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We consider the numerical analysis of evolution variational inequalities which are derived from
Maxwell’s equations coupled with a nonlinear constitutive relation between the electric field and the
current density and governing the magnetic field around a type-II bulk superconductor located in 3D
space. The nonlinear Ohm’s law is formulated using the subdifferential of a convex energy so the theory
is applied to the Bean critical-state model, a power law model and an extended Bean critical-state model.
The magnetic field in the nonconducting region is expressed as a gradient of a magnetic scalar potential
in order to handle the curl-free constraint. The variational inequalities are discretized in time implicitly
and in space by Nédélec’s curl-conforming finite element of lowest order. The nonsmooth energies are
smoothed with a regularization parameter so that the fully discrete problem is a system of nonlinear al-
gebraic equations at each time step. We prove various convergence results. Some numerical simulations
under a uniform external magnetic field are presented.

Keywords: macroscopic models for superconductivity; variational inequality; Maxwell’s equations; edge
finite element; convergence; computational electromagnetism.

1. Introduction

In this paper, we propose a finite-element method to analyse critical-state problems for type-II super-
conductivity numerically. In particular, we are interested in analysing the situation where a bulk
superconductor is located in a 3D domain. Models of type-II superconductors use the eddy current ver-
sion of Maxwell’s equations together with nonlinear constitutive relations between the current and the
electric field such as the Bean critical-state model (Bean, 1964), the extended Bean critical-state mod-
els (Bossavit, 1994) or the power law-type relation (Rhyner, 1993) instead of the linear Ohm’s law.
The numerical study of the Bean critical-state model based on a variational formulation without in-
troducing a free boundary between the region of the critical current and the subcritical current was
initiated by Prigozhin (1996a,b). The approach of Prigozhin mathematically treats the electric field as
a subdifferential of a critical energy density which takes the value either zero if the current density
does not exceed some critical value or infinity otherwise. By analysing the subdifferential formula-
tion, the magnetic penetration and the current distribution around the superconductor in 2D situation
were intensively investigated by Prigozhin (1996b, 1997, 1998, 2004). Adopting the variational formu-
lation by Prigozhin, Elliott et al. (2004) reported a numerical analysis of the Bean critical-state model
modelling the magnetic field and the current density. The same authors also presented a finite-element
analysis of the current density–electric field variational formulation (see Elliott et al., 2005). Recently,
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Barrett & Prigozhin (2006) derived dual variational formulations to solve the Bean critical-state model
in terms of the electric field and developed the convergence theory of its finite-element approximation.
Also see Barnes et al. (1999) for engineering application of the Bean model to modelling electrical
machines containing superconductors. In all these articles, the problems are considered in 2D. The
derivation of the Bean critical-state model from various models of type-II superconductivity such as the
Ginzburg–Landau equations was summarized by Chapman (2000).

Bossavit (1994) extended the Bean critical-state model by allowing the current to exceed the critical
value after the superconductor switched to the normal state. The numerical results using this extended
Bean’s model in 3D geometry were reported by Rubinacci et al. (2000, 2002).

As an alternative model, the power law constitutive relation E = |J|pJ for large p > 0 is commonly
used in the modelling of type-II superconductivity (see, e.g. Rhyner, 1993, for a theory with the power
law, Brandt, 1996, for 2D problems and Grilli et al., 2005, for a recent engineering application of 3D
model, etc). It was mathematically proved that as p → ∞, the solution of the power law formulation
converges to the solution of the Bean critical-state formulation (see Barrett & Prigozhin, 2000, for the
2D problem, Yin, 2001, Yin et al., 2002, for 3D cases).

A software package to solve Maxwell’s equations coupled with various nonlinear E–J relations mod-
elling type-II superconductors in 3D for engineering application was developed by Pecher (2003) and
Pecher et al. (2003).

While the numerical analysis of these critical-state models in 2D has been developed by many
authors, to the best of the authors’ knowledge no article tackling the numerical analysis of 3D
critical-state problems is found in the mathematical literature. The purpose of this paper is to define
a finite-element approximation in this setting and prove convergence. Following Prigozhin (1996a,b),
we formulate the magnetic field around the bulk type-II superconductor as an unknown quantity in an
evolution variational inequality obtained from the eddy current model and the subdifferential formula-
tion of the critical-state models.

The Bean-type critical-state model requires the current density not to exceed some critical value,
which is a difficult constraint to attain in 3D numerical analysis. To avoid this difficulty, we employ a
penalty method which approximates the nonsmooth energy with a smooth energy so that the electric
field–current relation is monotone and single valued (see Du et al., 1999, for a regularization method
of the inequality constraint appearing in a mean-field model for superconductivity in 2D). The curl-free
constraint on the magnetic field in the nonconducting region coming from the eddy current model can
be handled by introducing a scalar magnetic potential outside the superconductor. This magnetic field–
scalar potential hybrid formulation is an effective method to carry out the discretization in space for
eddy current problems with an unknown magnetic field (see Bermúdez et al., 2002, for an application
of this method), though it needs an additional treatment to ensure tangential continuity on the boundary
between the conductor and the dielectric. Discretizing the problems in time variable yields an uncon-
strained optimization problem. The problem is then discretized in space by using a curl-conforming
‘edge’ element by Nédélec (1980) of lowest order on a tetrahedral mesh. The fully discrete solution
consisting of the minimizers of the optimization problem is proved to converge to the unique solution of
the variational inequality formulation of the Bean critical-state model. This convergence result is based
on the compactness property of edge elements first proved by Kikuchi (1989) and extended by Monk
(2003). The power law constitutive relation can be viewed as a penalty method for the Bean model by
letting the power become arbitrarily large. We carry out a numerical analysis of both the power law and
the extended Bean model in their own right and as penalty methods for the Bean model.

The outline of this paper is as follows: In Section 2, we recall the mathematical models of the eddy
current problem and the critical-state constitutive laws and formulate the models as evolution variational
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inequalities. In Section 3, we formulate the discretization of the variational inequality formulations.
In Section 4, the convergence of the sequence of approximations to the analytical solution is proved.
Finally, in Section 5, we describe the implementation of the method and report some numerical results
showing the behaviour of the magnetic field and the distribution of the current density flowing through
a bulk cubic superconductor in an uniform applied magnetic field.

2. The models and the mathematical formulation

2.1 The critical-state models

We consider the problem in a convex polyhedron Ω (⊂R3) with a boundary ∂Ω . The bulk type-II
superconductor Ωs is a simply connected domain contained in Ω , with a connected Lipschitz boundary
∂Ωs . Let Ωd denote the dielectric region Ω\Ωs .

The model is based on Maxwell’s equations, where the displacement current is neglected. These
equations are called the eddy current model:

∂tB + curl E = 0 (Faraday’s law), (2.1)

curl H = J (Ampère’s law), (2.2)

div B = 0 (Gauss’ law), (2.3)

where ∂tB denotes ∂B/∂t , and

B: Ω × [0, T ] → R3 denotes the magnetic flux density,

E: Ω × [0, T ] → R3 denotes the electric field intensity,

H: Ω × [0, T ] → R3 denotes the magnetic field intensity,

J: Ω × [0, T ] → R3 denotes the electric current density.

We assume that the constitutive relation between B and H is

B = µH, (2.4)

where the magnetic permeability is denoted by µ: Ω → R>0, which is positive, piecewise constant and
defined by

µ =
{

µs in Ωs,

µd in Ωd ,

for constants µs, µd > 0.
We assume that there are no current sources so that outside the superconductor

J = 0 in Ωd . (2.5)

We study the problem in a physical situation where an external time-dependent source magnetic
field Hs is applied. We impose the boundary condition

n × H = n × hs on ∂Ω, (2.6)



296 C. M. ELLIOTT AND Y. KASHIMA

where n is the unit outward normal to ∂Ω and hs = Hs |∂Ω . Since the source magnetic field Hs is
induced by a generator outside the domain Ω , we extend Hs into Ω so that the superconductor is absent
from the field Hs and Hs satisfies the curl-free condition in the domain. Using a source magnetic flux
density Bs , we suppose that the following equations hold:

curl Hs = 0 in Ω, (2.7)

Bs = µdHs in Ω, (2.8)

div Bs = 0 in Ω, (2.9)

n × Hs = n × hs on ∂Ω. (2.10)

Next we state the critical constitutive law between the electric field E and the supercurrent J in the
superconductor Ωs . In this paper, we always assume the following nonlinear constitutive law:

E ∈ ∂γ (J), (2.11)

where γ: R3 → R ∪ {+∞} is a convex functional and ∂γ (·) is the subdifferential of γ defined by

∂γ (v) := {q ∈ R3|〈q, p〉 + γ (v) � γ (v + p) ∀ p ∈ R3}.

As the convex functional γ we consider the following energy densities.
The Bean critical-state model’s energy density

γ (v) = γ B(v) :=
{

0 if |v| �Jc,

+∞ otherwise,
(2.12)

where the positive constantJc > 0 is a critical current density.
The modified Bean critical-state model’s energy density

γ (v) = γ mB
ε (v) :=

{
0 if |v| �Jc,
1
2ε (|v|2 −J 2

c ) otherwise,
(2.13)

where ε > 0 is a positive constant. More generally, we consider a class of energy densities of the type
γ (v) = g(|v|)/ε, where

g: R → R is convex,

g(x) = 0 if x �Jc, g(x) > 0 if x > Jc,

A1x2 − A2 � g(x) ∀ x ∈ R�0,

g(x +Jc) � A3x2 + A4x ∀ x ∈ R,

(2.14)

where Ai > 0 (i = 1, 2, 3) are positive constants and A4 � 0 is a non-negative constant. Note that γ mB
ε

is one example of these g(|·|)/ε with A4 > 0.
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The power law model’s energy density

γ (v) = γ P
p (v) := Jc

p
|v/Jc|p, (2.15)

where p � 2.
Let us introduce a new quantity Ĥ by

Ĥ = H − Hs . (2.16)

Substituting (2.4), (2.7) and (2.16) into (2.1)–(2.3), we arrive at the following partial differential equa-
tions:

µ∂t Ĥ + µ∂tHs + curl E = 0, (2.17)

curl Ĥ = J, (2.18)

div(µĤ + µHs) = 0. (2.19)

We couple the critical-state constitutive relation (2.11) with the eddy current model (2.17)–(2.19)
and (2.7)–(2.10) to derive the equation for the unknown field Ĥ.

To ensure the well-posedness of the model, let us give initial boundary conditions for Ĥ. At the
beginning of the time evolution, we assume that no source magnetic field is applied to the domain.
Hence, there is no induced current in the superconductor and the initial condition of Ĥ is the zero field.

Ĥ|t=0 = Hs |t=0 = 0. (2.20)

It follows from (2.6) and (2.10) that

n × Ĥ = 0 on ∂Ω. (2.21)

2.2 Characterization of the nonlinear constitutive laws

To see the nonlinearity of the constitutive relation (2.11) clearly, let us characterize (2.11) for each
energy density.

PROPOSITION 2.1 For vectors E, J ∈ R3, the inclusion E ∈ ∂γ B(J) holds if, and only if, there is a
constant ρ � 0 such that the following relations hold:

E = ρJ, (2.22)

|J| �Jc, (2.23)

|J| < Jc =⇒ E = 0. (2.24)

Proof. First note that by definition the inclusion E ∈ ∂γ B(J) is equivalent to the inequality

〈E, p〉 + γ B(J) � γ B(J + p) (2.25)

for all p ∈ R3.
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Assume (2.22)–(2.24). Fix any p ∈ R3. If |J + p| > Jc holds, then the inequality (2.25) is trivial
by the definition of γ B . If |J + p| �Jc and |J| < Jc, then by the relation (2.24), the inequality (2.25)
holds since in this case both sides are zero. If |J| = Jc, then the inequality |J + p| �Jc yields

2〈J, p〉 � −|p|2 � 0. (2.26)

Multiplying (2.26) by ρ/2, we have 〈E, p〉 � 0, which is (2.25).
Conversely, we show that the inequality (2.25) leads to the relations (2.22)–(2.24). If |J| >Jc holds,

then by substituting p = −J into (2.25) we arrive at +∞ � 0, which is a contradiction. Thus, the
inequality (2.23) must always hold.

Suppose |J| < Jc and E �= 0. Then taking a large constant C > 0 satisfying |J + E/C | �Jc and
substituting p = E/C into (2.25), we have |E|2/C � 0, which is a contradiction. Therefore, the relation
(2.24) is valid.

