µ
∇ξ, ∇η

)
,

b(ξ, η) :=
∫

∂ BR

1

µ
B(ξ)η, A (ξ, η) := a(ξ, η) + b(ξ, η).

Forω = BR, Ω or Ωw we set ∫
ω

− η = 1

|ω|
∫

ω

η dx
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and

H1
e (BR) :=

{
ξ ∈ H1(BR) :

∫
Ω

− ξ = 0

}
F := (H1

e (BR))′

L2
Ω (BR) :=

{
η ∈ L2(BR) : η = 0 for a.e.x /∈ Ω

}
L2

0(BR) :=
{
η ∈ L2(BR) :

∫
BR

− η = 0

}

L2
0,Ω (BR) := {η ∈ L2

0(BR) : η = 0 for a.e.x /∈ Ω}
L2

0,Ωw
(BR) := {η ∈ L2

0(BR) : η = 0 for a.e.x /∈ Ωw}
KΩ := {η ∈ L2

Ω (BR) : |η| � Jc onΩ}
K0,Ω := {η ∈ L2

0,Ω (BR) : |η| � Jc onΩ}.
Problem(P) may be rewritten as follows.
(PR) Find J ∈ L∞(0, T ; K0,Ω ) ∩ H1(0, T ;F) andE ∈ L2(0, T ; H1(BR)) such that∫ T

0
[(−J , ∂tξ) + A (E, ξ)] dt =

∫ T

0
(−∂t Js, ξ) dt + (J0, ξ(·, 0)) (2.18)

for all
ξ ∈ JR := {ξ ∈ H1(0, T ; L2(BR)) ∩ L2(0, T ; H1(BR)), ξ(·, T ) = 0}

and

(E, η − J ) � 0 ∀ η ∈ KΩ , for a.e.t ∈ (0, T ). (2.19)

Also useful for the analysis is the Green operator

G : L2
0(BR) → V0 :=

{
ξ ∈ V :

∫
Ω

− ξ = 0

}

defined as the unique solution operator of the following.
Forη ∈ F find Gη ∈ H1

e (BR) such that

A(Gη, ξ) = 〈η, ξ〉 ∀ ξ ∈ H1(BR) (2.20)

where〈·, ·〉 denotes the duality pairing betweenH1
e (BR) and(H1

e (BR))′. Note that

〈η, ξ〉 = (η, ξ) ∀ η ∈ L2
0(BR).

If η ∈ L2
0(BR), thenGη can be extended to all ofR2 as the unique solution of∫

R2

1

µ
∇Gη · ∇ξ dx =

∫
BR

ηξ dx ∀ ξ ∈ V (2.21)

where
V :=

{
η ∈ L2

loc(R
2) : ∇η ∈ L2(R2)

}
.
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This is the GreenG operator defined earlier when suppη is included inBR .
Wedefine the semi-norm and the norm

|η|2A := A (η, η) ∀ η ∈ H1(BR)

||η||F = ||η||A−1 := |Gη|A ∀ η ∈ F

and we set
|η|0,ω := ||η||L2(ω), |η|1,ω = ||∇η||L2(ω), ||η||1,ω = ||η||H1(ω).

From Han & Wu (1985) we have thatA(·, ·) is continuous with respect to theH1(BR) norm

|A (ξ, η)| � C ||ξ ||1,BR ||η||1,BR

and also (note thatA (η, 1) = 0, η ∈ H1(BR))

(ξ, η) = A (Gξ, η) � |Gξ |A|η|A = ||ξ ||A−1|η|A ∀ ξ ∈ L2
0(BR), η ∈ H1(BR).

Henceforth, for convenience of notation we setf := −∂t Js ∈ H1([0, T ]; L2
0,Ωw

(BR)).
We introduce the following problem.
(QR): Find J such that

J ∈ L∞(0, T ; K0,Ω ) ∩ C([0, T ;F]), ∂t J ∈ L2(0, T ;F) (2.22)

satisfying, for anyτ ∈ [0, T ],∫ τ

0
(∂t G J, η − J ) dt �

∫ τ

0
(G f, η − J ) dt ∀ η ∈ L2(0, T ; K0,Ω ) (2.23)

J |t=0 = J0.

PROPOSITION 2.1 Let Js ∈ H1(0, T ;F) and J0 ∈ K0,Ω . If (J, E) is a solution of(PR) then J is
unique andE is unique up to an additive function of time. Furthermore,J is the unique solution of
(QR).

