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Abstract. We introduce a finite element approximation of a variational formulation of Bean’s
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1. Introduction. In this paper we consider the numerical approximation of an
evolutionary variational inequality arising from a critical state model for a type-II
superconductor. The physical setting is that of an infinitely long cylinder of type-II
superconducting material subject to an applied transverse magnetic field. We take
the cylindrical superconductor to occupy the region D = Ω × R, where Ω ⊂ R

2, a
bounded, simply connected domain in R

2, is the cross section of the superconductor.
The physical vector fields that are relevant are the current density J = (0, 0, J(x, t)),
which is parallel to the axis of the cylinder, and the magnetic field H = (H(x, t), 0),
which is orthogonal to the cylinder’s axis, for x ∈ R

2. The well-known Bean critical
state model can be formulated as an evolutionary variational inequality for J(x, t) of
the form (see [10]):

(P) Find J(·, t) ∈ K for a.e. t ≥ 0 such that J(·, 0) = J0 ∈ K and(
∂GJ

∂t
, η − J

)
≥ (f, η − J) ∀ η ∈ K.(1.1)

Here (·, ·) denotes the standard L2 inner product over Ω,

V :=
{
η ∈ L2

loc(R
2) : ∇η ∈ L2(R2), (η, 1) = 0

}
,

K =
{
η ∈ V : η = 0 on R

2/Ω, |η| ≤ Jc, (η, 1) = 0
}

and G : V ′ → V is the “inverse Laplacian” operator defined by the solution to the
following variational problem:

Given v ∈ V ′, find Gv ∈ V such that

(∇Gv,∇η)
R2 = 〈v, η〉 ∀ η ∈ V(1.2)
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with 〈·, ·〉 denoting the duality pairing between V ′ and V. For v ∈ F ⊂ V ′ we have

〈v, η〉 = (v, η) ∀ η ∈ V,

where

F :=
{
η ∈ V ′ : η ∈ L2

loc(R
2) : η = 0 on R

2/Ω
}
.

Setting

F0 :=
{
η ∈ F : (η, 1) = 0

}
,

we have the following for all v ∈ F0:

−∆Gv = v in R
2,

∫
Ω

Gv dx = 0, and ∇Gv ∼ 0 at ∞,(1.3)

and Gv is unique.
Throughout the remaining sections we assume that

f ∈ L2(0, T ;H2(Ω)), ft ∈ L2(0, T ;H1(Ω)).(1.4)

It follows from the classical theory of evolutionary variational inequalities that
(P) has a unique solution; see [10, 5].

2. Derivation of the model and reduction to a bounded domain.

2.1. Derivation of the model. We suppose that all field variables depend only
on t and x ∈ R

2, and that there is a prescribed, time dependent, smooth magnetic
field Ha = (Ha(x, t), 0) applied at infinity and a prescribed, bounded current density
Ja = Ja(x, t)e3, exterior to the superconductor, such that the compatibility condition

Ja − curl Ha → 0 as |x| → ∞

is satisfied. Then Maxwell’s equations, neglecting displacement current, are

∂H

∂t
+ curl E = 0 in R

2,

curl H = J in R
2,

∇ · H = 0 in R
2,

where E is the electric field; see [10]. Note we have taken the magnetic permeability
equal to 1 for simplicity.

The critical state model assumes the following nonlinear Ohm’s law in the super-
conductor,

E = ρJ in Ω

with

|J| ≤ Jc in Ω,

and the effective resistivity ρ achieves the constraint on |J| by the relation ρ ∈ β(|J|),
where β is a multivalued map given by the graph

β(r) =

⎧⎨⎩
(−∞, 0] if r = −Jc,

0 if |r| < Jc,
[0,∞) if r = Jc.
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We assume that exterior to the superconductor the current is prescribed so

J = Ja in R
2/Ω.

To complete this set of equations we require initial and boundary conditions for
the magnetic field given, respectively, by

H(x, 0) = H0(x)

and

H → Ha as |x| → ∞.

On the boundary of the superconductor, ∂Ω, we have that

[Hτ ] = [Hν ] = 0,

where [Hτ ] and [Hν ] denote the jumps in the tangential and normal components,
respectively, of H across ∂Ω.

In order to consider homogeneous boundary conditions at infinity, it is convenient
to introduce a current density Je defined by

Je =

{
0 in Ω,
Ja in R

2/Ω.

Associated with Je is the magnetic field He such that

curl He = Je in R
2,

∇ · He = 0 in R
2,

He → Ha as |x| → ∞.