Finally, we show (2.22). Taking p = q − J for all q ∈ R3 with |q| �Jc, we obtain

〈E, q − J〉 � 0. (2.27)

If E = 0 then (2.22) is true for ρ = 0. Let E be non-zero, then by (2.24) |J| = Jc. Suppose that the
vector E is not parallel to the vector J. Let us consider the plane A containing the vectors E and J. Draw
the line L which passes through the point J and is perpendicular to the vector E on A. Then the line L
divides the plane A into two domains. Take any point q belonging to one of these domains containing
the point E to satisfy |q| �Jc, q �= J (see Fig. 1). Then we obviously see that 〈E, q − J〉 > 0, which
contradicts (2.27). Thus, the vector E must be parallel to the vector J and we can write E = ρJ. If
ρ < 0, then by taking q = 0 in (2.27) we have −ρJ 2

c � 0, which is a contradiction. Therefore (2.22)
is correct. �
REMARK 2.1 As Proposition 2.1 shows, the subdifferential formulation E ∈ ∂γ B(J) requires the par-
allel condition E = ρJ for ρ � 0. From a modelling perspective, this relation is accepted if the su-
perconductor Ωs is axially symmetric (see Prigozhin, 1996b) or a thin film (see Prigozhin, 1998) in a
perpendicular external field. However, in the full 3D configuration the direction of the current flowing
through the superconductor is not yet settled (see Prigozhin, 1996a,b; Chapman, 2000, where this issue
is argued from the point of view of mathematical modelling). However, the power law characteristic is
a popular model based on experimental measurements of superconductors (see Rhyner, 1993, and refer-
ences therein). Furthermore, the Bean-type critical-state constitutive law is a limiting case of the power

FIG. 1. The vectors on the plane A.
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law even in 3D situations (see Yin, 2001; Yin et al., 2002, or Proposition 2.6). Thus, it is an interesting
topic to consider the numerical analysis of the Bean-type critical-state model E ∈ ∂γ B(J) for a general
class of 3D type-II superconductor.

PROPOSITION 2.2 For vectors E, J ∈ R3, the inclusion E ∈ ∂γ mB
ε (J) holds if, and only if, the following

relations hold:

E =
{

0 if |J| < Jc,

1
ε J if |J| �Jc.

(2.28)

Proof. This equivalence was proved by Bossavit (1994). We sketch the proof.
By definition, E ∈ ∂γ mB

ε (J) is equivalently written as

〈E, p〉 + γ mB
ε (J) � γ mB

ε (J + p) (2.29)

for all p ∈ R3. By elementary calculation, we can check that (2.28) yields (2.29). Let us assume (2.29).
If |J| < Jc, the inequality (2.29) yields that for all p ∈ R3 with |p| �Jc,

〈E, p − J〉 � 0. (2.30)

Taking a large C > 0 such that |J + E/C | �Jc and substituting p = J + E/C into (2.30), we obtain
|E|2/C � 0, thus E = 0, which is (2.28).

Assume |J| > Jc. Take any p ∈ R3. Choosing a small δ > 0 such that |J + δp| > Jc and sub-
stituting δp into (2.29), we have

δ〈E, p〉 � (2δ〈J, p〉 + δ2|p|2)/(2ε).

Dividing both sides by δ and sending δ ↘ 0, we have

〈E − J/ε, p〉 � 0. (2.31)

Similarly, taking δ < 0 such that |J + δp| > Jc, we obtain

〈E − J/ε, p〉 � 0. (2.32)

By (2.31) and (2.32) we have 〈E − J/ε, p〉 = 0 for all p ∈ R3, or E = J/ε, which is (2.28).
If |J| = Jc, take any p ∈ R3 such that 〈p, J〉 > 0. Then for all δ > 0, we see |J + δp| > Jc. Thus,

by substituting δp into (2.29) and sending δ ↘ 0 we deduce that for all p ∈ R3, with 〈p, J〉 > 0,

〈E − J/ε, p〉 � 0.

This implies that there is C � 0 such that

E − J/ε = −CJ. (2.33)

Similarly, take any p ∈ R3 such that 〈p, J〉 < 0. Then for all δ < 0, we see that |J + δp| > Jc. By
substituting δp into (2.29) and sending δ ↗ 0 we have that for all p ∈ R3, with 〈p, J〉 < 0,

〈E − J/ε, p〉 � 0,

which implies that there is C ′ � 0 such that

E − J/ε = C ′J. (2.34)

By (2.33) and (2.34) we obtain E − J/ε = 0. Therefore, the relation (2.28) holds. �
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REMARK 2.2 The model (2.28) proposed by Bossavit (1994) is a modification of the Bean-type model
(2.22)–(2.24) in the sense that if the current density |J| exceeds the critical value, then E − J relation is
switched to be the linear Ohm’s law.

PROPOSITION 2.3 For vectors E, J ∈ R3, the inclusion E ∈ ∂γ P
p (J) holds if, and only if, E =

J
1−p
c |J|p−2J.

Proof. If a convex function is differentiable, its subdifferential is always equal to the derivative of the
function (see, e.g. Barbu & Precupanu, 1986). Since now γ P

p (·) is differentiable, this equivalence is
immediate. �

2.3 Mathematical formulation of the magnetic field Ĥ via a variational inequality

We formulate Faraday’s law (2.17) in an integral form. Take a function φφφ: Ω → R3 with curl φφφ = 0 in
Ωd and n × φφφ = 0 on ∂Ω . Then (2.17) yields∫

Ω
µ〈∂t Ĥ + ∂tHs, φφφ〉dx +

∫
Ωs

〈E, curl φφφ〉dx = 0. (2.35)

Let us combine the weak form (2.35) with the constitutive relation (2.11). Substituting p = curl φφφ(x)
for all φφφ: Ω → R3 satisfying curl φφφ = 0 in Ωd and n × φφφ = 0 on ∂Ω into the definition of the
subdifferential ∂γ and recalling the equality (2.18), we see that

−
∫

Ω
µ〈∂t Ĥ(x, t) + ∂tHs(x, t), φφφ(x)〉dx +

∫
Ωs

γ (curl Ĥ(x, t))dx

�
∫

Ωs

γ (curl Ĥ(x, t) + curl φφφ(x))dx,

or equivalently by taking φφφ − Ĥ as φφφ above, we deduce that∫
Ω

µ〈∂t Ĥ(x, t) + ∂tHs(x, t), φφφ(x) − Ĥ(x, t)〉dx +
∫

Ωs

γ (curl φφφ(x))dx −
∫

Ωs

γ (curl Ĥ(x, t))dx � 0.

Thus, we formally obtained a variational inequality formulation of the unknown magnetic field Ĥ.

2.3.1 Function spaces. To complete the formulation, let us introduce the function spaces which are
used to analyse the problem mathematically

H(curl; Ω) := {φφφ ∈ L2(Ω; R3)|curl φφφ ∈ L2(Ω; R3)}
with the norm ‖φφφ‖H(curl;Ω) := (‖φφφ‖2

L2(Ω;R3)
+ ‖curl φφφ‖2

L2(Ω;R3)
)1/2,

H1(curl; Ω) := {φφφ ∈ H1(Ω; R3)|curl φφφ ∈ H1(Ω; R3)}
with the norm ‖φφφ‖H1(curl;Ω) := (‖φφφ‖2

H1(Ω;R3)
+ ‖curl φφφ‖2

H1(Ω;R3)
)1/2, the dual space (H(curl; Ω))∗

of H(curl; Ω) with respect to the inner product of L2(Ω; R3) with the norm

‖φφφ‖(H(curl;Ω))∗ = sup
ψψψ∈H(curl;Ω)

|〈ψψψ, φφφ〉L2(Ω;R3)|
‖ψψψ‖H(curl;Ω)

,
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and

H(div; Ω) := {φφφ ∈ L2(Ω; R3)|divφφφ ∈ L2(Ω)}
with the norm ‖φφφ‖H(div;Ω) := (‖φφφ‖2

L2(Ω;R3)
+ ‖divφφφ‖2

L2(Ω)
)1/2.

Next we define the traces of functions in H(curl; Ω) and H(div; Ω). Note that for all φφφ ∈ H1(Ω;
RN ) (N = 1, 3) φφφ|∂Ω ∈ H1/2(∂Ω; RN ), where H1/2(∂Ω; RN ) is a Sobolev space with the norm

‖φφφ‖H1/2(∂Ω;RN ) :=
(

‖φφφ‖2
L2(∂Ω;RN )

+
∫

∂Ω

∫
∂Ω

|φφφ(x) − φφφ(y)|2
|x − y|3 dA(x)dA(y)

)1/2

.

Let H−1/2(∂Ω; RN ) be the dual space of H1/2(∂Ω; RN ) with respect to the inner product of L2(∂Ω;
RN ) with the norm

‖φφφ‖H−1/2(∂Ω;RN ) := sup
ψψψ∈H1/2(∂Ω;RN )

|〈φφφ,ψψψ〉L2(∂Ω;RN )|
‖ψψψ‖H1/2(∂Ω;RN )

.

For all φφφ ∈ H(curl; Ω), the trace n × φφφ on ∂Ω is well-defined in H−1/2(∂Ω; R3), where n is the unit
outward normal to ∂Ω , in the sense that

〈n × φφφ,ψψψ〉L2(∂Ω;R3) := 〈curl φφφ,ψψψ〉L2(Ω;R3) − 〈φφφ, curl ψψψ〉L2(Ω;R3)

for all ψψψ ∈ H1(Ω; R3). For all φφφ ∈ H(div; Ω), the trace n · φφφ on ∂Ω is well-defined in H−1/2(∂Ω) in
the sense that

〈n · φφφ, f 〉L2(∂Ω) := 〈div φφφ, f 〉L2(Ω) + 〈φφφ, ∇ f 〉L2(Ω;R3)

for all f ∈ H1(Ω).
Define the subspace V (Ω) of H(curl; Ω) by

V (Ω) := {φφφ ∈ H(curl; Ω)|curl φφφ = 0 in Ωd , n × φφφ = 0 on ∂Ω}.
The subspace Vp(Ω) of V (Ω) (p � 2) is defined by

Vp(Ω) := {φφφ ∈ V (Ω)|curl φφφ|Ωs ∈ L p(Ωs ; R3)}.
The subset S of V (Ω) is defined by

S := {φφφ ∈ V (Ω)||curl φφφ| �Jc a.e. in Ωs}.
The subspace X (µ)(Ω) of H(curl; Ω) consisting of divergence-free functions for the magnetic perme-
ability µ is defined by

X (µ)(Ω) := {φφφ ∈ H(curl; Ω)|div(µφφφ) = 0 in D′(Ω)},
where D′(Ω) denotes the space of Schwartz distributions.

The spaces Lq(0, T ; B) (q = 2 or ∞), H1(0, T ; B), C([0, T ]; B) and C1,1([0, T ]; B) for a Banach
space B are defined in the usual way.
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2.3.2 External magnetic field. In this section, we discuss the external magnetic field Hs solving
(2.7)–(2.10). We assume that the boundary value hs : ∂Ω × [0, T ] → R3 satisfies

hs ∈ C1,1([0, T ]; H1/2(∂Ω; R3)) and hs(0) = 0, (2.36)

and, for all t ∈ [0, T ] and φφφ ∈ H(curl; Ω) with curl φφφ = 0,∫
∂Ω

〈hs(t), n × φφφ〉dA = 0. (2.37)

LEMMA 2.1 Under Assumptions (2.36) and (2.37), there exists a unique function Hs ∈ C1,1([0, T ];
H1(curl; Ω)) such that Hs satisfies System (2.7)–(2.10) in the weak sense for all t ∈ [0, T ] and
Hs(0) = 0. Moreover, the following inequalities hold for all t ∈ [0, T ]:

‖Hs(t)‖H1(curl;Ω) � C‖hs(t)‖H1/2(∂Ω;R3), (2.38)

‖∂tHs(t)‖H1(curl;Ω) � C‖∂ths(t)‖H1/2(∂Ω;R3). (2.39)

Proof. The proof of existence of a unique solution follows Auchmuty & Alexander (2005), where the
unique solvability theory for general div–curl systems assuming a boundary of C2 class was developed.
Fix any t ∈ [0, T ]. We use the following Helmholtz decomposition (see, e.g. Cessenat, 1996, Theorem
10′, Chapter 2):

L2(Ω; R3) = ∇H1
0 (Ω) ⊕ curl H1(Ω; R3), (2.40)

L2(Ω; R3) = ∇H1(Ω) ⊕ curl H1
0 (Ω; R3). (2.41)

We will find Hs(t) ∈ L2(Ω; R3) such that

curl Hs(t) = 0 in Ω, (2.42)

div Hs(t) = 0 in Ω, (2.43)

n × Hs(t) = n × hs(t) on ∂Ω. (2.44)

By the decomposition (2.40), we can write Hs(t) = ∇ f + curl H1 with f ∈ H1
0 (Ω) and H1 ∈

H1(Ω; R3). Condition (2.43) implies f ≡ 0. Thus, our problem is equivalent to finding H1 ∈ H1(Ω;
R3) such that

curl (curl H1) = 0 in Ω, (2.45)

n × curl H1 = n × hs(t) on ∂Ω. (2.46)

The weak form of (2.45)–(2.46) is∫
Ω

〈curl H1, curl φφφ〉dx +
∫

∂Ω
〈n × hs(t), φφφ〉dA = 0, (2.47)

for all φφφ ∈ H1(Ω; R3).
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For all φφφ ∈ H1(Ω; R3), the decomposition (2.41) implies that there exist unique f̂ ∈ H1(Ω) and
H2 ∈ curl H1

0 (Ω; R3) such that φφφ = ∇ f̂ + H2. Note that H2 · n = 0 on ∂Ω . Therefore, by Assumption
(2.37), Problem (2.47) is equivalent to the problem: find H2 ∈ X1 such that∫

Ω
〈curl H2, curl φφφ〉dx −

∫
∂Ω

〈hs(t), n × φφφ〉dA = 0, (2.48)

for all φφφ ∈ X1, where the space X1 is defined by

X1 := {φφφ ∈ H(curl; Ω)|divφφφ = 0 in Ω, n · φφφ = 0 on ∂Ω}
equipped with the norm of H(curl; Ω).