Proof. From (2.18) and (2.20) we have

E = G( f − ∂t J ) + λ(t) for a.e.t ∈ (0, T )

whereλ(t) is space independent. The variational inequality (2.23) then follows from (2.19). �

REMARK One can view (2.15) as a degenerate Stefan (or two phase Hele-Shaw) problem (Elliott &
Ockendon, 1982), with the constitutive relation onΩ

J ∈ JcsignE

as observed by Prigozhin (1997). Viewing it as a free boundary problem one has the decomposition of
Ω , see Fig. 2:

Ω+(t) := {x ∈ Ω : J (x, t) = Jc}
Ω−(t) := {x ∈ Ω : J (x, t) = −Jc}
Ωo(t) := {x ∈ Ω : |J (x, t)| < Jc}
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FIG. 2. Decomposition ofΩ .

where

∆E = 0, E(x, t) > 0 in Ω+(t)

∆E = 0, E(x, t) < 0 in Ω−(t)

E(x, t) = 0 in Ωo(t).

SinceJ is unique, the setsΩ+(t), Ω−(t) andΩo(t) are unique. Hence, ifΩo(t) is a non-empty open
set thenE is unique. Furthermore, since

∫
Ω J = 0 it follows that even ifΩo(t) is empty thenΓ (t) =

∂Ω+(t)∩∂Ω−(t) is non-empty and continuity ofE would imply thatE is unique. Thus one conjectures
that E solving(PR) is unique.

3. Finite-element approximation

3.1 Notation

In this section we consider a finite-element approximation of(PR). Wemake the following assumptions
on the partitioning.

Let T h be a quasi-uniform partitioning ofBR into disjoint open simplicial elementsκ ∈ T h such that
∪κ∈T h κ = B R andh is the largest diameter of the elementsκ in T h . Furthermore if̄κ∩(∂Ω∪∂Ωw∪∂ BR)

is non-empty then the intersection consists of either one vertex ofκ or one curved edge ofκ. There exist
subsetsT h

ω ⊂ T h such that∪
κ∈T h

ω
κ̄ = ω̄ with ω = BR, Ω or Ωw.

Associated withT h are the finite-element spaces

Sh(≡ Sh
BR

) :=
{
η ∈ C(BR) : η|κ is linear∀ κ ∈ T h

}

Sh
0 := {η ∈ Sh : (η, 1)h = 0}

Sh
e :=

{
η ∈ Sh :

∫
Ω

η = 0

}

Sh
Ω := {η ∈ L2(BR) : η ∈ C(Ω) : η|κ is linear∀ κ ∈ T h

Ω , η|BR\Ω = 0}
Sh
Ωw

:= {η ∈ L2(BR) : η ∈ C(Ωw) : η|κ is linear∀ κ ∈ T h
Ωw

, η|BR\Ωw
= 0}

Sh
0,Ω :=

{
η ∈ Sh

Ω :
∫

BR

− η = 0

}

Sh
0,Ωw

:=
{
η ∈ Sh

Ωw
:
∫

BR

− η = 0

}
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K h
Ω := {η ∈ Sh

Ω : |η| � Jc}
K h

0,Ω := {η ∈ Sh
0,Ω : |η| � Jc}

where

(η1, η2)
h :=

∑
κ∈T h

ω

∫
κ

Π h(η1η2) dx, ηi ∈ Sh
ω := Sh

BR
, Sh

Ω , Sh
Ωw

andΠ h is the standard linear interpolant which interpolates continuous functions at the vertices ofκ.
Observe thatSh

e ⊂ H1
e (BR) since

(η, 1)h = (η, 1) ∀ η ∈ Sh ∪ Sh
Ω ∪ Sh

Ωw
.

For ξ, η ∈ Sh
ω we define

I h(ξ, η) := (ξ, η) − (ξ, η)h

and we note the well known result

|I h(ξ, η)| = |(ξ, η) − (ξ, η)h | � Ch2|ξ |1,ω|η|1,ω � Ch|ξ |1,ω|η|0,ω. (3.1)

Analogous to (2.20) it is convenient to introduce the operatorGh : L2
0(BR) → Sh

e such that for any
ξ ∈ L2

0(BR), Ghξ ∈ Sh
e is the unique solution of

A(Ghξ, ψ) = (ξ, ψ) ∀ ψ ∈ Sh . (3.2)

Forη ∈ L2
0(BR) we set

‖η‖A−h :=
∥∥∥Ghη

∥∥∥
A

= (η, Ghη)1/2 ∀η ∈ L2
0(BR)

and we note that

(Ghξ, ψ) = (ξ, Ghψ) ∀ ξ, ψ ∈ L2
0(BR) (3.3)

and that

(ξ, ψ) � C ‖ξ‖A−h |ψ |A ∀ ψ ∈ Sh, ξ ∈ L2
0(BR). (3.4)