Finally, we use the shift

Ĵ = J − Je and Ĥ = H − He

to give the problem

∂Ĥ

∂t
+ curl (ρĴ) = −∂He

∂t
in Ω,(2.1)

curl Ĥ = Ĵ in R
2,(2.2)

∇ · Ĥ = 0 in R
2,(2.3)

|Ĵ| ≤ Jc in Ω(2.4)

together with the boundary condition

Ĥ → 0 as |x| → ∞.

Note that interpreting (2.2), (2.3) in conservation form yields the compatibility bound-
ary conditions [

Ĥν

]
=

[
Ĥτ

]
= 0 on ∂Ω.
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It follows by the assumption Ja = Ja(x, t)e3 and the definitions of J and Je that
Ĵ = (0, 0, J), where J ∈ K. From this last set of equations and using the assumption
that Ĥ lies in the (x1, x2) plane, we see that there exists a scalar potential q(x, t),
x ∈ R

2, for Ĥ such that Ĥ = (∇⊥q, 0).
Furthermore, q satisfies

−∆q = J in R
2(2.5a)

and

|∇⊥q| → 0 as |x| → ∞.(2.5b)

Imposing the condition ∫
Ω

qdx = 0,(2.5c)

the problem (2.5a)–(2.5c) is known to have a unique solution, which we denote by

q = GJ.

Similarly, there exists a scalar potential qe for He, unique up to a constant func-
tion in time, such that

He = (∇⊥qe, 0), ∇⊥qe → Ha as |x| → ∞.

We may rewrite (2.1) in the form

∇⊥
(
∂q

∂t
+ ρJ

)
= −∇⊥ ∂qe

∂t

⇒ ∇⊥
(
∂GJ

∂t
+ ρJ

)
= −∇⊥ ∂qe

∂t
.

Hence, fixing qe, we obtain

∂GJ

∂t
+ ρJ − λ(t) = −∂qe

∂t
:= f,

where λ is an arbitrary function of time.
Multiplying the above equation by η−J for η ∈ K, integrating over Ω, and using

the fact that (1, η − J) = 0, we have(
∂GJ

∂t
, η − J

)
= (f, η − J) − (ρJ, η − J).

Since ρ(r) ∈ β(|J |) and |η| ≤ Jc, we have

(ρJ, η − J) ≤ 0.

Hence, we obtain problem (P).
The above formulation of Bean’s model is the basis of the numerical algorithm

proposed by Prigozhin in [9, 11] using an explicit formula for the integral operator
G. The discretization is then based upon piecewise constant finite elements. This ap-
proach leads to a dense matrix. In the following we use the finite element method to
approximate G but never form the matrix associated with this finite element approxi-
mation. Whenever G is required we use an elliptic solve. In this paper an error bound
is proved and an iterative method is proposed for the resulting discrete variational
inequality. For an engineering application of (P), see [2, 3].
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Fig. 2.1. Reduction in the domain of the problem.

2.2. Reduction to a bounded domain. From a computational viewpoint,
discretizing the whole of R

2 in order to find the operator G is not practical. A
natural approach is to restrict the problem to a large bounded region BR containing
Ω and to write an exact boundary condition for Gv on ∂BR.

Consider the situation where Ω is embedded in a large circle BR of radius R; see
Figure 2.1.

We consider a Dirichlet-to-Neumann mapping which relies on the harmonic prop-
erty of Gv outside BR and the boundedness of ∇⊥Gv in L2(R2). This method of
truncating a problem defined on an infinite domain to one defined on a finite domain
is described in [6]. An overview is given here.

For w ∈ H1/2(∂BR) let z solve

−∆z = 0 in R
2\BR,(2.6)

z = w on ∂BR,(2.7)

∇z ∈ L2(R2\BR).(2.8)

It follows that we have a Fourier expansion

z(r, θ) =
a0

2
+

∞∑
k=1

(ak cos (kθ) + bk sin (kθ))Rkr−k,

where ak, bk are the Fourier coefficients for w = w(θ) on ∂BR.
Differentiating with respect to r and letting r → R gives

∂z

∂r
(R, θ) = −

∞∑
k=1

k

R
(ak cos (kθ) + bk sin (kθ)).(2.9)
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Since

ak = − 1

kπ

∫ 2π

0

∂w

∂ϕ
sin (kϕ)dϕ and bk =

1

kπ

∫ 2π

0

∂w

∂ϕ
cos (kϕ)dϕ,

substituting into (2.9) gives the relation

∂z

∂r

∣∣∣∣
∂BR

(θ) = B(w)(θ) := −
∞∑
k=1

1

Rπ

∫ 2π

0

∂w

∂ϕ
sin (k(ϕ− θ))dϕ.(2.10)