Let us define a functional F : X1 → R by

F(φφφ) := 1

2

∫
Ω

|curl φφφ|2 dx −
∫

∂Ω
〈hs(t), n × φφφ〉dA.

Then we see that

F(φφφ) � 1

2
‖curl φφφ‖2

L2(Ω;R3)
− ‖hs(t)‖H1/2(∂Ω;R3)‖n × φφφ‖H−1/2(∂Ω;R3)

� 1

2
‖curl φφφ‖2

L2(Ω;R3)
− C‖hs(t)‖H1/2(∂Ω;R3)‖curl φφφ‖L2(Ω;R3), (2.49)

where we have used the fact that the map φφφ �→ n × φφφ: H(curl; Ω) → H−1/2(∂Ω; R3) is continuous
together with the Friedrichs inequality (see Girault & Raviart, 1986)

‖φφφ‖L2(Ω;R3) � C‖curl φφφ‖L2(Ω;R3)

for all φφφ ∈ X1. Therefore, by noting the convexity of F and (2.49), we can show the existence of a
unique H2 ∈ X1 satisfying

F(H2) = min
φφφ∈X1

F(φφφ), (2.50)

which is equivalent to Problem (2.48). Hence, the existence of a unique solution to (2.42)–(2.44) has
been proved.

Next we will show that Hs ∈ C1,1([0, T ]; H1(curl; Ω)) and the inequalities (2.38) and (2.39) hold.
Fix t ∈ [0, T ]. Let ξξξ t ∈ H1(Ω; R3) be a weak solution to the following elliptic problem:


ξξξ t = 0 in Ω,

ξξξ t = hs(t) on ∂Ω.
(2.51)

Then, we have

‖ξξξ t‖H1(Ω;R3) � C‖hs(t)‖H1/2(∂Ω;R3). (2.52)

Since Ω is convex, the space X2 defined by

X2 := {φφφ ∈ H(curl; Ω) ∩ H(div; Ω)|n × φφφ = 0 on ∂Ω} ,
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equipped with the inner product

〈φφφ,ψψψ〉X2 := 〈φφφ,ψψψ〉L2(Ω;R3) + 〈curl φφφ, curl ψψψ〉L2(Ω;R3) + 〈div φφφ, div ψψψ〉L2(Ω),

is continuously imbedded into H1(Ω; R3) (see Amrouche et al., 1998, Proposition 2.17). Noting that
Hs(t) − ξξξ t ∈ X2, we have

‖Hs(t)‖H1(Ω;R3) � ‖Hs(t) − ξξξ t‖H1(Ω;R3) + ‖ξξξ t‖H1(Ω;R3)

� C1(‖Hs(t) − ξξξ t‖L2(Ω;R3) + ‖curl ξξξ t‖L2(Ω;R3) + ‖div ξξξ t‖L2(Ω)) + ‖ξξξ t‖H1(Ω;R3)

� C2‖n × hs(t)‖L2(∂Ω;R3) + C3‖ξξξ t‖H1(Ω;R3)

� C4‖hs(t)‖H1/2(∂Ω;R3),

where we have used the inequality (2.52) and the Friedrichs inequality (see Girault & Raviart, 1986)

‖Hs(t)‖L2(Ω;R3) � C‖n × hs(t)‖L2(∂Ω;R3).

Since hs : [0, T ] → H1/2(∂Ω; R3) is continuous, we have Hs ∈ C([0, T ]; H1(Ω; R3)). By repeating
the same argument for ∂tHs , we can show that ∂tHs : [0, T ] → H1(Ω; R3) is Lipschitz continuous and
the inequality (2.39) holds. �

From now on, the magnetic field Hs is the one whose existence was proved in Lemma 2.1 under
Assumptions (2.36) and (2.37).

2.3.3 Variational inequality formulations. Now we are ready to propose our mathematical formu-
lation of (2.17)–(2.21) coupled with the nonlinear constitutive law (2.11) as the initial-value problem
for the evolution variational inequality for the unknown Ĥ. The first one is the formulation with Bean’s
model

(PB1) Find Ĥ ∈ H1(0, T ; L2(Ω; R3)) such that Ĥ(t) ∈ S for a.e. t ∈ [0, T ],∫
Ω

µ〈∂t Ĥ(x, t) + ∂tHs(x, t), φφφ(x) − Ĥ(x, t)〉dx � 0, for a.e. t ∈ (0, T ], (2.53)

holds for all φφφ ∈ S and Ĥ(x, 0) = 0 in Ω .

PROPOSITION 2.4 The solution Ĥ of (PB1) uniquely exists. Moreover, the solution Ĥ(t): [0, T ] →
L2(Ω; R3) is Lipschitz continuous and satisfies Ĥ(t) + Hs(t) ∈ X (µ)(Ω) for all t ∈ [0, T ].

Proof. The proof essentially follows Prigozhin (1996a, Theorem 2), where the magnetic permeability
µ was assumed to be constant and the problem was formulated in the whole space R3. Let L2

µ(Ω; R3)

denote the Hilbert space L2(Ω; R3) equipped with the inner product 〈µ·, ·〉L2(Ω;R3). Problem (PB1)
becomes an evolution problem in L2

µ(Ω; R3) as follows:{
dt Ĥ(t) + ∂tHs(t) ∈ −∂E(Ĥ(t)) a.e. t ∈ (0, T ],

Ĥ(0) = 0,
(2.54)
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where the energy functional E : L2
µ(Ω; R3) → R ∪ {+∞} is an indicator functional of the non-empty

closed convex set S ⊂ L2
µ(Ω; R3) so that

E(φφφ) :=
{

0 if φφφ ∈ S,

+∞ otherwise.
(2.55)

Since E is convex and lower semicontinuous, not identically +∞, its subdiffrential ∂E is a maximal
monotone operator in L2

µ(Ω; R3). Therefore, by the Lipschitz continuity of the given data ∂tHs(t), a
standard theorem from nonlinear semigroup theory (see, e.g. Brezis, 1971, Theorem 21) ensures the
existence of a unique Ĥ ∈ H1(0, T ; L2(Ω; R3)) satisfying Ĥ(t) ∈ S for all t ∈ [0, T ], (2.54) and the
Lipschitz continuity on [0, T ].

We show that Ĥ(t) + Hs(t) ∈ X (µ)(Ω) for all t ∈ [0, T ]. Take any f ∈ D(Ω) and any δ ∈ R.
Substituting δ∇ f + Ĥ(t) ∈ S into (2.53), we obtain

δ

∫
Ω

µ〈∂t Ĥ(t) + ∂tHs(t), ∇ f 〉dx � 0.

By separately taking positive and negative δ, we have∫
Ω

µ〈∂t Ĥ(t) + ∂tHs(t), ∇ f 〉dx = 0 (2.56)

for a.e. t ∈ (0, T ]. Since now Ĥ+Hs is Lipschitz continuous, by integrating (2.56) over [0, t] we deduce
that 〈µ(Ĥ(t) + Hs(t)), ∇ f 〉L2(Ω;R3) = 0 for all t ∈ [0, T ]. �

Formulating the modified Bean model with the energy density g(|·|)/ε in the same way as (PB1)
leads to the initial-value problem (PmB

ε 1)

(PmB
ε 1) Find Ĥε ∈ H1(0, T ; L2(Ω; R3)) such that Ĥε(t) ∈ V (Ω) for all t ∈ [0, T ],∫

Ω
µ〈∂t Ĥε(x, t) + ∂tHs(x, t), φφφ(x) − Ĥε(x, t)〉dx + 1

ε

∫
Ω

g(|curl φφφ(x)|)dx

− 1
ε

∫
Ω

g(|curl Ĥε(x, t)|)dx � 0, for a.e. t ∈ (0, T ], (2.57)

holds for all φφφ ∈ V (Ω) and Ĥε(x, 0) = 0 in Ω .

PROPOSITION 2.5 The solution Ĥε of (PmB
ε 1) exists and is unique. The solution Ĥε: [0, T ] →

L2(Ω; R3) is Lipschitz continuous and satisfies Ĥε(t) + Hs(t) ∈ X (µ)(Ω) for all t ∈ [0, T ]. More-
over, the following convergence properties to the solution Ĥ of (PB1) hold. As ε ↘ 0,

Ĥε → Ĥ strongly in C([0, T ]; L2(Ω; R3)),

∂t Ĥε → ∂t Ĥ strongly in L2(0, T ; L2(Ω; R3)),

1

ε

∫
Ωs

g(|curl Ĥε(t)|)dx → 0 uniformly in [0, T ].

(2.58)
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Proof. Define Eε(·): L2
µ(Ω; R3) → R ∪ {+∞} by

Eε(φφφ) :=
{ 1

ε

∫
Ωs

g(|curlφφφ|)dx if φφφ ∈ V (Ω),

+∞ otherwise .

Then Problem (PmB
ε 1) is written as an evolution equation

dt Ĥε(t) + ∂tHs(t) ∈ −∂Eε(Ĥε(t)) (2.59)

for a.e t ∈ (0, T ] and Ĥε(0) = 0.
The energy Eε is convex and not identically +∞. By noting the property (2.14) of g, we can show

that Eε is lower semicontinuous. The existence of a unique solution Ĥε is, thus, proved in the same way
as Proposition 2.4.

We will prove the convergence properties (2.58). Take any sequence {εi }∞i=1 satisfying εi ↘ 0 as
i → +∞. By Attouch (1978, Theorem 2.1), it is sufficient to prove that the sequence of energies Eεi

converges to the energy E defined in (2.55) in the sense of Mosco (see, e.g. Attouch (1984)) as i → +∞,
i.e.

(i) If φφφεi
⇀ φφφ weakly in L2

µ(Ω; R3) as i → +∞, E(φφφ) � lim infi→+∞ Eεi (φφφεi
) holds.

(ii) For any φφφ ∈ L2
µ(Ω; R3) with E(φφφ) < +∞, there exists a sequence {φφφεi

}∞i=1 such that φφφεi
→ φφφ

strongly in L2
µ(Ω; R3) and Eεi (φφφεi

) → E(φφφ) as i → +∞.

Since Eεi (φφφ) = E(φφφ) = 0 for all φφφ ∈ S and all i , (ii) is true. Assume φφφεi
⇀ φφφ weakly in

L2
µ(Ω; R3) and Eεi (φφφεi

) � λ for all i ∈ N. By convexity of g(·) and Fatou’s lemma, we see that by
taking a subsequence and its convex combination denoted by {∑n

i=1 φφφεi
/n}∞n=1∫

Ωs

g(|curl φφφ|)dx � lim inf
n→+∞

∫
Ωs

g

(∣∣∣∣∣1

n

n∑
i=1

curl φφφεi

∣∣∣∣∣
)

dx � lim inf
n→+∞

1

n

n∑
i=1

εiλ = 0,

which yields |curlφφφ(x)| �Jc a.e. in Ωs . Therefore, φφφ ∈ S and E(φφφ) = 0 � λ, which means that (i) is
correct. The desired convergence properties are proved by applying Attouch (1978, Theorem 2.1). �

The variational inequality formulation with the power law constitutive relation E ∈ ∂γ P
p (J) is stated

as follows:

(PP
p 1) Find Ĥp ∈ H1(0, T ; L2(Ω; R3)) such that Ĥp(t) ∈ Vp(Ω) for all t ∈ [0, T ],∫

Ω
µ〈∂t Ĥp(x, t) + ∂tHs(x, t), φφφ(x) − Ĥp(x, t)〉dx +

∫
Ω

γ P
p (curlφφφ(x))dx

−
∫

Ω
γ P

p (curl Ĥp(x, t))dx � 0, for a.e. t ∈ (0, T ], (2.60)

holds for all φφφ ∈ Vp(Ω) and Ĥp(x, 0) = 0 in Ω .