Standard finite-element estimates, see Han & Wu (1985), yield∣∣∣(G − Gh)η

∣∣∣
0,BR

+ h
∣∣∣(G − Gh)η

∣∣∣
1,BR

� Ch2|η|0,BR
∀ η ∈ L2

0(BR). (3.5)

It is easy to see that

|Ghη|A � |Gη|A ∀ η ∈ L2
0(BR) (3.6)

and since
|η|20,BR

= A(Gη, η) � C |Gη|A||η||1,BR ∀ η ∈ Sh
0

astandard inverse inequality yields

|η|0,BR � Ch−1|Gη|A ∀ η ∈ Sh
0 , (3.7)

which implies, using the error bound (3.5),

|Gη|A � C |Ghη|A ∀ ψ ∈ Sh
0 . (3.8)
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3.2 Continuous in time discretization

Wenow introduce a continuous in time finite-element approximation of(PR):
For J 0

h ∈ K h
0,Ω and fh(·, t) ∈ Sh

0,Ωw
satisfying

∫ T

0

∣∣∣Gh fh

∣∣∣2
A

� C (3.9)

we have the following.
(Ph

R) Find for t ∈ (0, T ], Jh(·, t) ∈ K h
0,Ω andEh(·, t) ∈ Sh such that

(∂t Jh, ψ) + A(Eh, ψ) = ( fh, ψ) ∀ ψ ∈ Sh (3.10)

Jh(x, 0) = J h
0 (x) ∀ x ∈ Ω (3.11)

(Eh(·, t), η − Jh(·, t)) � 0 ∀ η ∈ K h
Ω , ∀ t ∈ (0, T ]. (3.12)

Forχ ∈ Sh
0 , settingψ = Ghχ in (3.10) and noting (3.12) yields the following variational formulation

of (Ph
R).

(Qh
R) Find Jh ∈ L∞(0, T ; K h

0,Ω ) such that

(
∂t G

h Jh, χ − Jh

)
�

(
Gh fh, χ − Jh

)
∀ χ ∈ K h

0,Ω . (3.13)

PROPOSITION 3.1 If (Jh, Eh) is a solution of(Ph
R) thenJh is unique andEh is unique up to an additive

function of time. Furthermore,Jh is the unique solution of(Qh
R).

Proof. This follows by using the arguments presented in the proof of Proposition 2.1. �

For the forthcoming error analysis we require

∫ T

0
|| fh − f ||2A−1 dt � Ch. (3.14)

REMARK Taking fh ∈ Sh
Ωw

to be the solution of

( fh(t), χ) = ( f, χ) ∀ χ ∈ Sh
Ωw

yields (3.14).

LEMMA 3.1 The unique solutions of(QR) and(Qh
R) satisfy

||J − Jh ||L∞(0,T ;A−1) � C(T )h1/2· (3.15)

Proof. See the proof of Lemma 3.2 in Elliottet al. (2004). �
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4. Fully discrete model

In this section we consider a fully discrete discretization of(PR). We setN∆t = T , tn := n∆t for
n = 0 → N , f n

h ∈ Sh
0,Ωw

to be an approximation tof (·, tn) and for anygh ∈ Sh we define

δt g
n
h = gn

h − gn−1
h

∆t
.

We introduce the operator̂Gh : (Sh
0,Ω , Sh

0,Ωw
) → Sh

e such that for anyξ ∈ (Sh
0,Ω , Sh

0,Ωw
), Ĝhξ ∈ Sh

e is
the unique solution of

A(Ĝhξ, ψ) = (ξ, ψ)h ∀ ψ ∈ Sh . (4.1)

Weset
||η||2

Â−h := |Ĝhη|2A = (Ĝhη, η)h ∀ η ∈ Sh
0,Ω ∪ Sh

0,Ωw

and we note using (3.1) that

|(Gh − Ĝh)η|A � Ch|η|0,BR ∀ η ∈ Sh
0,Ω ∪ Sh

0,Ωw
(4.2)

and hence from (3.6) we have that

||η||2
Â−h � ||η||2A−1 + Ch2|η|20,BR

∀ η ∈ Sh
0,Ω ∪ Sh

0,Ωw
. (4.3)

Furthermore, from (3.2) and (4.1) we note that

(ξ, Ghψ)h = (Ĝhξ, ψ) ∀ ξ, ψ ∈ Sh
0,Ω ∪ Sh

0,Ωw
. (4.4)

Weconsider the following fully discrete discretization of(PR).
(Ph,∆t

R ) Find {J n
h , En

h }n�1 ∈ K h
0,Ω × Sh such that

(δt J n
h , ψ)h + A(En

h , ψ) = ( f n
h , ψ)h ∀ ψ ∈ Sh (4.5)

J 0
h (x) = J h

0 (x) ∀ x ∈ Ω (4.6)

(En
h , η − J n

h )h � 0 ∀ η ∈ K h
Ω . (4.7)

Forχ ∈ Sh
0 , settingψ = Ĝhχ in (4.5) and noting (4.7) yields the following variational formulation

of (Ph,∆t
R ).