Let z be a solution of (2.6)–(2.8) for w being the trace of Gv on ∂BR. Taking
B(·) to be defined as above, it follows that Gv solves the following Neumann problem
defined on BR:

−∆Gv = v in BR,
∂Gv

∂ν
= B(Gv) on ∂BR.(2.11)

Multiplying (2.11) by a test function η ∈ H1(BR), integrating over BR, and then
integrating by parts yield the equivalent variational problem:

For v ∈ F0, find Gv ∈ H1(BR) such that

(Gv, 1) = 0, a(Gv, η) + b(Gv, η) = (v, η) ∀ η ∈ H1(BR),(2.12)

where for ξ, η ∈ H1(BR),

a(ξ, η) :=

∫
BR

∇ξ · ∇η dx and b(ξ, η) :=

∫
∂BR

B(ξ)η dS.

The existence of a unique solution Gv to this variational problem is easily proved.
We define

A(ξ, η) := a(ξ, η) + b(ξ, η) ∀ ξ, η ∈ H1(BR)(2.13)

together with the seminorm and norm

|η|2A := A(η, η) ∀ η ∈ H1(BR), ||η||2A−1 := |Gη|2A ∀ η ∈ F0.(2.14)

Henceforth we define the L2 norm and the H1 norm and seminorm over X re-
spectively by

||η||20,X =

∫
X

|η|2dx, ||η||21,X =

∫
X

(|η|2 + |∇η|2)dx and |η|21,X =

∫
X

|∇η|2dx.

From [6] we have that A is continuous with respect to the H1 norm; that is, for all
ξ, η ∈ H1(BR)

|A(ξ, η)| ≤ C||ξ||1,BR
||η||1,BR

.(2.15)

Using (2.12)–(2.15), we have the following useful result:

(ξ, η) = A(Gξ, η) ≤ |Gξ|A|η|A ≤ C||ξ||A−1 ||η||1,BR
∀ η ∈ H1(BR), ξ ∈ F0.

(2.16)
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3. Finite element approximation. In this section we consider a finite element
approximation of (P) under the following assumptions on the partitioning:

(A) Let Ω be a polygon and let T 1
h be a quasi-uniform partitioning of Ω into

disjoint open simplices κ with hκ := diam(κ) and h := maxκ∈T 1
h
hκ, so that

Ω = ∪κ∈T 1
h
κ.

(B) Let T 2
h be a partitioning of BR into disjoint open elements κ ∈ T 2

h such that
– ∪κ∈T 2

h
κ = BR,

– either κ ∩ Ω is empty or κ ∈ T 1
h ,

– if κ ∩ ∂BR = ∅, or a point, then κ is a simplex; otherwise, κ is a three-
sided element with a curved edge on ∂BR.

Associated with T 1
h is the finite element space of continuous piecewise linear func-

tions on Ω such that

S1
h =

{
χ ∈ C(Ω) : χ|κ is linear ∀ κ ∈ T 1

h

}
⊂ H1(Ω).

Similarly associated with T 2
h is the finite element space of continuous functions on BR

such that

S2
h =

{
χ ∈ C(BR) : χ|κ is linear ∀ κ ∈ T 2

h

}
⊂ H1(BR).

The discrete inner product (·, ·)h is defined by numerical integration in the following
way.

Associated with each node xi, i = 1, 2, . . . ,M , of S1
h we have a lumped mass

matrix value Mi > 0. We now introduce a discrete semi-inner product on L2(Ω),
defined by

(η1, η2)
h

:=

∫
Ω

Πh(η1η2)dx =

M∑
i=1

Mi(η1η2)(xi),(3.1)

where Πh : C(Ω) → S1
h is the standard linear interpolation operator.

We introduce the L2(Ω) projection operator Qh : L2(Ω) → S1
h such that(

Qhη, χ
)h

= (η, χ) ∀ χ ∈ S1
h.(3.2)

Similar to (2.12) we introduce the operator Gh : F0 → Vh := {vh ∈ S2
h : (vh, 1) = 0}

such that

A(Ghξ, χ) = (Qhη, χ)h ∀ ξ ∈ F0, χ ∈ S2
h,(3.3)

and we define the norm

||η||2A−h :=
∣∣Ghη

∣∣2
A

∀η ∈ F0.