PROPOSITION 2.6 The solution Ĥp of (PP
p 1) exists and is unique. The solution Ĥp: [0, T ] →

L2(Ω; R3) is Lipschitz continuous and satisfies Ĥp(t)+ Hs(t) ∈ X (µ)(Ω) for all t ∈ [0, T ]. Moreover,
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the following convergence properties to the solution Ĥ of (PB1) hold. As p → +∞,

Ĥp → Ĥ strongly in C([0, T ]; L2(Ω; R3)),

∂t Ĥp → ∂t Ĥ strongly in L2(0, T ; L2(Ω; R3)),∫
Ωs

γ P
p (curl Ĥp(t))dx → 0 uniformly in [0, T ].

(2.61)

Proof. Let us define the energy functional E p: L2
µ(Ω; R3) → R ∪ {+∞} by

E p(φφφ) :=
{∫

Ωs
γ P

p (curl φφφ)dx if φφφ ∈ Vp(Ω),

+∞ otherwise.

The convexity of E p is obvious. Similarly as in Proposition 2.4, we can show the existence of a unique
solution Ĥp with the desired properties.

To show the convergence properties (2.61), we show that E pi converges to E in the sense of Mosco
as i → +∞ for any sequence {pi }∞i=1 ⊂ R�2 satisfying pi ↗ +∞. Let us check Condition (ii) of
Mosco convergence stated in the proof of Proposition 2.5 first. Take any φφφ ∈ S. We see that

0 � E pi (φφφ) − E(φφφ) �Jc|Ωs |/pi → 0

as i → +∞. Thus, (ii) holds. To show (i), assume that φφφi ⇀ φφφ weakly in L2
µ(Ω; R3) as i → +∞ and

E pi (φφφi ) � λ for any i ∈ N, i.e.

Jc

pi

∫
Ωs

|curl φφφi/Jc|pi dx � λ. (2.62)

Fix pi and take q ∈ [2, pi ]. Then, by applying Hölder’s inequality to (2.62) we have∫
Ωs

|curl φφφi/Jc|q dx �
(∫

Ωs

|curl φφφi/Jc|pi dx
)q/pi

|Ωs |1−q/pi � (λpi/Jc)
q/pi |Ωs |1−q/pi .

(2.63)
By taking q = 2 in (2.63), we obtain∫

Ωs

|curl φφφi/Jc|2 dx � (λpi/Jc)
2/pi |Ωs |1−2/pi . (2.64)

Since limi→∞(λpi/Jc)
2/pi |Ωs |1−2/pi = |Ωs |, (2.64) implies that {curl φφφi }∞i=1 is bounded in L2(Ω; R3).

Therefore, by extracting a subsequence still denoted by {curl φφφi }∞i=1, we observe that φφφi weakly con-
verges to φφφ in H(curl; Ω) as i → ∞ and φφφ ∈ V (Ω). We show that |curl φφφ| � Jc in Ωs . We can
choose a subsequence of {φφφi }∞i=1 so that its convex combination denoted by {∑i

j=1 φφφ j/ i}∞i=1 strongly
converges to φφφ in H(curl; Ω) as i → +∞. Thus, if necessary by taking a subsequence, we see that
curl(

∑i
j=1 φφφ j (x)/ i) converges to curl φφφ(x) a.e. in Ω as i → +∞. By applying Fatou’s lemma to

(2.63), we have∫
Ωs

|curl φφφ/Jc|q dx � lim inf
i→+∞

⎛⎝ i∑
j=1

(λp j/Jc)
q/p j |Ωs |1−q/p j / i

⎞⎠ = |Ωs |,
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or ‖curl φφφ/Jc‖Lq (Ωs ;R3) � |Ωs |1/q . By sending q → ∞ we obtain ‖curl φφφ/Jc‖L∞(Ωs ;R3) � 1.
Therefore, φφφ ∈ S and E(φφφ) = 0 � λ. Thus, (ii) has been proved. This Mosco convergence immediately
shows the desired convergence properties by Attouch (1978, Theorem 2.1). �

We will use the following statement, which can be proved in the same way as the proof above, in
Section 4.

COROLLARY 2.1 Let {pn}∞n=1 be a sequence satisfying pn � 2 for any n ∈ N and pn → +∞ as
n → +∞.

1. If a sequence {ψψψn}∞n=1 ⊂ L∞(0, T ; L2(Ω; R3)) satisfies that, for a.e. t ∈ (0, T ) and any n ∈ N,

1

pn

∫
Ω

|ψψψn(t)|pn dx � λ,

where λ � 0, then {ψψψn}∞n=1 is bounded in L∞(0, T ; L2(Ω; R3)).

2. For a sequence {φφφn}∞n=1 ⊂ L2(0, T ; L2(Ω; R3)) with φφφn → φφφ in L2(0, T ; L2(Ω; R3)), assume

1

pn

∫ T

0

∫
Ωs

|curl φφφn/Jc|pn dx dt � λ

for all n ∈ N. Then |curl φφφ(x, t)| �Jc a.e. in Ωs × (0, T ).

2.4 Magnetic field−magnetic scalar potential hybrid formulation

The curl-free constraint in the nonconducting region Ωd can be enforced by expressing the magnetic
field as a magnetic scalar potential. This hybrid formulation was recently applied to time-harmonic eddy
current models with input current intensities on the boundary of the domain in Bermúdez et al. (2002).
We adopt this method to rewrite the variational inequality formulation (PB1) in an equivalent form
without the constraint.

Let us prepare some notations. For u1 ∈ L2(Ωs ; R3) and u2 ∈ L2(Ωd ; R3), (u1|u2) ∈ L2(Ω; R3)
is defined by

(u1|u2) :=
{

u1 in Ωs,

u2 in Ωd .

We define a linear space W (Ω) and its subspace Wp(Ω) (p � 2) by

W (Ω) := {(φφφ|∇v) ∈ L2(Ω; R3)|(φφφ, v) ∈ L2(Ωs ; R3)

× H1(Ωd), (φφφ|∇v) ∈ H(curl; Ω), v = 0 on ∂Ω}.
Wp(Ω) := {(φφφ|∇v) ∈ W (Ω)|curl φφφ ∈ L p(Ωs ; R3)}.

The space W (Ω) is endowed with the inner product of H(curl; Ω).

PROPOSITION 2.7 The space W (Ω) is isomorphic to V (Ω) as a Hilbert space.

Proof. For any H ∈ V (Ω), there exists a scalar potential vH ∈ H1(Ωd) such that H|Ωd = ∇vH and vH

is unique up to an additive constant since curl H = 0 in a simply connected domain Ωd (see, e.g. Monk,
2003, Theorem 3.37). The boundary condition n×H = 0 on ∂Ω implies that the surface gradient of vH
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on ∂Ω is zero, and therefore vH is constant on ∂Ω . By choosing vH to be zero on ∂Ω , we can uniquely
determine vH satisfying H|Ωd = ∇vH . The linear map H �→ (

H|Ωs |∇vH
)

from V (Ω) to W (Ω) is thus
well-defined and gives the desired isomorphism. �

This proposition allows us to reformulate Problem (PB1) as a problem where the curl-free constraint
imposed on test functions is eliminated. Define a convex set R ⊂ W (Ω) by

R := {(φφφ|∇v) ∈ W (Ω)||curl φφφ| �Jc a.e. in Ωs}.
The hybrid problem (PB2) is stated as follows.

(PB2) Find ψψψ : [0, T ] → H(curl; Ωs) and u: [0, T ] → H1(Ωd) such that (ψψψ |∇u) ∈ H1(0, T ;
L2(Ω; R3)), (ψψψ |∇u)(t) ∈ R for all t ∈ [0, T ],∫

Ωs

µs〈∂tψψψ(x, t) + ∂tHs(x, t), φφφ(x) − ψψψ(x, t)〉dx

+
∫

Ωd

µd〈∂t∇u(x, t) + ∂tHs(x, t), ∇v(x) − ∇u(x, t)〉dx � 0, for a.e. t ∈ (0, T ],

(2.65)

holds for all (φφφ|∇v) ∈ R and (ψψψ |∇u)(x, 0) = 0 in Ω .
By the equivalence between V (Ω) and W (Ω) and Proposition 2.4, the existence of a unique solution

(ψψψ |∇u) of (PB2) such that (ψψψ |∇u): [0, T ] → L2(Ω; R3) is Lipschitz continuous and (ψψψ |∇u)(t) +
Hs(t) ∈ X (µ)(Ω) for all t ∈ [0, T ] follows immediately. It is also possible to rewrite Problems (PmB

ε 1)
and (PP

p 1) as hybrid problems with the scalar magnetic potential.

3. Discretization

In this section, we discretize our variational inequality formulations (PmB
ε 1) and (PP

p 1) to construct

discrete solutions converging to the analytical solutions of (PB1) and (PB2). Let us precisely define the
geometry. The domain Ω (⊂R3) is a convex polyhedron. The bulk type-II superconductor Ωs (⊂Ω)
is a simply connected polyhedral domain with a connected boundary ∂Ωs satisfying ∂Ωs ∩ ∂Ω = ∅.
Moreover, we assume that the domain Ωs is starshaped for a point y0 ∈ Ωs in the sense that

for any z ∈ Ωs, α(z − y0) + y0 ∈ Ωs ∀ α ∈ [0, 1). (3.1)

Let Ωd denote the nonconducting region Ω\Ωs . Note that in this situation Ωd (=Ω\Ωs) is simply
connected, and Ω and Ωs can be meshed by tetrahedra (see Fig. 2).

3.1 Finite-element approximation

Let τh be a tetrahedral mesh covering Ω , satisfying h = max{hK |K ∈ τh}, where hK is the diameter
of the smallest sphere containing K . The mesh τh is assumed to be regular in the sense that there are
constants C > 0 and h0 > 0 such that

hK /ρK � C ∀ K ∈ τh, 0 < ∀ h � h0, (3.2)

where ρK is the diameter of the largest sphere contained in K . Moreover, the mesh τh is quasi-uniform
on ∂Ω in the sense that there is a constant C ′ > 0 such that

h/h f � C ′ for any face f ⊂ ∂Ω and 0 < ∀ h � h0, (3.3)
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FIG. 2. Domain of the problem.

where h f is the diameter of the smallest circle containing f (see Monk, 2003). We assume that each
element K ∈ τh belongs either to Ωs or to Ωd .

Set the space R1 of vector polynomials of degree 1 by

R1 := {a + b × x|a, b ∈ R3}.
The curl-conforming finite-element space Uh(Ω) by Nédélec (1980) of the lowest order on tetrahedral
mesh is defined by

Uh(Ω) := {φφφh ∈ H(curl; Ω)|φφφh |K ∈ R1 ∀ K ∈ τh},
with the degrees of freedom

Me(φφφh) :=
∫

e
〈φφφh, τττ 〉ds,

where e is an edge of K ∈ τh and τττ is a unit tangent to e. The interpolant rh(φφφ) ∈ Uh(Ω) of a
sufficiently smooth function φφφ is defined by Me(φφφ − rh(φφφ)) = 0 for all edges e. For more details on the
edge element, see Girault & Raviart (1986) or Monk (2003). To make the argument clear, let us state a
lemma proved in Girault & Raviart (1986, Chapter III, Lemma 5.7) and Monk (2003, Lemma 5.35).

LEMMA 3.1 For φφφh ∈ Uh(Ω) and a face f ⊂ K (K ∈ τh), the tangential component of φφφh on f is zero
if, and only if, Mei (φφφh) = 0 (i = 1, 2, 3), where ei (i = 1, 2, 3) are the edges of f .

We define the finite-dimensional subspace Vh(Ω) of V (Ω) by

Vh(Ω) := {φφφh ∈ Uh(Ω)|curl φφφh = 0 in Ωd , n × φφφh = 0 on ∂Ω}.
Note that the boundary condition n × φφφh = 0 on ∂Ω is attained by taking all the degrees of freedom
associated with the edges on ∂Ω to be zero by Lemma 3.1.

To define a discrete space satisfying a discrete divergence-free condition and a discrete subspace of
the space W (Ω), we need to use the standard H1-conforming finite-element space Zh(Ω) of the lowest
order on a tetrahedral mesh

Zh(Ω) := { fh ∈ H1(Ω)| fh |K ∈ P1 ∀ K ∈ τh},
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where P1 := {a0 + a1x + a2y + a3z|ai ∈ R, i = 0, 1, 2, 3}. The degrees of freedom mv ( fh) of Zh(Ω)
are defined by

mv ( fh) := fh(xv ),

where xv (∈R3) is the coordinate of the vertex v . Similarly, let us define the finite-element space Z0,h(Ω)
by

Z0,h(Ω) := { fh ∈ Zh(Ω)| fh |∂Ω = 0}.
The boundary condition fh |∂Ω = 0 is attained by taking mv ( fh) for each vertex v on ∂Ω to be zero.

The space of discrete divergence-free functions X (µ)
h (Ω) is defined by

X (µ)
h (Ω) := {φφφh ∈ Uh(Ω) | 〈µφφφh, ∇ fh〉L2(Ω;R3) = 0 ∀ fh ∈ Z0,h(Ω)}.