(Qh,∆t
R ) Find {J n

h }n�1 ∈ K h
0,Ω such that

(
Ĝh(δt J n

h ), χ − J n
h

)h
�

(
Ĝh f n

h , χ − J n
h

)h ∀ χ ∈ K h
0,Ω . (4.8)

PROPOSITION 4.1 Let ∆t = Ch and
∑N

n=1 ∆t | f n
h |2h � C . Then there exists a solution pair

{J n
h , En

h }n�0 to (Ph,∆t
R ) such that

N∑
n=1

∆t
∥∥δt J n

h

∥∥2
Â−h + h

N∑
n=1

∆t |δt J n
h |20,BR

+ ∆t
N∑

n=1

|En
h |2A � C . (4.9)

Also, for eachn, J n
h is unique andEn

h is unique up to an additive constant. Furthermore,{J n
h }n�0 is the

unique solution of(Qh,∆t
R ).
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Proof. Let IΩ be the index set of triangle verticesxi ∈ Ω . Let En
i := En

h (xi ) and J n
i := J n

h (xi ) for
i ∈ IΩ . It is easy to see that (4.7) is equivalent to

|J n
i | � Jc and En

i (ψ − J n
i ) � 0 ∀ |ψ | � Jc. (4.10)

Elementary calculations yield the equivalence of (4.10) with

Jc(|ψ | − |En
i |) � J n

i (ψ − En
i ) ∀ |ψ | � Jc (4.11)

and also the equivalence with

J n
i ∈ JcsignEn

i . (4.12)

It follows that (4.5) and (4.7) are equivalent to

Jc

∫
Ω

Π h(|ψ | − |En
h |) dx + ∆t A(En

h , ψ − En
h ) � (J n−1

h + ∆t f n
h , ψ − En

h )h ∀ ψ ∈ Sh .

This is a necessary condition forEn
h to be a solution of the minimization problem

F(En
h ) := min

ψ∈Sh
F(ψ)

F(ψ) := Jc

∫
Ω

Π h(|ψ |) dx + ∆t

2
A(ψ, ψ) − (J n−1

h + ∆t f n
h , ψ)h .

SinceF is continuous and bounded below (using the fact thatA(·, ·) is positive definite onSh
0) there

exists a minimizerEn
h , and hence by (4.5) there also exists aJ n

h ∈ Sh . Furthermore, by the above
equivalences it follows that forJ n

h ∈ Sh
0,Ω we have alsoJ n

h ∈ K h
0,Ω and that (4.7) holds. Hence we have

existence of a solution pair{J n
h , En

h }.
Suppose{J n

h , En
h } and{ J̃ n

h , Ẽn
h } are two separate solution pairs. It follows from (4.5) and (4.7) that

(J n
h − J̃ n

h , ψ)h + ∆t A(En
h − Ẽn

h , ψ) = 0 ∀ ψ ∈ Sh

and
(En

h − Ẽn
h , J n

h − J̃ n
h ) � 0.

This immediately implies thatJ n
h is unique and thatEn

h is unique up to an additive constant. Furthermore,
it follows from (4.1) and (4.5) that

En
h = Ĝh( f n

h − δt J n
h ) + λn

h

for a scalarλn
h . By considering (4.7) forη ∈ K h

0,Ω we obtain (4.8) which implies thatJ n
h is the unique

solution of(Qh,∆t
R ).

Takingχ = J n−1
h in (4.8) we obtain

|Ĝhδt J n
h |2A � (Ĝh f n

h , δt J n
h )h

and so
||δt J n

h || Â−h � || f n
h || Â−h .
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SettingJ̃ n
h ∈ Sh to be the interpolant ofJ n

h we observe that, see Elliott (1987),

A(En
h , J̃ n

h ) =
∫

BR

1

µ
∇En

h∇ J̃ n
h � 0

and hence it follows from (4.5) that

| J̃ n
h |2h − | J̃ n−1

h |2h + | J̃ n
h − J̃ n−1

h |2h � 2∆t( f n
h , J̃ n

h )h

� C∆t | f n
h |h .