It follows from (3.2) and (3.3) similarly to (2.16) that

(ξ, χ) ≤ C||ξ||A−h ||χ||1,BR
∀ χ ∈ S2

h, ξ ∈ F0.(3.4)

From [6] we have the following useful results:∥∥(G−Gh)η
∥∥

0,BR
≤ CRh

2 ‖η‖0,Ω ∀ η ∈ F0,(3.5)
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∣∣
1,BR

≤ CRh ‖η‖0,Ω ∀ η ∈ F0,(3.6)

∣∣Ghχ
∣∣
A

≤ |Gχ|A ∀ χ ∈ S1
h,(3.7)

and using (3.6) it follows that

|Gχ|A ≤ C
∣∣Ghχ

∣∣
A

∀ χ ∈ S1
h.(3.8)

Lastly from (2.16) and an inverse inequality we have the following for all χ ∈ F0∩S2
h:

‖χ‖2
0,Ω ≤ C |Gχ|A||χ||1,Ω ≤ Ch−1|Gχ|A ‖χ‖0,Ω

⇒ ‖χ‖0,Ω ≤ Ch−1|Gχ|A.(3.9)

Lemma 3.1. We have∣∣G(η −Qhη)
∣∣
A
≤ Ch ‖η‖0,Ω ∀ η ∈ F0.(3.10)

Proof. Using (2.12), (3.2), (3.3), (3.5), Hölder’s inequality, and the well-known
estimate ∣∣(ξ, η) − (ξ, η)h

∣∣ ≤ Ch2|ξ|1,Ω|η|1,Ω ≤ Ch|ξ|1,Ω ‖η‖0,Ω ∀ ξ, η ∈ S1
h,(3.11)

we have the following for all η ∈ F0:∣∣G(η −Qhη)
∣∣2
A

= A(G(η −Qhη), G(η −Qhη))

= (G(η −Qhη), η −Qhη)

= ((G−Gh)(η −Qhη), η −Qhη)

+ (Gh(η −Qhη), Qhη)h − (Gh(η −Qhη), Qhη)

≤
∥∥(G−Gh)(η −Qhη)

∥∥
0,Ω

∥∥η −Qhη
∥∥

0,Ω

+Ch
∣∣Gh(η −Qhη)

∣∣
1,Ω

∥∥Qhη
∥∥

0,Ω

≤ Ch2
∥∥η −Qhη

∥∥2

0,Ω
+ Ch

∣∣Gh(η −Qhη)
∣∣
A

∥∥Qhη
∥∥

0,Ω
.

The result follows by noting (3.7) and using Young’s inequality.
Finally we introduce a finite element approximation of (P):
(Ph) Find Jh ∈ Kh such that Jh(·, 0) = QhJ0 and(

∂

∂t
GhJh, χ− Jh

)
≥ (f, χ− Jh) ∀ χ ∈ Kh,(3.12)

where

Kh :=
{
χ ∈ S1

h : |χ| ≤ Jc, (χ, 1) = 0
}
.

Remark 3.1. Let the assumptions (A) hold. Then there exists a unique solution
Jh to (Ph) such that

||Jh||L∞(0,T ;L∞(Ω)) +

∥∥∥∥ ∂

∂t
GJh

∥∥∥∥
L∞(0,T ;A)

≤ C.(3.13)
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Lemma 3.2. The unique solutions of (Ph) and (Ph) satisfy

||J − Jh||2L∞(0,T ;A−1) ≤ Ch.(3.14)

Proof. Since Jh ∈ K using (1.1), (2.16), and (3.12) we have

1

2

d

dt
‖J − Jh‖2

A−1 =

(
∂

∂t
G(J − Jh), J − Jh

)
≤ (f, J − Jh) −

(
∂

∂t
GJh, J − Jh

)
= (f, J − Jh) −

(
∂

∂t
GhJh, Q

hJ − Jh

)
−
(

∂

∂t
GhJh, J −QhJ

)
−
(

∂

∂t
(G−Gh)Jh, J − Jh

)
≤ (f, J − Jh) −

(
f,QhJ − Jh

)
−
(

∂

∂t
GhJh, J −QhJ

)
−
(

∂

∂t
(G−Gh)Jh, J − Jh

)
=

(
f − ∂

∂t
GhJh, J −QhJ

)
−
(

∂

∂t
(G−Gh)Jh, J − Jh

)
≤

∣∣∣∣f − ∂

∂t
GhJh

∣∣∣∣
A

‖J −QhJ‖A−1 +

∥∥∥∥ ∂

∂t
(G−Gh)Jh

∥∥∥∥
0,Ω

‖J − Jh‖0,Ω.