The discrete subspace Wh(Ω) of W (Ω) is defined by

Wh(Ω) := {(φφφh |∇uh) ∈ L2(Ω; R3)|(φφφh, uh) ∈ Uh(Ωs) × Zh(Ωd),

(φφφh |∇uh) ∈ Uh(Ω), uh |∂Ω = 0},
where Uh(Ωs) := {φφφh |Ωs |φφφh ∈ Uh(Ω)} and Zh(Ωd) := {uh |Ωd |uh ∈ Zh(Ω)}.

The following proposition is the discrete analogue of Proposition 2.7.

PROPOSITION 3.1 The space Wh(Ω) is isomorphic to Vh(Ω) as a Hilbert space.

Proof. Take any φφφh ∈ Vh(Ω). Similarly as in Proposition 2.7, there uniquely exists vφh ∈ H1(Ωd) such
that φφφh |Ωd = ∇vφh and vφh = 0 on ∂Ω . We will show that vφh ∈ Zh(Ωd).

Take any K ∈ τh with K ⊂ Ωd . We can write

φφφh |K = a + b × x (a = (a1, a2, a3)
T, b ∈ R3).

The condition curl φφφh |K = 0 and an explicit calculation lead to b = 0. Therefore, we see that φφφh |K =
∇vφh

∣∣
K = a, or

vφh

∣∣
K = constant + a1x + a2y + a3z ∈ R1,

which means that vφh ∈ Zh(Ωd).
Thus, the linear map φφφh �→ (φφφh |Ωs |∇vφh ) from Vh(Ω) to Wh(Ω) is well-defined. This map gives

the desired isomorphism. �
Let Λ denote a bounded subset of R>0 which has the only accumulation point 0. Our assump-

tions on µ, Ω , τh enable us to apply the following discrete compactness result proved in Monk (2003,
Chapter 7). In particular, the quasi-uniformity property (3.3) of τh on ∂Ω is assumed only to apply to this
lemma.

LEMMA 3.1 Let {φφφh}h∈Λ satisfy φφφh ∈ X (µ)
h (Ω) for all h ∈ Λ. The following statements hold.

(i) If ‖φφφh‖H(curl;Ω) � C for all h ∈ Λ, there exist a subsequence {φφφhn
}∞n=1 ⊂ {φφφh}h∈Λ and

φφφ ∈ X (µ)(Ω) such that as n → +∞
φφφhn

→ φφφ strongly in L2(Ω; R3),

φφφhn
⇀ φφφ weakly in H(curl; Ω).
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(ii) There is a constant Ĉ > 0 such that for any h ∈ Λ,

‖φφφh‖L2(Ω;R3) � Ĉ(‖curl φφφh‖L2(Ω;R3) + ‖n × φφφh‖L2(∂Ω;R3)).

The following lemma is from Girault & Raviart (1986, Chapter III, Theorem 5.4) and Monk (2003,
Theorem 5.41).

LEMMA 3.2 There is a constant C > 0 such that

‖φφφ − rh(φφφ)‖H(curl;Ω) � Ch‖φφφ‖H1(curl;Ω),

for any φφφ ∈ H1(curl; Ω).

By a similar argument as in Girault & Raviart (1986, Chapter III, Theorem 5.4) and Monk (2003,
Theorem 5.41), we can prove the following estimates.

LEMMA 3.3 There exists a constant C > 0 depending only on the constant appearing in (3.2) such that

‖φφφ − rh(φφφ)‖L∞(Ω;R3) � Ch‖∇φφφ‖L∞(Ω;R9),

‖curl φφφ − curl rh(φφφ)‖L∞(Ω;R3) � Ch‖∇curl φφφ‖L∞(Ω;R9),

for any φφφ ∈ C2(Ω; R3).

We need one more lemma where Assumption (3.1) is used. Let W p,q(Ω; R3) (p ∈ N ∪ {0}, 1 �
q � +∞) denote a Sobolev space defined as usual.

LEMMA 3.4 For any φφφ ∈ C([0, T ]; L2(Ω; R3)) with φφφ(t) ∈ S for all t ∈ [0, T ], there exists a sequence
{φφφl}∞l=1 ⊂ C([0, T ]; W p,q(Ω; R3)) for all p ∈ N∪{0} and 1 � q � +∞ with φφφl(t) ∈ S ∩C∞

0 (Ω; R3)
for all t ∈ [0, T ] such that

φφφl → φφφ strongly in L2(0, T ; H(curl; Ω)) (3.4)

as l → +∞.

Proof. Take any φφφ ∈ C([0, T ]; L2(Ω; R3)) with φφφ(t) ∈ S for all t ∈ [0, T ]. Fix any t ∈ [0, T ]. Noting
n × φφφ = 0 on ∂Ω , define φ̃φφ(t) ∈ H(curl; R3) by

φ̃φφ(t) :=
⎧⎨⎩φφφ(t) in Ω,

0 in R3\Ω.

For θ ∈ (0, 1), define φ̃φφθ (t) ∈ H(curl; R3) by

φ̃φφθ (x, t) := θφ̃φφ

(
x − y0

θ
+ y0, t

)
,

where y0 ∈ Ωs is the point appearing in Assumption (3.1). Then we see that supp(curl φ̃φφθ (t)) ⊂ Ωs .
Indeed, if supp(curl φ̃φφθ (t)) �= ∅, for any x̂ ∈ supp(curl φ̃φφθ (t)) there is a sequence {xn}∞n=1 ⊂ R3 such
that xn → x̂ as n → +∞ and curl φ̃φφθ (xn, t) �= 0. By the definition of φ̃φφθ , we obtain

xn − y0

θ
+ y0 ∈ Ωs .
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By sending n → +∞, we have

x̂ − y0

θ
+ y0 ∈ Ωs .

Assumption (3.1) yields

x̂ = θ

(
x̂ − y0

θ
+ y0 − y0

)
+ y0 ∈ Ωs .

Since Ω is convex we can similarly show supp(φ̃φφθ (t)) ⊂ Ω , which implies n × φ̃φφθ (t) = 0 on ∂Ω .
Moreover, the inequality |curl φ̃φφθ (x, t)| �Jc holds a.e. in Ωs .

For any θ ∈ (0, 1), we can choose ε = ε(θ) > 0 sufficiently small so that we have ρε ∗ φ̃φφθ (t)|Ω ∈
S ∩ C∞

0 (Ω; R3), where ρε ∈ C∞
0 (R3) is a mollifier. By standard properties of a mollifier, it is seen that

ρε ∗ φ̃φφθ |Ω → φφφ strongly in L2(0, T ; H(curl; Ω)) as θ ↗ 1, ε(θ) ↘ 0.
For any multi-index α ∈ (N ∪ {0})3

|∂xα(ρε ∗ φ̃φφθ )(x, t)| � C(ε, α)‖φ̃φφθ (t)‖L2(Ω;R3) = C(ε, α)θ5/2‖φφφ(t)‖L2(Ω;R3),

which implies that ρε ∗ φ̃φφθ |Ω ∈ C([0, T ]; W p,q(Ω; R3)) for all p ∈ N ∪ {0} and 1 � q � +∞. �
Take N ∈ N and set 
t := T/N . By using a function φφφl from Lemma 3.4, we define a piecewise

constant in time function φφφl,h : [0, T ] → Vh(Ω) by

φφφl,h(t) :=
{

rh(φφφl(
ti)) in (
t (i − 1),
ti] (i = 1, . . . , N ),

rh(φφφl(0)) on {t = 0}.

The following properties will be useful in Section 4.

COROLLARY 3.1 There is a constant C > 0, independent of l ∈ N, h ∈ Λ and 
t , such that

‖curl φφφl,h‖L∞(0,T ;L∞(Ω;R3)) � Ch‖∇curl φφφl‖L∞(0,T ;L∞(Ω;R9)) +Jc. (3.5)

Moreover, assume that the time step size 
t depends on h and satisfies limh↘0,h∈Λ 
t (h) = 0. Then
the following convergence properties hold as h ↘ 0:

φφφl,h → φφφl strongly in L∞(0, T ; L∞(Ω; R3)), (3.6)

curl φφφl,h → curl φφφl strongly in L∞(0, T ; L∞(Ω; R3)). (3.7)

Proof. These statements can be proved by noting Lemmas 3.3 and 3.4. We only give the proof of (3.5).

‖curl φφφl,h‖L∞(0,T ;L∞(Ω;R3)) � ‖curl φφφl,h − curl φφφl‖L∞(0,T ;L∞(Ω;R3)) + ‖curl φφφl‖L∞(0,T ;L∞(Ω;R3))

� Ch‖∇curl φφφl‖L∞(0,T ;L∞(Ω;R9)) +Jc.

�
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3.2 Full discretization of the evolution problem

Now we shall discretize the problems implicitly in time and in space by the finite element introduced in
Section 3.1.

We need to introduce additional notation. Let Hs,n denote Hs(
tn) and let Hs,h,n denote rh(Hs,n)
for n = 0, 1, . . . , N (=T/
t). Note that since Hs,n ∈ H1(curl; Ω) by Lemma 2.1, the interpolation is
well-defined. Define the functional Fh,n,ε (n = 1, . . . , N ) on the fully discrete space Uh(Ω) by

Fh,n,ε(φφφh)

:= 1

2
t

∫
Ω

µ|φφφh |2 dx + 1


t

∫
Ω

µ〈−Ĥh,n−1,ε + Hs,h,n − Hs,h,n−1, φφφh〉dx + 1

ε

∫
Ωs

g(|curl φφφh |)dx,

where Ĥh,0,ε = rh(Ĥ0) = 0.
We consider the following optimization problems over the finite-dimensional space.

(PmB
h,
t,ε1) For n = 1 → N , find Ĥh,n,ε ∈ Vh(Ω) such that

Fh,n,ε(Ĥh,n,ε) = min
φφφh∈Vh(Ω)

Fh,n,ε(φφφh),

where Ĥh,0,ε = 0.
Equivalently,

(PmB
h,
t,ε2) For n = 1 → N , find (ψψψh,n,ε|∇uh,n,ε) ∈ Wh(Ω) such that

Fh,n,ε((ψψψh,n,ε|∇uh,n,ε)) = min
(φφφh |∇vh)∈Wh(Ω)

Fh,n,ε((φφφh |∇vh)),

where (ψψψh,0,ε|∇uh,0,ε) = 0.

PROPOSITION 3.2 There exists a unique minimizer Ĥh,n,ε ∈ Vh(Ω) of (PmB
h,
t,ε1). Moreover, Ĥh,n,ε ∈

Vh(Ω) satisfies the discrete divergence-free condition

Ĥh,n,ε + Hs,h,n ∈ X (µ)
h (Ω) (3.8)

and the discrete variational inequality∫
Ω

µ〈(Ĥh,n,ε − Ĥh,n−1,ε + Hs,h,n − Hs,h,n−1)/
t, φφφh − Ĥh,n,ε〉dx

+ 1

ε

∫
Ωs

g(|curl φφφh |)dx − 1

ε

∫
Ωs

g(|curl Ĥh,n,ε|)dx � 0 (3.9)

for all φφφh ∈ Vh(Ω).

Proof. The existence of a unique minimizer Ĥh,n,ε ∈ Vh(Ω) is standard. We show (3.8).
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Since ∇Z0,h(Ω) ⊂ Vh(Ω) (see Monk, 2003), for any wh ∈ Z0,h(Ω) and δ > 0, Ĥh,n,ε + δ∇wh ∈
Vh(Ω) and

lim
δ↓0

{(Fh,n,ε(Ĥh,n,ε + δ∇wh) − Fh,n,ε(Ĥh,n,ε))/δ}

= 1


t

∫
Ω

µ〈Ĥh,n,ε − Ĥh,n−1,ε + Hs,h,n − Hs,h,n−1, ∇wh〉dx

= 1


t

∫
Ω

µ〈Ĥh,n,ε + Hs,h,n, ∇wh〉dx � 0. (3.10)

Here we have used the assumption Ĥh,n−1,ε + Hs,h,n−1 ∈ X (µ)
h (Ω). Similarly by calculating

limδ↓0{(Fh,n,ε(Ĥh,n,ε − δ∇wh) − Fh,n,ε(Ĥh,n,ε))/δ}, we have

1


t

∫
Ω

µ〈Ĥh,n,ε + Hs,h,n, ∇wh〉dx � 0. (3.11)

Combining (3.10) with (3.11) we obtain (3.8).
We derive (3.9). The inequality Fh,n,ε(Ĥh,n,ε) � Fh,n,ε(φφφh) is equivalent to the inequality

1

2
t

∫
Ω

µ|φφφ − Ĥh,n,ε|2 dx + 1


t

∫
Ω

µ〈Ĥh,n,ε − Ĥh,n−1,ε + Hs,h,n − Hs,h,n−1, φφφh − Ĥh,n,ε〉dx

+ 1

ε

∫
Ωs

g(|curl φφφh |)dx − 1

ε

∫
Ωs

g(|curl Ĥh,n,ε|)dx � 0. (3.12)

Take any ψψψh ∈ Vh(Ω) and α ∈ (0, 1). Substituting φφφh = αψψψh + (1 − α)Ĥh,n,ε ∈ Vh(Ω) into (3.12),
dividing both sides by α and sending α ↓ 0, we obtain the inequality (3.9). �

By Proposition 3.1 we immediately deduce the following statement.