By elementary calculations we have that the required bounds hold. �
Before we derive an error bound on the solutions of(Ph

R) and (Ph,∆t
R ) we introduce some useful

notation. Forn � 1 we set

Jh,∆t (t) := t − tn−1

∆t
J n

h + tn − t

∆t
J n−1

h , fh,∆t (t) := t − tn−1

∆t
f n
h + tn − t

∆t
f n−1
h ∀ t ∈ [tn−1, tn],

(4.13)

and

Ĵh,∆t (t) := J n
h , f̂h,∆t (t) := f n

h ∀ t ∈ (tn−1, tn]. (4.14)

From (4.13) and (4.14) it follows that for a.e.t ∈ (0, T )

Jh,∆t − Ĵh,∆t = −(tn − t)∂t Jh,∆t . (4.15)

For the forthcoming error analysis we require that∫ T

0
|| fh − f̂h,∆t ||2Â−h dt � C∆t . (4.16)

REMARK Taking

f n
h := 1

∆t

∫ tn+1

tn
fh(t) dt

yields (4.16).

LEMMA 4.1 For∆t = Ch the unique solutions of(Qh
R) and(Qh,∆t

R ) satisfy∥∥Jh − Jh,∆t
∥∥

A−1 � C(T )(h + ∆t)1/2. (4.17)

Proof. Settingχ = Jh,∆t in (3.13) and noting (4.4) we have

1

2

d

dt

∥∥Jh − Jh,∆t
∥∥2

A−h =
(
∂t G

h Jh, Jh − Jh,∆t

)
−

(
∂t G

h Jh,∆t , Jh − Jh,∆t

)
�

(
Gh fh, Jh − Jh,∆t

)
−

(
∂t G

h Jh,∆t , Jh − Jh,∆t

)
= I h(Gh( fh − ∂t Jh,∆t ), Jh − Jh,∆t ) +

(
Gh( fh − ∂t Jh,∆t ), Jh − Jh,∆t

)h

= I h(Gh( fh − ∂t Jh,∆t ), Jh − Jh,∆t ) +
(

fh − ∂t Jh,∆t , Ĝh(Jh − Jh,∆t )
)

= I h(Gh( fh − ∂t Jh,∆t ), Jh − Jh,∆t ) + I h( fh − ∂t Jh,∆t , Ĝh(Jh − Jh,∆t ))

+
(

Ĝh( fh − ∂t Jh,∆t ), Jh − Jh,∆t

)h
. (4.18)
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Settingχ = Jh in (4.8) we have

(
∂t Ĝ

h Jh,∆t , Jh − Jh,∆t

)h =
(
∂t Ĝ

h Jh,∆t , Jh − Ĵh,∆t

)h +
(
∂t Ĝ

h Jh,∆t , Ĵh,∆t − Jh,∆t

)h

�
(

Ĝh f̂h,∆t , Jh − Ĵh,∆t

)h +
(
∂t Ĝ

h Jh,∆t , Ĵh,∆t − Jh,∆t

)h

=
(

Ĝh f̂h,∆t , Jh − Jh,∆t

)h +
(

Ĝh(∂t Jh,∆t − f̂h,∆t ), Ĵh,∆t − Jh,∆t

)h
.

(4.19)

From (4.18), (4.19), (3.1) and Propositions 3.1 and 4.1 we have

1

2

d

dt
||Jh − Jh,∆t ||2A−h � I h(Gh( fh − ∂t Jh,∆t ), Jh − Jh,∆t ) + I h( fh − ∂t Jh,∆t , Ĝh(Jh − Jh,∆t ))

+
(

Ĝh( fh − f̂h,∆t ), Jh − Jh,∆t

)h −
(

Ĝh(∂t Jh,∆t − f̂h,∆t ), Ĵh,∆t − Jh,∆t

)h

� Ch
∣∣∣Gh( fh − ∂t Jh,∆t )

∣∣∣
1,BR

∣∣Jh − Jh,∆t
∣∣
0,BR

+ Ch
∣∣ fh − ∂t Jh,∆t

∣∣
0,BR

∣∣∣Ĝh(Jh − Jh,∆t )