Using the above inequality together with (1.4), (3.9), (3.5), (3.10), and (3.13) yields

1

2

d

dt
‖J − Jh‖2

A−1 ≤ Ch + Ch2

∥∥∥∥ ∂

∂t
Jh

∥∥∥∥
0,Ω

‖J − Jh‖0,Ω

≤ Ch + Ch

∣∣∣∣ ∂∂tGJh

∣∣∣∣
A

.

Integrating from 0 to t and using (3.13) gives the required result.
Remark 3.2. This is a suboptimal error bound because of the error term (f −

∂
∂tG

hJh, J − PhJ), arising due to the variational inequality, which only gives O(h)
because of the lack of H1 regularity of J .

4. Fully discrete model. In this section we consider a fully discrete discretiza-
tion of (P). Setting N∆t = T and tn : n∆t for n = 0 → N and for any χh ∈ S1

h,
n = 0, 1, . . . , we set

δtχ
n =

χn − χn−1

∆t
.

We consider the following fully discrete discretization of (P):
(Ph,∆t) For n = 1 → N , find Jn

h ∈ Kh such that J0
h = QhJ0 and(

Gh(δtJ
n
h ), χ− Jn

h

)
≥ (fn, χ− Jn

h ) ∀ χ ∈ Kh,(4.1)

where fn := f(·, tn).
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Lemma 4.1. Let the assumptions (A) hold. Then for n = 1 → N there exists a
unique solution Jn

h to (Ph,∆t) such that

max
n=1→N

||δtJn
h ||

2
A−h ≤ C.(4.2)

Proof. Existence and uniqueness for (4.1) are standard. Setting χ = Jn−1
h in

(4.1), dividing by ∆t, and noting (1.4) and (3.4) gives(
GhδtJ

n
h , δtJ

n
h

)
≤ (fn, δtJ

n
h )

⇒ ||δtJn
h ||

2
A−h ≤ ||fn||1,BR

||δtJn
h ||A−h

which together with (1.4) yields (4.2).
Before we derive an error bound on the solutions of (Ph) and (Ph,∆t) we introduce

some useful notation. For n ≥ 1 we set

Jh,∆t(t) :=
t− tn−1

∆t
Jn
h +

tn − t

∆t
Jn−1
h , f∆t(t) :=

t− tn−1

∆t
fn+

tn − t

∆t
fn−1 ∀t∈ [tn−1, tn],

(4.3)

and

Ĵh,∆t(t) := Jn
h , f̂∆t(t) := fn ∀ t ∈ (tn−1, tn].(4.4)

From (4.3) and (4.4) it follows that for a.e. t ∈ (0, T ),

Jh,∆t − Ĵh,∆t = −(tn − t)
∂

∂t
Jh,∆t, f∆t − f̂∆t = −(tn − t)

∂

∂t
f∆t.(4.5)

We also introduce for t ∈ (0, T ),

R(t) :=

(
f̂∆t −

∂

∂t
GhJh,∆t, Ĵh,∆t − Jh,∆t

)

= (tn − t)

(
f̂∆t −

∂

∂t
GhJh,∆t,

∂

∂t
Jh,∆t

)
, t ∈ (tn−1, tn],(4.6)

and for t ∈ (0, T ],

D(t) := Dn := −
(
Gh(δtJ

n
h ), δtJ

n
h

)
+
(
Gh(δtJ

n−1
h ), δtJ

n
h

)
, t ∈ (tn−1, tn],(4.7)

with J−1
h satisfying (4.1) and∣∣∣∣∣∣∣∣J0 − J−1

∆t

∣∣∣∣∣∣∣∣2
A−h

=
(
Gh(δtJ

0
h), δtJ

0
h

)
≤ C.(4.8)

Lemma 4.2. For a.e. t ∈ (0, T ) we have that

R(t) ≤ (tn − t)

[
D(t) + ∆t

(
∂

∂t
fh,∆t,

∂

∂t
Jh,∆t

)]
, t ∈ (tn−1, tn],(4.9)
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and ∫ T

0

R(t)dt ≤ C(∆t)2.(4.10)

Proof. Setting χ = Jn
h in (4.1) for n = n− 1 and using the definitions of D(t) and

R(t), we have

R(t) = −(tn − t)

(
∂

∂t
GhJh,∆t,

∂

∂t
Jh,∆t

)
+ (tn − t)

(
f̂∆t(t) − f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
+(tn − t)

(
f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
≤ (tn − t)Dn + (tn − t)