COROLLARY 3.2 There exists a unique minimizer (ψψψh,n,ε|∇uh,n,ε) ∈ Wh(Ω) of (PmB
h,
t,ε2). Moreover

(ψψψh,n,ε|∇uh,n,ε) + Hs,h,n ∈ X (µ)
h (Ω) and the inequality (3.9) holds for Ĥh,n,ε = (ψψψh,n,ε|∇uh,n,ε).

Similarly, we define the functional Gh,n,p on Uh(Ω) by

Gh,n,p(φφφh) := 1

2
t

∫
Ω

µ|φφφh |2 dx + 1


t

∫
Ω

µ〈−Ĥh,n−1,p + Hs,h,n − Hs,h,n−1, φφφh〉dx

+ Jc

p

∫
Ωs

|curl φφφh/Jc|p dx,

where Ĥh,0,p = rh(Ĥ0) = 0.
The fully discrete formulation of (PP

p 1) is defined as follows.

(PP
h,
t,p1) For n = 1 → N , find Ĥh,n,p ∈ Vh(Ω) such that

Gh,n,p(Ĥh,n,p) = min
φφφh∈Vh(Ω)

Gh,n,p(φφφh),

where Ĥh,0,p = 0.
Equivalently, we can define the full discretization of (PP

p 2) as follows.
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(PP
h,
t,p2) For n = 1 → N , find (ψψψh,n,p|∇uh,n,p) ∈ Wh(Ω) such that

Gh,n,p((ψψψh,n,p|∇uh,n,p)) = min
(φφφh |∇vh)∈Wh(Ω)

Gh,n,p((φφφh |∇vh)),

where (ψψψh,0,p|∇uh,0,p) = 0.

The existence of unique minimizers of Problems (PP
h,
t,p1) and (PP

h,
t,p2) can be stated in the same

way as in Proposition 3.2 and Corollary 3.2. Note that the hybrid problems (PmB
h,
t,ε2) and (PP

h,
t,p2)
are quite useful for practical computation since the curl-free constraint is automatically fulfilled by the
scalar potential.

4. Convergence of discrete solutions

In this section, we will show the convergence of the discrete solutions, constructed by using the min-
imizers of the optimization problems proposed in Section 3, to the unique solution of the evolution
variational inequality formulation.

4.1 Convergence of the discrete solutions solving (PmB
h,
t,ε1) and (PmB

h,
t,ε2)

We will show that the discrete solutions defined as the minimizers of (PmB
h,
t,ε1) and (PmB

h,
t,ε2) con-

verge to the solution of (PB1) and (PB2), respectively. We define the piecewise linear in-time functions
Ĥh,
t,ε, Ĥs,h,
t , and the piecewise constant in-time functions Hh,
t,ε, Hs,h,
t by

Ĥh,
t,ε(t) := t − 
t (n − 1)


t
Ĥh,n,ε + 
tn − t


t
Ĥh,n−1,ε in [
t (n − 1),
tn],

Ĥs,h,
t (t) := t − 
t (n − 1)


t
Hs,h,n + 
tn − t


t
Hs,h,n−1 in [
t (n − 1),
tn],

Hh,
t,ε(t) :=
{

Ĥh,n,ε in (
t (n − 1),
tn],

Ĥh,0,ε on {t = 0}, Hs,h,
t (t) :=
{

Hs,h,n in (
t (n − 1),
tn],

Hs,h,0 on {t = 0},

for n = 1, . . . , N , where Ĥh,n,ε are the minimizers of (PmB
h,
t,ε1) and Ĥh,0,ε = 0.

By definition, we easily see that Ĥh,
t,ε, Ĥs,h,
t ∈ C([0, T ]; H(curl; Ω)), Hh,
t,ε, Hs,h,
t ∈
L∞(0, T ; H(curl; Ω)) and Ĥh,
t,ε(t), Hh,
t,ε(t) ∈ Vh(Ω) for all t ∈ [0, T ]. The discrete analogue
of (2.19) holds in the sense that Ĥh,
t,ε(t) + Ĥs,h,
t (t), Hh,
t,ε(t) + Hs,h,
t (t) ∈ X (µ)

h (Ω) for all
t ∈ [0, T ] by (3.8).

LEMMA 4.1 The following estimates hold:

‖Ĥh,
t,ε − Hh,
t,ε‖L∞(0,T ;L2(Ω;R3)) � 
t‖∂t Ĥh,
t,ε‖L2(0,T ;L2(Ω;R3)), (4.1)

‖∂t Ĥs,h,
t‖L2(0,T ;L2(Ω;R3)) � Ch‖∂ths‖L2(0,T ; H1/2(∂Ω;R3))

+ C‖n × ∂ths‖L2(0,T ;L2(∂Ω;R3)). (4.2)
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The following convergence properties also hold as h ↘ 0 and 
t ↘ 0:

Ĥs,h,
t → Hs strongly in C([0, T ]; L2(Ω; R3)), (4.3)

Hs,h,
t → Hs strongly in L∞(0, T ; L2(Ω; R3)), (4.4)

∂t Ĥs,h,
t → ∂tHs strongly in L∞(0, T ; L2(Ω; R3)). (4.5)

Proof. To show (4.1), (4.3)–(4.5) is standard. We only give a proof for (4.2). By using Lemma 3.2, we
observe that

‖∂t Ĥs,h,
t‖2
L2(0,T ;L2(Ω;R3))

�
N∑

i=1

1


t
‖Hs,h,i − Hs,h,i−1‖2

L2(Ω;R3)

� 2
N∑

i=1

1


t
‖rh(Hs,i − Hs,i−1) − Hs,i + Hs,i−1‖2

L2(Ω;R3)
+ 2

N∑
i=1

1


t
‖Hs,i − Hs,i−1‖2

L2(Ω;R3)

� Ch2
N∑

i=1

1


t
‖Hs,i − Hs,i−1‖2

H1(Ω;R3)
+ 2

N∑
i=1

1


t
‖Hs,i − Hs,i−1‖2

L2(Ω;R3)

� Ch2
N∑

i=1

∫ 
ti


t (i−1)
‖∂tHs(t)‖2

H1(Ω;R3)
dt + 2

N∑
i=1

∫ 
ti


t (i−1)
‖∂tHs(t)‖2

L2(Ω;R3)
dt

� Ch2‖∂tHs‖2
L2(0,T ; H1(Ω;R3))

+ 2‖∂tHs‖2
L2(0,T ;L2(Ω;R3))

.

By combining this inequality with (2.39) and the Friedrichs inequality

‖∂tHs‖L2(0,T ;L2(Ω;R3)) � C‖n × ∂ths‖L2(0,T ;L2(∂Ω;R3)),

we obtain (4.2). �
Moreover, we have the following result.

PROPOSITION 4.1 Take any τ ∈ (0, 1). The following bounds hold. For any h ∈ Λ, ε > 0, 
t ∈ (0, τ ],

‖∂t Ĥh,
t,ε‖2
L2(0,T ;L2(Ω;R3))

� C
max{µd , µs}
min{µd , µs}

(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
, (4.6)

ess sup
t∈[0,T ]

{∫
Ωs

g(|curl Hh,
t,ε(t)|)dx
}

� Cε max{µd , µs}
(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
, (4.7)
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‖Hh,
t,ε‖2
L∞(0,T ;L2(Ω;R3))

� C

1 − τ
eT/(1−τ) max{µd , µs}

min{µd , µs}
(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
,

(4.8)

where C > 0 is a positive constant independent of h, ε,
t and µ.

Proof. By substituting φφφh = Ĥh,n−1,ε into (3.9), we have


t
∫

Ω
µ|(Ĥh,n,ε − Ĥh,n−1,ε)/
t |2 dx + 1

ε

∫
Ωs

g(|curl Ĥh,n,ε|)dx − 1

ε

∫
Ωs

g(|curl Ĥh,n−1,ε|)dx

�
∫

Ω
µ〈(Hs,h,n − Hs,h,n−1)/
t, Ĥh,n−1,ε − Ĥh,n,ε〉dx

� 
t

2

∫
Ω

µ|(Hs,h,n − Hs,h,n−1)/
t |2 dx + 
t

2

∫
Ω

µ|(Ĥh,n,ε − Ĥh,n−1,ε)/
t |2 dx.

This leads to

min{µd , µs}
2

∫ 
tn


t (n−1)

∫
Ω

|∂t Ĥh,
t,ε|2 dx dt + 1

ε

∫
Ωs

g(|curl Ĥh,n,ε|)dx

− 1

ε

∫
Ωs

g(|curl Ĥh,n−1,ε|)dx � max{µd , µs}
2

∫ 
tn


t (n−1)

∫
Ω

|∂t Ĥs,h,
t |2 dx dt. (4.9)

Summing (4.9) over n = 1 → m (�N ), we obtain

min{µd , µs}
2

∫ 
tm

0

∫
Ω

|∂t Ĥh,
t,ε|2 dx dt + 1

ε

∫
Ωs

g(|curl Ĥh,m,ε|)dx

� max{µd , µs}
2

∫ 
tm

0

∫
Ω

|∂t Ĥs,h,
t |2 dx dt. (4.10)

Combining the inequality (4.10) with (4.2) we obtain (4.6) and (4.7).
On the other hand, substituting φφφh = 0 into (3.9) and noting the equality 〈p − q, p〉 = |p − q|2/2 +

(|p|2 − |q|2)/2, we have


t

2

∫
Ω

µ|(Ĥh,n,ε − Ĥh,n−1,ε)/
t |2 dx + 1

2
t

∫
Ω

µ|Ĥh,n,ε|2 dx − 1

2
t

∫
Ω

µ|Ĥh,n−1,ε|2 dx

� 1

2

∫
Ω

µ|(Hs,h,n − Hs,h,n−1)/
t |2 dx + 1

2

∫
Ω

µ|Ĥh,n,ε|2 dx. (4.11)

Multiplying (4.11) by 
t and summing over n = 1 → m (�N ), we have∫
Ω

µ|Ĥh,m,ε|2 dx �
∫ 
tm

0

∫
Ω

µ|∂tHs,h |2 dx dt +
m∑

n=0


t
∫

Ω
µ|Ĥh,n,ε|2 dx,
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which is equivalent to

∫
Ω

µ|Ĥh,m,ε|2 dx � 1

1 − 
t

∫ 
tm

0

∫
Ω

µ|∂tHs,h |2 dx dt +
m−1∑
n=0


t

1 − 
t

∫
Ω

µ|Ĥh,n,ε|2 dx. (4.12)

By applying the discrete Gronwall inequality (see, e.g. Thomée, 1997, Lemma 10.5) to (4.12) and com-
bining (4.2) we obtain (4.8). �

To reduce the parameters, we assume that 
t and ε are positive functions of h satisfying

sup
h∈Λ


t (h) < 1, lim
h↘0,h∈Λ


t (h) = lim
h↘0,h∈Λ

ε(h) = lim
h↘0,h∈Λ

h2−sgn A4

ε(h)
= 0, (4.13)

where A4 � 0 is a constant in Assumption (2.14) and sgn A4 = 0 if A4 = 0, 1 if A4 > 0.
We are now ready to state the convergence result.

THEOREM 4.1 The piecewise linear in-time approximation Ĥh,
t (h),ε(h) and the piecewise constant
in-time approximation Hh,
t (h),ε(h) converge to the unique solution Ĥ of (PB1) in the following sense.

Ĥh,
t (h),ε(h) → Ĥ strongly in C([0, T ]; L2(Ω; R3)), (4.14)

Ĥh,
t (h),ε(h) ⇀ Ĥ weak ∗ in L∞(0, T ; H(curl; Ω)), (4.15)

∂t Ĥh,
t (h),ε(h) ⇀ ∂t Ĥ weakly in L2(0, T ; L2(Ω; R3)), (4.16)

curl Ĥh,
t (h),ε(h) → curl Ĥ strongly in C([0, T ]; (H(curl; Ω))∗), (4.17)

Hh,
t (h),ε(h) → Ĥ strongly in L∞(0, T ; L2(Ω; R3)), (4.18)

Hh,
t (h),ε(h) ⇀ Ĥ weak ∗ in L∞(0, T ; H(curl; Ω)), (4.19)

curl Hh,
t (h),ε(h) → curl Ĥ strongly in L∞(0, T ; (H(curl; Ω))∗), (4.20)

as h ↘ 0, h ∈ Λ.

Proof. To simplify the notation let Ĥh , Hh , Ĥs,h denote Ĥh,
t (h),ε(h), Hh,
t (h),ε(h), Ĥs,h,
t (h), respec-
tively.