∣∣∣
1,BR

+
∥∥∥ fh − f̂h,∆t

∥∥∥
Â−h

∥∥Jh − Jh,∆t
∥∥

Â−h +
∥∥∥∂t Jh,∆t − f̂h,∆t

∥∥∥
Â−h

∥∥∥ Ĵh,∆t − Jh,∆t

∥∥∥
Â−h

� Ch + Ch
∣∣ fh − ∂t Jh,∆t

∣∣
0,BR

∥∥Jh − Jh,∆t
∥∥

Â−h +
∥∥∥ fh − f̂h,∆t

∥∥∥
Â−h

∥∥Jh − Jh,∆t
∥∥

Â−h

+
∥∥∥∂t Jh,∆t − f̂h,∆t

∥∥∥
Â−h

∥∥∥ Ĵh,∆t − Jh,∆t

∥∥∥
Â−h

. (4.20)

Using (4.20), (3.8), (4.3), (4.15), (3.7) and Young’s inequality we obtain

1

2

d

dt

∥∥Jh − Jh,∆t
∥∥2

A−1 � Ch + Ch2
∣∣ fh − ∂t Jh,∆t

∣∣2
0,BR

+ C
∥∥Jh − Jh,∆t

∥∥2
A−1 + C

∥∥∥ fh − f̂h,∆t

∥∥∥2

Â−h

+C∆t
∥∥∥∂t Jh,∆t − f̂h,∆t

∥∥∥
Â−h

∥∥∂t Jh,∆t
∥∥

A−1 .

The result follows using a Grönwall inequality, (4.9) and (4.16). �

Finally from Lemmas 3.1 and 4.1 we have our main result.

THEOREM 4.1 The unique solutions of(Qh,∆t
R ) and(QR) satisfy

∥∥J − Jh,∆t
∥∥

L∞(0,T ;A−1)
� C(T )(h + ∆t)1/2.

5. The Gauss–Seidel iteration

It is easy to see that the fully discrete scheme(Ph,∆t
R ) yields the following algebraic problem.

Find (J, E) ∈ R
Λ × R

Λ such that

MJ + AE − b = 0,

Ji = 0, i /∈ IΩ ,

Ji ∈ Jc signEi , i ∈ IΩ .
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HereJ andE are the nodal values ofJ n
h and En

h at the vertices of the triangulation according to some
ordering. We denote byIΩ the set of vertices onΩ and setJi = 0 for all i /∈ IΩ . The diagonal mass
matrix MΩ is defined by

MΩ
i i =

{ ∫
Ω χi dx i ∈ IΩ

0 i /∈ IΩ ,

whereχi is the basis function associated with nodei . A is the symmetric positive semi-definite matrix
defined by

ξT Aψ = A(ξ, ψ) ξ, ψ ∈ Sh

whereξ andψ are the nodal values ofξ andψ . It follows that

Ae = 0,

and
ξT Aξ � CA||ξ||2 ∀ ξ such thatξT e = 0

where{e} j = 1 for all j and‖·‖ denotes the Euclidean norm onR
Λ. The right-hand sideb is defined

by
bT ψ = (J n−1

h + ∆t f n
h , ψ)h ψ ∈ Sh

and
bT e = 0,

sinceJ n−1
h ∈ Sh

0,Ω and f n
h ∈ Sh

0,Ωw
. We set|v| := (|v1|, |v2|, . . . , |vΛ|)T andvp := v − 1

ΛeT ve.
In order to solve this problem we set out a version of the Gauss–Seidel iteration formulated by Elliott

(1987), for the enthalpy method for the Stefan problem.

Gauss–Seidel Iteration

GivenE0, for k � 1, {Ek, Jk} are defined as follows.
For i = 1 → Λ, (J k+1

i , Ek+1
i ) are the unique solutions of

(AEi−1,k+1 − b)i + Aii (Ek+1
i − Ek

i ) + Mii J k+1
i = 0 (5.1)

J k+1
i = 0 i /∈ IΩ (5.2)

J k+1
i ∈ JcsignEk+1

i i ∈ IΩ , (5.3)

where
Ei,k+1 := (Ek+1

1 , Ek+1
2 , . . . , Ek+1

i , Ek
i+1, . . . , Ek

Λ)T i = 0 → Λ.

As noted in the proof of existence in Proposition 4.1, this problem is associated with energy
minimization.

Weset

F(E) := Jc(MΩe)T |E| + 1

2
ET AE − bT E

= Jc(MΩe)T |E| + 1

2
ET

p AEp − bT Ep

� JceT MΩ |E| + 1

2
CA,b||Ep||2 − ĈA,b.
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HenceF(E) is bounded below and||E|| � C(F(E), A, b).
Wedefine

Fk
i (z) := F(Ek+1

1 , . . . , Ek+1
i−1 , z, Ek

i+1, . . . , Ek
Λ).