(
f̂∆t(t) − f̂∆t(t− ∆t),

∂

∂t
Jh,∆t

)
,

and (4.9) follows by using (4.3). We now integrate (4.9) from 0 to t and use (1.4),
(3.4), and (4.2) to obtain

∫ T

0

R(t)dt =

N∑
n=1

Dn

∫ tn

tn−1

(tn − t)dt +

∫ T

0

∆t

(
∂

∂t
f∆t,

∂

∂t
Jh,∆t

)
(tn − t)dt

≤
N∑

n=1

(∆t)2

2
Dn + (∆t)2

∫ T

0

∣∣∣∣∣∣∣∣ ∂∂tf∆t

∣∣∣∣∣∣∣∣
1,BR

∣∣∣∣∣∣∣∣ ∂∂tJh,∆t

∣∣∣∣∣∣∣∣
A−h

dt(4.11)

≤
N∑

n=1

(∆t)2

2
Dn + C(∆t)2.(4.12)

To bound the first term on the right-hand side we use the identity

2
(
Gh(a− b), a

)
=

(
Gha, a

)
−
(
Ghb, b

)
+
(
Gh(a− b), a− b

)
to obtain

2Dn ≤
(
Gh(δtJ

n−1
h ), δtJ

n−1
h

)
−
(
Gh(δtJ

n
h ), δtJ

n
h

)
.

Summing the above inequality from n = 1 → N and using (3.4) and (4.8), we have

2

N∑
n=1

Dn ≤
(
Gh(δtJ

0
h), δtJ

0
h

)
−
(
Gh(δtJ

N
h ), δtJ

N
h

)

≤
(
Gh(δtJ

0
h), δtJ

0
h

)
≤ C.(4.13)

Using (4.13) in (4.12), we conclude (4.10).
Lemma 4.3. The unique solutions of (Ph) and (Ph,∆t) satisfy

||Jh − Jh,∆t||L∞(0,T ;A−1) ≤ C∆t.(4.14)
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Proof. Setting χ = Jh in (4.1) and χ = Jh,∆t in (3.12) and adding the resulting
inequalities gives(

∂

∂t
Gh(Jh,∆t − Jh), Jh,∆t − Jh

)
≤

(
f̂∆t − f, Jh,∆t − Jh

)
+

(
∂

∂t
GhJh,∆t − f̂∆t, Jh,∆t − Ĵh,∆t

)
.

Noting (3.4) and (4.6), we obtain

1

2

∂

∂t
||Jh,∆t − Jh||2A−h ≤

∣∣∣∣∣∣f̂∆t − f
∣∣∣∣∣∣

1,BR

||Jh,∆t − Jh||A−h + R.

From Lemma 3.6 in [8] we conclude that

max
t∈[0,T ]

||Jh,∆t − Jh||A−h ≤
(
||Jh,∆t(0) − Jh(0)||2A−h +

∫ T

0

R(t)dt

)1/2

+

∫ T

0

∣∣∣∣∣∣f̂∆t − f
∣∣∣∣∣∣

1,BR

dt,

and noting (1.4), (3.8), (4.4), and (4.10) yields the required result.
Finally we have our main result.
Theorem 4.4. Let the assumptions (A) hold. Then the unique solutions {Jn

h }Nn=0

to (Ph,∆t) and J to (P) satisfy

||J − Jh,∆t||L∞(0,T ;A−1) ≤ C(T )(h1/2 + ∆t).

Proof. The desired result follows directly from (3.14) and (4.14).

Recalling that Ĥ = ∇⊥GJ and setting Ĥ
n

h = Ĥh(tn) := ∇⊥GhJh(tn) and Ĥh,∆t

as in (4.3), we conclude the following.
Corollary 4.1. The error between the magnetic field H and its approximation

Hh,∆t is ∥∥H −Hh,∆t

∥∥
L∞(0,T ;L2(BR))

≤ C(T )(h1/2 + ∆t).

5. Algorithm for solving (P̂h,∆t). In the numerical simulations presented in

section 6 we solve the following approximation of (P̂h,∆t):

(P̂h,∆t) For n = 1 → N , find Jn
h ∈ Kh such that J0

h = QhJ0 and(
Ĝh

(
δtĴ

n
h

)
, χ− Ĵn

h

)h

≥
(
fn, χ− Ĵn

h

)h

∀ χ ∈ Kh,(5.1)

where fn := f(·, tn) and the operator Ĝh : Vh → Vh is such that

A(Ĝhξ, χ) = (ξ, χ)h ∀ ξ ∈ Vh, χ ∈ S2
h.