Step 1: We show that there exist subsequences {̂Hhn }∞n=1 and {Hhn }∞n=1 of {̂Hh}h∈Λ and {Hh}h∈Λ,
respectively, and Ĥ ∈ L∞(0, T ; H(curl; Ω)) ∩ H1(0, T ; L2(Ω; R3)) with Ĥ(t) ∈ V (Ω) for all t ∈
[0, T ] such that the convergence properties (4.14)–(4.20) hold for Ĥhn , Hhn and Ĥ as n → +∞.

By (4.7) and (4.8), we see that {Hh}h∈Λ is bounded in L∞(0, T ; H(curl; Ω)). Thus, so is {̂Hh}h∈Λ

in L∞(0, T ; H(curl; Ω)) by definition. Moreover, by (4.6) {∂t Ĥh}h∈Λ is bounded in L2(0, T ; L2(Ω;
R3)). Therefore, by extracting subsequences {̂Hhn }∞n=1, {Hhn }∞n=1 of {̂Hh}h∈Λ and {Hh}h∈Λ, respec-
tively, we observe the weak(∗) convergences (4.15), (4.16) and (4.19) to some Ĥ (∈ L∞(0, T ; H
(curl; Ω)) ∩ H1(0, T ; L2(Ω; R3))) with Ĥ(t) ∈ V (Ω) a.e. t ∈ (0, T ).
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We show the strong convergences (4.14) and (4.18). Fix any t ∈ [0, T ]. Since {̂Hhn (t) + Ĥs,hn (t)}∞n=1

is bounded in H(curl; Ω) and Ĥhn (t) + Ĥs,hn (t) ∈ X (µ)
hn

(Ω) for any n ∈ N, we can apply Lemma 3.1

(1) to see that {̂Hhn (t) + Ĥs,hn (t)}∞n=1 contains a subsequence strongly converging in L2(Ω; R3). This
means that {̂Hhn (t) + Ĥs,hn (t)}∞n=1 is relatively compact in L2(Ω; R3) for any t ∈ [0, T ].

For any s, t ∈ [0, T ] with s � t , we see that by using the inequalities (4.2) and (4.6)∥∥Ĥhn (t) + Ĥs,hn (t) − (Ĥhn (s) + Ĥs,hn (s))
∥∥

L2(Ω;R3)

=
∥∥∥∥∫ t

s

(
∂t Ĥhn (τ ) + ∂t Ĥs,hn (τ )

)
dτ

∥∥∥∥
L2(Ω;R3)

�
(∥∥∂t Ĥhn

∥∥
L2(0,T ;L2(Ω;R3))

+ ∥∥∂t Ĥs,hn

∥∥
L2(0,T ;L2(Ω;R3))

)
|t − s|1/2

� C(‖∂ths‖L2(0,T ; H1/2(∂Ω;R3)) + ‖n × ∂ths‖L2(0,T ;L2(∂Ω;R3)))|t − s|1/2,

where C > 0 is a constant independent of hn . Therefore, {̂Hhn (t) + Ĥs,hn (t)}∞n=1 is equicontinu-
ous. By applying the Ascoli–Arzelà theorem for C([0, T ]; L2(Ω; R3)), we see that there exists w ∈
C([0, T ]; L2(Ω; R3)) such that, by choosing a subsequence,

Ĥhn + Ĥs,hn → w strongly in C([0, T ]; L2(Ω; R3))

as n → +∞. Moreover, by noting (4.1), (4.3) and (4.6) we can check that w = Ĥ + Hs , Ĥhn strongly
converges to Ĥ in C([0, T ]; L2(Ω; R3)) and Hhn strongly converges to Ĥ in L∞(0, T ; L2(Ω; R3)) as
n → +∞. The convergences (4.17) and (4.20) are natural consequences of (4.14) and (4.18).

Step 2: We will show that the limit Ĥ is the unique solution of (PB1). Take any φφφ ∈ C([0, T ];
L2(Ω; R3)) with φφφ(t) ∈ S for all t ∈ [0, T ]. Let {φφφl}∞l=1 be the sequence satisfying the properties
stated in Lemma 3.4. Define a function φφφl,hn

as in Corollary 3.1. Substituting φφφl,hn
(i
t) into (3.9),

multiplying by 
t and summing over i = 1 → N , we obtain∫ T

0

∫
Ω

µ
〈
∂t Ĥhn + ∂t Ĥs,hn , φφφl,hn

− Hhn

〉
dx dt

+ 1

ε

∫ T

0

∫
Ωs

g
(∣∣∣curl φφφl,hn

∣∣∣) dx dt − 1

ε

∫ T

0

∫
Ωs

g
(∣∣curl Hhn

∣∣) dx dt � 0. (4.21)

By the properties (2.14) of g, (3.5) and (4.13), we observe that

1

ε

∫ T

0

∫
Ωs

g
(∣∣∣curl φφφl,hn

∣∣∣) dx dt � T |Ωs |
ε

g(Chn‖∇curl φφφl‖L∞(0,T ;L∞(Ω;R9)) +Jc)

� T |Ωs |Cl

ε
(A3h2

n + A4hn) → 0 (4.22)

as n → +∞. Thus, by neglecting the last negative term in the left-hand side of (4.21), passing to the
limit n → +∞ and noting the convergence properties (4.5), (4.16), (4.18), (3.6) and (4.22), we obtain∫ T

0

∫
Ω

µ〈∂t Ĥ + ∂tHs, φφφl − Ĥ〉dx dt � 0.
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By sending l → +∞ we arrive at

∫ T

0

∫
Ω

µ〈∂t Ĥ + ∂tHs, φφφ − Ĥ〉dx dt � 0, (4.23)

for all φφφ ∈ C([0, T ]; L2(Ω; R3)) with φφφ(t) ∈ S.
Note that by the weak lower semicontinuity of the functional

∫
Ωs

g(|curl · |)dx in H(curl; Ω) and
sending n → ∞ in (4.7), we obtain that∫

Ωs

g(|curl Ĥ(t)|)dx = 0 for a.e. t ∈ [0, T ],

which implies Ĥ(t) ∈ S for all t ∈ [0, T ]. By taking v ∈ C∞([0, T ]) with 0 � v � 1 and replacing φφφ
by vφφφ + (1 − v)Ĥ in (4.23), we deduce that∫ T

0
v

∫
Ω

µ〈∂t Ĥ + ∂tHs, φφφ − Ĥ〉dx dt � 0,

which implies that ∫
Ω

µ〈∂t Ĥ + ∂tHs, φφφ − Ĥ〉dx � 0

for a.e. t ∈ (0, T ) and any φφφ ∈ S. Therefore, Ĥ is the solution of (PB1) and the unique solvability
of (PB1) ensures the convergence properties (4.14)–(4.20) without extracting a subsequence of Λ. We
have thus completed the proof. �

Let us define the discrete functions ̂(ψψψ |∇u)h,
t,ε ∈ C([0, T ]; H(curl; Ω)) and (ψψψ |∇u)h,
t,ε ∈
L∞(0, T ; H(curl; Ω)) consisting of the minimizers of the hybrid optimization problem (PmB

h,
t,ε2) by

̂(ψψψ |∇u)h,
t,ε(t) := t − 
t (n − 1)


t
(ψψψh,n,ε|∇uh,n,ε)

+ 
tn − t


t
(ψψψh,n−1,ε|∇uh,n−1,ε) in [
t (n − 1),
tn],

(ψψψ |∇u)h,
t,ε(t) :=
{

(ψψψh,n,ε|∇uh,n,ε) in (
t (n − 1),
tn],

(ψψψh,0,ε|∇uh,0,ε) on {t = 0},

for n = 1, . . . , N , where (ψψψh,0,ε|∇uh,0,ε) = 0. We see that ̂(ψψψ |∇u)h,
t,ε(t) + Ĥs,h,
t (t) ∈ X (µ)
h (Ω)

and (ψψψ |∇u)h,
t,ε(t) + Hs,h,
t (t) ∈ X (µ)
h (Ω) for all t ∈ [0, T ].

Under Assumption (4.13), Proposition 3.1 and Theorem 4.1 immediately yield the following
result.

COROLLARY 4.1 The discrete approximations ̂(ψψψ |∇u)h,
t (h),ε(h), (ψψψ |∇u)h,
t (h),ε(h) converge to
the unique solution (ψψψ |∇u) of (PB2) in the same sense as (4.14)–(4.20) for Ĥh,
t (h),ε(h) =
̂(ψψψ |∇u)h,
t (h),ε(h), Hh,
t (h),ε(h) = (ψψψ |∇u)h,
t (h),ε(h) and Ĥ = (ψψψ |∇u) as h ↘ 0, h ∈ Λ.
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REMARK 4.1 In the case that the penalty coefficient ε > 0 is fixed and it is assumed that 
t depends
on h, satisfying suph∈Λ 
t (h) < 1 and limh↘0,h∈Λ 
t (h) = 0, by using (3.7) we can similarly prove
the convergence of the discrete solutions Ĥh,
t (h),ε, ∂t Ĥh,
t (h),ε and Hh,
t (h),ε to the solution Ĥε of
(PmB

ε 1) in the same sense as (4.14)–(4.20) for Ĥ = Ĥε.

4.2 Convergence of the discrete solutions solving (PP
h,
t,p1) and (PP

h,
t,p2)

We will prove that the discrete solutions consisting of the minimizers of (PP
h,
t,p1) and (PP

h,
t,p2)

converge to the solution of (PB1) and (PB2), respectively.
We define the piecewise linear in-time functions Ĥh,
t,p ∈ C([0, T ]; H(curl; Ω)) and the piece-

wise constant in-time function Hh,
t,p ∈ L∞(0, T ; H(curl; Ω)) in the same way as Ĥh,
t,ε and
Hh,
t,ε by using the minimizer Ĥh,n,p of (PP

h,
t,p1). Note that Ĥh,
t,p(t), Hh,
t,p(t) ∈ Vh(Ω),

Ĥh,
t,p(t) + Ĥs,h,
t (t) ∈ X (µ)
h (Ω) and Hh,
t,p(t) + Hs,h,
t (t) ∈ X (µ)

h (Ω) for all t ∈ [0, T ]. By
the same calculation as in Proposition 4.1 we can prove the following bounds.

PROPOSITION 4.2 Take any τ ∈ (0, 1). The following inequalities hold. For any h ∈ Λ, p � 2,

t ∈ (0, τ ],

‖∂t Ĥh,
t,p‖2
L2(0,T ;L2(Ω;R3))

� C
max{µd , µs}
min{µd , µs}

(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
, (4.24)

ess sup
t∈[0,T ]

{∫
Ωs

Jc

p
|curl Hh,
t,p(t)/Jc|p dx

}
� C max{µd , µs}

(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
, (4.25)

‖Hh,
t,p‖2
L∞(0,T ;L2(Ω;R3))

� C

1 − τ
eT/(1−τ) max{µd , µs}

min{µd , µs}
(
h2‖∂ths‖2

L2(0,T ; H1/2(∂Ω;R3))
+ ‖n × ∂ths‖2

L2(0,T ;L2(∂Ω;R3))

)
,

(4.26)

where C > 0 is a constant independent of h, p,
t and µ.

Let us assume that 
t and p are positive functions of h satisfying

sup
h∈Λ


t (h) < 1, lim
h↘0,h∈Λ


t (h) = lim
h↘0,h∈Λ

1/p(h) = 0,

inf
h∈Λ

p(h) � 2, sup
h∈Λ

hp(h) < +∞.
(4.27)

THEOREM 4.2 The piecewise linear in-time approximation Ĥh,
t (h),p(h) and the piecewise constant
in-time approximation Hh,
t (h),p(h) converge to the unique solution Ĥ of (PB1) in the following sense.

Ĥh,
t (h),p(h) → Ĥ strongly in C([0, T ]; L2(Ω; R3)), (4.28)

Ĥh,
t (h),p(h) ⇀ Ĥ weak ∗ in L∞(0, T ; H(curl; Ω)), (4.29)
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∂t Ĥh,
t (h),p(h) ⇀ ∂t Ĥ weakly in L2(0, T ; L2(Ω; R3)), (4.30)

curl Ĥh,
t (h),p(h) → curl Ĥ strongly in C([0, T ]; (H(curl; Ω))∗), (4.31)

Hh,
t (h),p(h) → Ĥ strongly in L∞(0, T ; L2(Ω; R3)), (4.32)

Hh,
t (h),p(h) ⇀ Ĥ weak ∗ in L∞(0, T ; H(curl; Ω)), (4.33)

curl Hh,
t (h),p(h) → curl Ĥ strongly in L∞(0, T ; (H(curl; Ω))∗), (4.34)

as h ↘ 0, h ∈ Λ.

Proof. To simplify the notation let Ĥh , Hh , Ĥs,h denote Ĥh,
t (h),p(h), Hh,
t (h),p(h), Ĥs,h,
t (h), respec-
tively.