Clearly,

Fk
i (Ek+1

i ) = F(Ei,k+1) and Fk
i (Ek

i ) = F(Ei−1,k+1).

Furthermore,

Λ∑
i=1

(
Fk

i (Ek+1
i ) − Fk

i (Ek
i )

)
= F(EΛ,k+1) − F(E0,k+1)

= F(Ek+1) − F(Ek). (5.4)

LEMMA 5.1 The above iteration satisfies

F(Ek+1) − F(Ek) � −CA

∥∥∥Ek+1 − Ek
∥∥∥2

and ∥∥∥Jk
∥∥∥∞ � Jc,

for all k � 0.

Proof. A straightforward calculation gives

δk
i := Fk

i (Ek+1
i ) − Fk

i (Ek
i ) = 1

2
Aii (Ek+1

i − Ek
i )2 + (AEi−1,k+1 − b)i (Ek+1

i − Ek
i )

+Jc Mii (|Ek+1
i | − |Ek

i |).

From (5.1) we have

δk
i = −1

2
Aii (Ek+1

i − Ek
i )2 + Mii

(
Jc|Ek+1

i | − J k+1
i Ek+1

i + J k+1
i Ek

i − Jc|Ek
i |

)
.

SinceEk+1
i = 0 if J k+1

i = 0 from (5.2) and (5.3) we have

Jc|Ek+1
i | − J k+1

i Ek+1
i = 0 and J k+1

i Ek
i − Jc|Ek

i | � 0 for i = 1 → Λ.

Noting thatAii > 0 for i = 1 → Λ and using (5.4) we have

Λ∑
i=1

δk
i = F(Ek+1) − F(Ek) � −CA

∥∥∥Ek+1 − Ek
∥∥∥2

.

The bound onJk follows directly from (5.2) and (5.3). �

THEOREM 5.1 The Gauss–Seidel iteration is globally convergent.
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Proof. By Lemma 5.1 we have

F(Ek) + CA

k−1∑
l=0

||El+1 − El ||2 � F(E0).

Hence fork � 1,

||Ek || � C, max
i∈IΩ

|J k
i | � C, J k

i = 0 i /∈ IΩ ,

k−1∑
l=0

||El+1 − El ||2 � C,

where the constantsC depend onE0. It follows that there is a subsequence labelled{Ekp } such that as
kp → ∞

Ekp → E∗, Ekp+1 − Ekp → 0, Jkp → J∗.

Clearly
J ∗

i = 0 i /∈ IΩ , |J ∗
i | � Jc i ∈ IΩ , eT MJ∗ = 0.

Observe that
AEi−1,kp+1 = AEkp + A(Ei−1,kp+1 − Ekp ).

Since||Ekp + 1 − Ekp || → 0 it then follows by passing to the limit in (5.1) fork = kp,

AE∗ − b + MJ∗ = 0.

From the equivalence of (4.10)–(4.12) we have

(Ekp )T MΩ (η − Jkp ) � 0 ∀ η, |ηi | � Jc,

and passing to the limit we have

(E∗)T MΩ (η − J∗) � 0 ∀ η, |ηi | � Jc.

HenceJ∗, E∗ solve our problem and sinceJ∗ = J is unique, the whole sequence{Jk} converges toJ. �

REMARK If there exists a nodei in Ω where|Ji | < Jc then at this nodeEi = 0 and we have uniqueness
of E andEn

h . However, it may be possible to have a computation where|J n
h | = Jc for all nodes inΩ . In

this case it may be possible to identify a node whereEn
h = 0, in which case we again have uniqueness

of En
h . Otherwise, there will be an indeterminacy ofEn

h and there will exist triangles at whichEn
h is

not zero at any node but changes sign. It follows that there exists a largest number which can be added
or subtracted fromEn

h such that the sign ofEn
h at the nodes does not change. The size of this number

should depend on the discretization error.

6. Numerical results

In this section we report on numerical computations associated with a particular geometric configuration.
We suppose thatΩ is the interior of a circle of radius 0·5 that is set in an annular regionΩI with inner
radius 0·55 and outer radius 1. Contained inΩI are 12 symmetrically arranged componentsΩwi of Ωw.
EachΩwi is a section of an annular region with inner radius 0·55 and outer radius 0·8 subtending an
angleπ/12, see Fig. 3. This geometric configuration can be used to model superconducting induction
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FIG. 3. Geometric configuration.
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FIG. 4. Initial mesh and first refinement in the superconductor.
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FIG. 5. Current density withµ = 1.

motors by viewingΩw as modelling the effect of the copper windings set in an annular laminated iron
regionΩI with a thin air gap separatingΩ andΩI . Note that because of the horizontal lamination of the
iron cylinderΩI × R we can assume that current is zero inΩI .