Below we give an algorithm for solving (P̂h,∆t). See [5] for an account of iterative
methods for solving discrete variational inequalities.

Reformulating (P̂h,∆t) gives the following problem:
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Given J0
h = PhJ0, for n = 1 → N , find Jn

h ∈ Kh and λn ∈ R such that |Jn
h | ≤ Jc,

(Jn
h , 1)h = 0, and(
ĜhĴn

h , χ− Ĵn
h

)h

≥
(
∆tfn + λn + ĜhĴn−1

h , χ− Ĵn
h

)h

∀ χ ∈ S1
h such that |χ| ≤ Jc.

Setting Λn
h := ∆tfn + ĜhĴn−1

h , the above problem is equivalent to the following
problem:

Find Ĵn
h ∈ S1

h such that (Jn
h , 1)h = 0 and

ĜhĴn
h − Λn

h − λn + βn
h = 0

⇔ 1

µ
Ĵn
h + ĜhĴn

h − λn + βn
h = Λn

h +
1

µ
Ĵn
h ,(5.2)

where βn
h (xi) ∈ β(Jn

h (xi)).
We solve (5.2) iteratively using a splitting algorithm of Lions and Mercier [7]. Let

Ĵ0
h be given; for fixed µ we construct Jn,k+1

h , βn,k+1
h , and λn,k+1 iteratively by solving

for k ≥ 0:

1

µ
Ĵ
n,k+1/2
h + ĜhĴ

n,k+1/2
h = Λn

h +
1

µ
Ĵn,k
h − βn,k

h + λn,k := Λ̃n,k
h ,(5.3)

1

µ
Ĵn,k+1
h − λn,k+1 + βn,k+1

h = Λn
h +

1

µ
Ĵ
n,k+1/2
h − ĜhĴ

n,k+1/2
h := Fn,k+1/2,(5.4)

(Jn,k+1
h , 1)h = 0,

where βn,k+1
h (xi) ∈ β(Jn,k+1

h (xi)). To solve (5.3) we use (3.3) to rewrite

1

µ

(
J̄
k+1/2
h , χ

)h

+
(
ĜhJ̄

k+1/2
h , χ

)h

=
(
Λ̃n,k
h , χ

)h

as

1

µ
A(ĜhJ̄

k+1/2
h , χ) +

(
ĜhJ̄

k+1/2
h , χ

)h

=
(
Λ̃n,k
h , χ

)h

,(5.5)

where J̄
k+1/2
h = Ĵ

k+1/2
h − fn.

At the ith node we may rewrite (5.4) using the projection

Jn,k+1
i = P (µ(F

n,k+1/2
i + λn,k+1)),(5.6)

where

P (r) =

⎧⎨⎩
Jc if r ≥ Jc,
r if |r| < Jc,

−Jc if r ≤ −Jc.

Noting that (Jn,k+1
h , 1)h = 0, λn,k+1 solves the equation

g(λ) =
∑
i

MiP (µ(F
n,k+1/2
i + λ)) = 0.(5.7)

To obtain the solution at the (k + 1)th time step we proceed as follows:
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Step 1. Solve (5.5) to obtain ĜhJ̄
k+1/2
h .

Step 2. Set ĜhJ
n,k+1/2
h = ĜhJ̄

k+1/2
h + fn.

Step 3. Use (5.3) to obtain Ĵ
n,k+1/2
h .

Step 4. Solve (5.6) and (5.7) to obtain Ĵn,k+1
h .

Step 5. Use (5.4) to obtain βn,k+1
h .

Step 6. If |Ĵn,k+1
h − Ĵn,k

h | ≤ tol, then set Ĵn
h = Ĵn,k+1

h ; else set Ĵn,k
h = Ĵ

n,k+1/2
h

and go to Step 1.
The above procedure is relatively cheap apart from Step 1, which involves the

solution of a large sparse matrix problem,

Ax = f , A ∈ R
N×N .

In general N is required to be large, so that interfaces between critical current and
noncritical current can be captured.

Since the matrix A remains fixed throughout time, we could calculate the inverse,
or an LU decomposition, of A at the beginning. Due to the nonlocal boundary
condition the LU decomposition of this matrix produces O(N3/2) entries, and thus,
for large problems this is not practical.

Since Step 1 is part of an iteration, we need not solve this problem exactly. In the
following section ten or fewer preconditioned GMRES iterations (see [12]) are used
with an ILU decomposition used as a preconditioner. This allows large problems to
be solved and accurate solutions to be obtained.