By Corollary 2.1 (1) and the bound (4.25), we see that {curl Hh}h∈Λ is bounded in L∞(0, T ; L2

(Ω; R3)) and by (4.24) {∂t Ĥh}h∈Λ is bounded in L2(0, T ; L2(Ω; R3)). Thus, by taking a subsequence
{hn}∞n=1 ⊂ Λ, the weak ∗ convergences (4.29), (4.30), (4.33) hold true for some Ĥ ∈ L∞(0, T ; H(curl;
Ω)) ∩ H1(0, T ; L2(Ω; R3)) satisfying Ĥ(t) ∈ V (Ω) a.e. t ∈ [0, T ]. Moreover, using Lemma 3.1 (1)
and the same argument as Theorem 4.1, we can apply the Ascoli–Arzelà theorem to prove the strong
convergences (4.28) and (4.32), which also yield the convergences (4.31) and (4.34).

We show that the limit Ĥ is the solution of (PB1). By substituting φφφhn
= φφφl,hn

(
ti) into the in-
equality corresponding to (3.9), multiplying by 
t and summing over i = 1 → N , we have∫ T

0

∫
Ω

µ
〈
∂t Ĥhn + ∂t Ĥs,hn , φφφl,hn

− Hhn

〉
dx dt

+ Jc

p

∫ T

0

∫
Ωs

∣∣∣curl φφφl,hn

/
Jc

∣∣∣p
dx dt − Jc

p

∫ T

0

∫
Ωs

∣∣curl Hhn

/
Jc

∣∣p
dx dt � 0. (4.35)

Noting the fact that there is a constant C > 0 such that hn � C/p by Conditions (4.27) and (3.5), we
see that

Jc

p

∫ T

0

∫
Ωs

∣∣∣curl φφφl,hn

/
Jc

∣∣∣p
dx dt � JcT |Ωs |

p
(Chn‖∇curl φφφl‖L∞(0,T ;L∞(Ω;R9)) + 1)p

� JcT |Ωs |
p

(Cl/p + 1)p → 0, (4.36)

as n → +∞. Moreover, the bound (4.25) and Corollary 2.1 (2) show that Ĥ(t) ∈ S for all t ∈ [0, T ].
Now by neglecting the last term on the left-hand side of (4.35), noting (4.36) and letting n → +∞

and l → +∞ in (4.35), we obtain∫ T

0

∫
Ω

µ〈∂t Ĥ + ∂tHs, φφφ − Ĥ〉dx dt � 0,

which is equivalent to (PB1). Therefore, Ĥ is the solution of (PB1). The uniqueness of (PB1) assures
the convergences as h ↘ 0 without extracting a subsequence. �

Let us define the discrete functions ̂(ψψψ |∇u)h,
t,p ∈ C([0, T ]; H(curl; Ω)) and (ψψψ |∇u)h,
t,p ∈
L∞(0, T ; H(curl; Ω)) consisting of the minimizers of the hybrid optimization problem (PP

h,
t,p2) in
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the same way as ̂(ψψψ |∇u)h,
t,ε and (ψψψ |∇u)h,
t,ε. We see that ̂(ψψψ |∇u)h,
t,p(t)+ Ĥs,h,
t (t) ∈ X (µ)
h (Ω)

and (ψψψ |∇u)h,
t,p(t) + Hs,h,
t (t) ∈ X (µ)
h (Ω) for all t ∈ [0, T ].

Under Assumption (4.27), Proposition 3.1 and Theorem 4.2 yield

COROLLARY 4.2 The discrete approximations ̂(ψψψ |∇u)h,
t (h),p(h), (ψψψ |∇u)h,
t (h),p(h) converge to the
unique solution (ψψψ |∇u) of (PB2) as h ↘ 0, h ∈ Λ in the same sense as (4.28)–(4.34) for Ĥh,
t (h),p(h) =
̂(ψψψ |∇u)h,
t (h),p(h), Hh,
t (h),p(h) = (ψψψ |∇u)h,
t (h),p(h) and Ĥ = (ψψψ |∇u) as h ↘ 0, h ∈ Λ.

REMARK 4.2 If we fix p � 2 and assume the relations suph∈Λ 
t (h) < 1 and limh↘0 
t (h) = 0,
by using (3.7) we can similarly prove that the discrete solutions Ĥh,
t (h),p, ∂t Ĥh,
t (h),p and Hh,
t (h),p

converge to the solution of (PP
p 1) in the same sense as (4.28)–(4.34) and

curl Ĥh,
t (h),p ⇀ curl Ĥp weak ∗ in L∞(0, T ; L p(Ω; R3)), (4.37)

curl Hh,
t (h),p ⇀ curl Ĥp weak ∗ in L∞(0, T ; L p(Ω; R3)). (4.38)

The weak convergence properties (4.37) and (4.38) are consequences of the bound (4.25).

5. Numerical results

In this section, we present numerical results by computing the unconstrained optimization problems
(PmB

h,
t,ε2) and (PP
h,
t,p2). All the examples in this section are computed in the situation where Ω and

Ωs are parallelepipeds whose faces are either parallel or perpendicular to the x–y, y–z, z–x planes in
the (x, y, z) coordinate system.

We apply the external magnetic field Hs to be uniform in space and perpendicular to the x–y plane,
so the boundary value hs is given as hs(t) = (0, 0, η(t)), where η ∈ C1,1([0, T ]) and η(0) = 0. In
this case, Conditions (2.36) and (2.37) are satisfied and the unique solution Hs to System (2.7)–(2.10)
is naturally given as Hs(t) = (0, 0, η(t)).

Let us note another equivalent characterization of the space Wh(Ω):

Wh(Ω) = {(φφφh |∇uh) ∈ L2(Ω; R3)|(φφφh, uh) ∈ Uh(Ωs) × Zh(Ωd),

n × φφφh = n × ∇uh on ∂Ωs, uh |∂Ω = 0},
where n is the unit normal to ∂Ωs . Lemma 3.1 implies that the equality n × φφφh = n × ∇uh on ∂Ωs

holds if, and only if,

Me(φφφh − ∇uh) = 0, (5.1)

for all edges e on ∂Ωs . Condition (5.1) is equivalent to the equality

Me(φφφh) = mv2(uh) − mv1(uh), (5.2)

where v1 and v2 are the initial vertex and the terminal vertex of the edge e, respectively. The relation (5.2)
has to be always satisfied in the implementation of Wh(Ω) to fulfill the tangential continuity constraint
n × φφφh = n × ∇uh on ∂Ωs .

Problems (PmB
h,
t,ε2) and (PP

h,
t,p2) are computed by Newton’s method coupled with the conjugate
gradient method. The code with which we obtained the results was based on ALBERTA (Schmidt &
Siebert, 2005).
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5.1 Definition of the penalized energy

In order to search for the minimizer of (PmB
h,
t,ε2) by means of Newton’s method, we use C2 class energy

density so that we can calculate the Hessian of the energy functional. In our numerical simulation, we
employ the following regularized energy density g. For 0 < α1 < α2 < α3, let fα1,α2,α3 ∈ C2(R) be a
function satisfying that fα1,α2,α3(x) = 0 for all x � 0,

f ′′
α1,α2,α3

(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x/α1 in [0, α1],

1 in [α1, α2],

(−x + α3)/(α3 − α2) in [α2, α3],

0 in [α3, ∞).

Now fα1,α2,α3 is a polynomial of degree 3 in [0, α1], of degree 2 in [α1, α2], of degree 3 in [α2, α3]
and of degree 1 in [α3, ∞). Define g(x) := fα1,α2,α3(x

2 − J 2
c ), which is found to satisfy the re-

quired properties (2.14). This energy density g(|v|)/ε with ε > 0, v ∈ R3 is a regularized version
of the energy density γ mB

ε of the modified Bean’s model defined in (2.13) which is not continuously
differentiable.

5.2 Estimated errors for discrete solutions solving (PmB
h,
t,ε2) and (PP

h,
t,p2)

Let us compute the errors between two discrete solutions Ĥh,
t,ε and Ĥĥ,
̂t,ε solving (PmB
h,
t,ε2) and the

errors between Ĥh,
t,p and Ĥĥ,
̂t,p solving (PP
h,
t,p2), respectively. We consider the situation where

Ω = (−2, 2)3, Ωs = (−1, 1)3, µs = µd = 1, Jc = 1, ε = 0.1, α1 = 0.1, α2 = 0.5, α3 = 1,
p = 10, and the uniform external magnetic field Hs(t) = (0, 0, 0.1t) is applied. The domain Ω is
meshed uniformly by tetrahedra of the same size.

The parameters for Ĥĥ,
̂t,ε and Ĥĥ,
̂t,p are relatively small and fixed as ĥ ≈ 1/32, 
̂t = 1/3200,
for which 440 512 degrees of freedom are involved. For different parameters h and 
t , we compute
the errors ‖Ĥh,
t,ε(t) − Ĥĥ,
̂t,ε(t)‖L2(Ω;R3) × 100 and ‖Ĥh,
t,p(t) − Ĥĥ,
̂t,p(t)‖L2(Ω;R3) × 100. The
results are shown in Tables 1 and 2, where DOF stands for the degrees of freedom.

These tables suggest that the rate of convergence is consistent with the order O(h1/2) in both cases.

5.3 The current density and the magnetic field

We display some numerical results showing the behaviour of the electric current and the magnetic field,
where µd = µs = 1, Jc = 1, α1 = 0.1, α2 = 0.5, α3 = 1, and Hs(t) = (0, 0, 0.1t) is applied in
Ω = (−2, 2)3. The time step size is fixed as 
t = 0.001.

TABLE 1 The error ‖Ĥh,
t,ε(t) − Ĥĥ,
̂t,ε(t)‖L2(Ω;R3) × 100

h 
t DOF t = 0.05 t = 0.1 t = 0.15 t = 0.2 t = 0.25 t = 0.3
1/2 1/200 52 1.1793 2.3675 3.5558 4.7441 5.9323 7.1109
1/4 1/400 632 1.0224 2.0219 3.0031 3.9763 4.9460 5.9040
1/8 1/800 6064 0.7646 1.4621 2.1645 2.8724 3.5831 4.2828
1/16 1/1600 52 832 0.4911 0.9873 1.4870 1.9875 2.4882 2.9771
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TABLE 2 The error ‖Ĥh,
t,p(t) − Ĥĥ,
̂t,p(t)‖L2(Ω;R3) × 100

h 
t DOF t = 0.05 t = 0.1 t = 0.15 t = 0.2 t = 0.25 t = 0.3
1/2 1/200 52 1.1729 2.3598 3.5321 4.6658 5.7896 6.9061
1/4 1/400 632 1.0222 2.0429 3.0277 3.9562 4.8643 5.7593
1/8 1/800 6064 0.8005 1.5166 2.1920 2.8217 3.4343 4.0495
1/16 1/1600 52 832 0.4954 0.9817 1.4543 1.8802 2.3009 2.7081

FIG. 3. A locally refined mesh.

5.3.1 The current density for each E–J relation. We assume that Ωs = (−3/8, 3/8)×(−2/8, 2/8)×
(−1/8, 1/8). The computation involves 205 996 degrees of freedom. The mesh is set to be relatively fine
in Ωs and coarse in Ωd . Figure 3 shows an example of such mesh on the cross-section of the domain
cut by the plane z = 0.

In Figs 4–6 the current density |J| on the surface and the cross-section of the superconductor Ωs cut
by the plane z = 0 are displayed.

5.3.2 Motion of the subcritical region. In the same situation as Section 5.3.1, we show the motion of
the subcritical region where there is no current or the current J with |J| � 1/10 is flowing in Fig. 7 by
solving (PP

h,
t,p2) with p = 100.

5.3.3 The magnetic field. We consider the case that Ωs = (−5/8, 5/8)3 and a uniform mesh is used.
The computation involves 35 192 degrees of freedom. We show the penetration of the magnetic flux
B = µĤ + µHs into the superconductor by solving (PP

h,
t,p2) with p = 100. In Fig. 8, the cross-
section of Ω cut by the plane y = 0 is displayed.
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FIG. 4. The current density |J| of the power law with p = 10 at t = 0.1 left, t = 1 right.

FIG. 5. The current density |J| of the power law with p = 100 at t = 0.1 left, t = 1 right.

FIG. 6. The current density |J| of the modified Bean model with ε = 0.01 at t = 0.1 left, t = 1 right.
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FIG. 7. The subcritical region where |J| � 1/10.
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FIG. 8. The penetration of the magnetic flux density B = µĤ + µHs .
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THOMÉE, V. (1997) Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer.
YIN, H.-M. (2001) On a p-Laplacian type of evolution system and applications to the Bean model in the type-II

superconductivity theory. Q. Appl. Math., 59, 47–66.
YIN, H.-M., LI, B. Q. & ZOU, J. (2002) A degenerate evolution system modeling Bean’s critical-state type-II

superconductors. Discrete Conti. Dyn. Syst., 8, 781–794.

http://kron1.eng.ox.ac.uk/~nablax/index.htm