The applied source currentJs is given by

Js |Ωw,n+1∪Ωw,n+2(t) = min(5t, 1) cos(4t + nπ/3),

for n = 0, 2, 4, and
Js |Ωw,n+1∪Ωw,n+2(t) = − min(5t, 1) cos(4t + nπ/3),

for n = 6, 8, 10. In all computationsBR has radius 2, and the critical current densityJc = 1.

6.1 Constant magnetic permeability

Some computations were performed forµ = 1 everywhere in order to test the rate of convergence. Since
an exact solution is not known in Table 1 the results on coarser meshes are compared with the solution
on a fine mesh with a mesh sizehmax � 1/128. Typical meshes are shown in Fig. 4 and the results of
some computations are displayed in Figs 5 and 6.
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FIG. 6. Electric field intensity withµ = 1.

TABLE 1 H−1(Ω) errors for current density

t = 0·2 t = 0·4 t = 0·6 t = 0·8
have ≈ 1/8, ∆t = 1/25 0·0292 0·0278 0·0304 0·0319
have ≈ 1/16, ∆t = 1/50 0·0160 0·0159 0·0166 0·0176
have ≈ 1/32, ∆t = 1/100 0·0066 0·0075 0·0079 0·0080

REMARK From the discrete version of theJ–E relationship in the superconductor, (4.12), we note that
in our numerical approximations the discrete zero current core coincides with the discrete zero electric
field core.
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FIG. 7. Current Density at timet = 0·8 with µ = 0·1, 10, 100 and 1000.

6.2 Piecewise constant permeability

In order to simulate the high magnetic permeability in the annular iron regionΩI we set

µ =
{

1 in R
2\Ω I

103 in ΩI .

In Figs 7 and 8 we can clearly see the effect on the amount of current in the superconductor and the
insulation of the electric field asµ in the iron increases, as expected.

Note that a larger current density in the superconductor leads to a stronger magnetic field and thus a
much more powerful motor.

7. Concluding remarks

In order to compute the current density within the superconductor several approaches have been
considered. A common approach is to reformulate (2.14) along with the constitutive relationship (2.4)
into an obstacle problem forJ . In Prigozhin (1996b) this method is applied whenµ is a uniform constant
and the non-local operatorG is used explicitly in the form (2.11). The discretization leads to a quadratic
programming problem with a dense matrix of size the number of degrees of freedom associated with the
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FIG. 8. Electric field intensity at timet = 0·8 with µ = 0·1, 10, 100 and 1000.

domainΩ . This can be solved by projected SOR. The same approach is used in Barneset al. (1999),
except a finite-element method is used to form an approximation toG explicitly by a matrix inversion.
The result of the approximation is the current densityJ and thenE + λ can be found by (2.14). IfE is
zero at a node inΩ then, as described in the remark at the end of Section 2, this may be used to identify
λ. In Elliott et al. (2004) the discretization of (2.9) is indirectly formulated using a discrete Laplacian on
BR . An operator splitting algorithm combined with a nonlinear projection is used to solve the resulting
system without explicitly using an approximation ofG.

In this paper we have proposed a method that calculates the current density using a Gauss–Seidel
iteration for the solution of (2.15). Approximations toJ and E are computed simultaneously. This
scheme requires no non-local operators and no operator splitting, leading to an efficient scheme.
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GLOWINSKI, R., LIONS, J. L. & TRÉMOLIÈRES, R. (1976) Numerical Analysis of Variational Inequalities.

Amsterdam: North-Holland.
HAN, H. & WU, X. (1985) Approximation of infinite boundary condition and its application to finite element

methods.J. Comput. Math., 3, 179–192.
MASLOUH, M., BOUILLAULT , F., BOSSAVIT, A. & V ERITE, J. C. (1997) From Bean’s model to the H-M

characteristic of superconductor: some numerical experiments.IEEE Trans. Appl. Supercond., 7, 3797–3801.
PRIGOZHIN, L. (1996a) On the Bean critical state model in superconductivity.Eur. J. Appl. Math., 7, 237–248.
PRIGOZHIN, L. (1996b) The Bean model in superconductivity: variational formulation and numerical solution.J.

Comput. Phys., 129, 190–200.
PRIGOZHIN, L. (1997) Analysis of critical state problems in type-II superconductivity.IEEE Trans. Appl.

Supercond., 7, 3866–3873.