Note that Step 4 is well defined for Jn,k+1
h . It is easily seen that the function g is

continuous and monotone piecewise linear which takes negative values for sufficiently
negative λ and positive values for sufficiently positive λ, and hence (5.7) has a solution.
Furthermore it has only a nonunique solution when g(λ) = 0 in an interval and in

such an interval we observe that P (F
n,k+1/2
i + λ) is constant for each i; hence the

solution of (5.6) is unique. A solution of (5.7) can be found by efficiently by using the
bisection method.

In [9, 11] Prigozhin solves the discrete variational inequality associated with the
full matrix approximation of G using a projected SOR algorithm. We avoid doing
this by using the splitting algorithm defined above in which it is not necessary to
form the solution operator G explicitly but its action is calculated by the use of an
elliptic solve. That is, (5.3) is implemented using elliptic solve (5.5). The constraint
condition is then handled by (5.4), which is easily solved by the projection (5.6) and
the Lagrange multiplier equation (5.7).

In practice we do not actually compute GhJh. Instead we approximate it by
replacing the nonlocal boundary inner product b(·, ·) with a truncated version bM (·, ·),
where

bM (ξ, η) =

∫
∂Ω

BM (ξ)ηdS

with

BM (w)(θ) :=

∫
∂Ω

M∑
k=1

1

Rπ

∫ 2π

0

∂w

∂ϕ
sin (k(ϕ− θ))dϕ.

Error analysis for this approximation can be found in [6].
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Fig. 6.1. A typical mesh used for numerical simulations.

6. Numerical results. In this section we present three sets of computational
simulations. All results are calculated on domains of the form seen in Figure 6.1,
where the superconductor is located in the square region (−0.5, 0.5)× (−0.5, 0.5). For
all simulations the critical current density is taken to be Jc = 1 and the truncated
sum for the nonlocal boundary inner product has M = 5.

In the first set (Figure 6.2) we take an applied magnetic field

Ha = (0,min{t,Hmax}, 0)T

for four values of Hmax. For each value of Hmax we display steady state solutions of
the current density Jh. We see that while the applied magnetic field is increasing, the
region in which the current takes critical values also increases.

In the second set of results (Figure 6.3) we apply an oscillating magnetic field of
the form

Ha =

(
0, 0.14 sin

πt

2
, 0

)T

,(6.1)

and we display plots of the current density Jh at times t = 1, 1.5, 2, and 2.5.

In Table 6.1 we display the calculated error∥∥∥J̃(·, t∗) − Jh,∆t(·, t∗)
∥∥∥
A−1
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−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.05

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.08

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.12

−0.5 0 0.5
−0.5

0

0.5

Current density, H
max

 = 0.16

Fig. 6.2. Steady state solutions: Ha = (0,min{t,Hmax}, 0)T .

−0.5 0 0.5
−0.5

0

0.5
Time = 1

−0.5 0 0.5
−0.5

0

0.5
Time = 1.5

−0.5 0 0.5
−0.5

0

0.5
Time = 2

−0.5 0 0.5
−0.5

0

0.5
Time = 2.5

Fig. 6.3. Current density for oscillating problem: Ha = (0, 0.14 sin πt
2
, 0)T .
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Table 6.1

Estimated errors for varying times and meshes.

t∗ = 1.0 t∗ = 2.0 t∗ = 3.0

h = 1/8, ∆t = 1/16 0.0236 0.0255 0.0236
h = 1/16, ∆t = 1/64 0.0126 0.0130 0.0126
h = 1/32, ∆t = 1/256 0.0063 0.0068 0.0063
h = 1/64, ∆t = 1/1024 0.0030 0.0037 0.0030

−0.5 0 0.5
−0.5

0

0.5
Time = 1.5

−0.5 0 0.5
−0.5

0

0.5
Time = 2

−0.5 0 0.5
−0.5

0

0.5
Time = 2.5

−0.5 0 0.5
−0.5

0

0.5
Time = 3

Fig. 6.4. Current density for rotating problem: Ha = min{t, 0.14}(sin πt
2
, cos πt

2
, 0)T .

for the oscillating magnetic field (6.1). Here J̃ is the solution of (P̂h,∆t) obtained
using a fine mesh (h = 1/256) and small time step (∆t = 0.001). These results are
consistent with an error of O(h).

Finally, in Figure 6.4 we take a rotating applied magnetic field of the form

Ha = min{t, 0.14}
(

sin
πt

2
, cos

πt

2
, 0

)T

,

and we display plots of the current density Jh at times t = 1.5, 2, 2.5, and 3.
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