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Abstract In this article we define a level set method for a
scalar conservation law with a diffusive flux on an evolving
hypersurface Γ (t) contained in a domain Ω ⊂ R

n+1. The
partial differential equation is solved on all level set surfaces
of a prescribed time dependent function Φ whose zero level
set is Γ (t). The key idea lies in formulating an appropriate
weak form of the conservation law with respect to time and
space. A major advantage of this approach is that it avoids
the numerical evaluation of curvature. The resulting equation
is then solved in one dimension higher but can be solved on
a fixed grid. In particular we formulate an Eulerian transport
and diffusion equation on evolving implicit surfaces. Using
Eulerian surface gradients to define weak forms of elliptic
operators naturally generates weak formulations of elliptic
and parabolic equations. The finite element method is applied
to the weak form of the conservation equation yielding an
Eulerian Evolving Surface Finite Element Method. The com-
putation of the mass and element stiffness matrices, depend-
ing only on the gradient of the level set function, are simple
and straightforward. Numerical experiments are described
which indicate the power of the method. We describe how
this framework may be employed in applications.
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1 Introduction

Partial differential equations on evolving curves and surfaces
occur in many applications. In [1] we introduced the evolv-
ing surface finite element method (ESFEM) for the numerical
solution of diffusion equations on prescribed moving hyper-
surfaces Γ (t) ⊂ R

n+1. The method relies on formulating an
appropriate weak form of the conservation law with respect
to time and space and on approximating the partial differen-
tial equation on a triangulated surface (n = 2) or polygonal
curve (n = 1) which interpolates Γ (t), [2].

In this paper, we extend this approach to the formulation
and approximation of transport and diffusion of a material
quantity on an evolving surface in R

n+1(n = 1, 2) to implic-
itly defined evolving surfaces.The evolving surface is just one
level set of a prescribed function and the partial differential
equation and its solution are extended to a neighbourhood of
the surface. (See [3] where we treated parabolic equations
on implicit stationary surfaces.) This neighbourhood is then
discretized on a finite element grid which is independent of
the surface yielding an Eulerian ESFEM. We have in mind
the solution of partial differential equations on surfaces with
complex morphology for which the parametric approach may
not be or is not adequate. We can treat the case of a surface
which not only evolves in the normal direction but also has
a tangential velocity associated with the motion of surface
material points which advect quantities such as heat or mass.
For our purposes here we assume that the surface evolution
is prescribed.

In a forthcoming paper, [4], we show that it is sufficient
to take the computational domain to be an h-narrow band.

A general framework for formulating partial differential
equations on implicit surfaces was proposed by the authors
of [5,6]. They considered time dependent second order lin-
ear and nonlinear diffusion equations in the context of finite
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18 G. Dziuk, C. M. Elliott

difference approximations on rectangular grids independent
of the surfaces. In [7,8] the authors presented finite difference
methods for fourth order parabolic equations on implicit sur-
faces. A finite element approximation of elliptic equations on
implicit surfaces is presented in [9]. Level set methods for
solving partial differential equations on evolving surfaces
have been proposed in [10,11].

1.1 The advection diffusion equation

Conservation of a scalar quantity u with a diffusive flux on an
evolving hypersurface Γ (t) leads to the diffusion equation

ut +V
∂u

∂ν
+∇Γ · (uvS)−V Hu − ∇Γ · (A∇Γ u)=0 (1.1)

where ν, V , H and vS are the normal, normal velocity, mean
curvature and advective tangential velocity. This equation
may be also written as

u̇ + u ∇Γ · v − ∇Γ · (A∇Γ u) = 0 (1.2)

on Γ (t). Here u̇ denotes the covariant or advective surface
material derivative, v = V ν + vS is the prescribed velocity
of the surface and ∇Γ is the tangential surface gradient. We
assume that ∂Γ (t) is empty and so the equation does not need
a boundary condition. It is this form of the equation which
provides the weak formulation underlying our methods.

1.2 Applications

Such a problem arises, for example, when modeling the trans-
port of an insoluble surfactant on the interface between two
fluids, [12,13]. Here one views the velocity of the surface
as being the fluid velocity and hence the surfactant is trans-
ported by advection via the tangential fluid velocity (and
hence the tangential surface velocity) as well by diffusion
within the surface. The evolution of the surface itself in the
normal direction is then given by the normal component of
the fluid velocity.

Diffusion induced grain boundary motion, [14–17], has
the feature of coupling forced mean curvature flow for the
motion of a grain boundary with a diffusion equation for a
concentration of mass in the grain boundary. In this case there
is no material tangential velocity of the grain boundary so it
is sufficient to consider the surface velocity as being in the
normal direction.

Another example is pattern formation on the surfaces of
growing organisms modelled by reaction diffusion equations,
[18]. Possible applications in image processing are suggested
by the article [19].

1.3 Outline of paper

The layout of the paper is as follows. We begin in Sect. 2
by defining notation and essential concepts from elementary
differential geometry necessary to describe the problem and
numerical method. The equations presented above are justi-
fied in Sect. 3. The weak form of the equations is derived in
Sect. 4 and the well posedness of the initial boundary value
problem is established. In Sect. 5 the finite element method
is defined and some preliminary approximations results are
shown. Implementation issues are discussed in Sect. 6 and
the results of numerical experiments are presented.

2 Basic notation and surface derivatives

2.1 Notation

For each t ∈ [0, T ], T > 0, let Γ (t) be a compact smooth
orientable hypersurface without boundary in R

n+1 which has
a representation defined by a smooth level set function Φ =
Φ(x, t), x ∈ R

n+1, t ∈ [0, T ] so that

Γ (t) = {x ∈ Ω : Φ(x, t) = 0}
where Ω is a bounded domain in R

n+1 with Lipschitz bound-
ary ∂Ω . We assume that Φ satisfies the non-degeneracy con-
dition

∇Φ �= 0 in Ω × (0, T ). (2.1)

We assume that ∂Ω∩Γ (t) is empty and set ν∂Ω to be the unit
outward pointing normal to ∂Ω . We set ΩT = Ω × (0, T ).
In particular we suppose that for some k ≥ 3 and some
0 < α < 1

Φ ∈ C1([0, T ], Ck,α(Ω)).

The orientation of Γ (t) is set by taking the normal ν to Γ

to be in the direction of increasing Φ. Hence, we define a
normal vector field by

ν(x, t) = ∇Φ(x, t)

|∇Φ(x, t)|
so that the normal νΓ to Γ (t) is equal to ν|Γ (t) and the normal
velocity V of Γ is given by

V (x, t) = − Φt (x, t)

|∇Φ(x, t)| .

Observe that a possible choice for Φ is the signed distance
function d(x, t) to Γ (t) and in that case |∇Φ| = |∇d| = 1
on ΩT .

The existence of T and Ω and Φ for t ∈ [0, T ] such that
the above holds is a consequence of the smoothness of Γ (t)
in space and time.
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An Eulerian approach to transport and diffusion on evolving implicit surfaces 19

Remark 1 The above description of Γ (t) relies solely on the
normal velocity V . We return to this in Sect. 2.2.

We define the projection

PΦ = I − ν ⊗ ν, (PΦ)i j = δi j − νiν j . (2.2)

(i, j = 1, . . . , n + 1) so that PΦν = 0. For any function η

on Ω we define its Eulerian surface gradient by

∇Φη = ∇η − ∇η · ν ν = PΦ∇η

where, for x and y in R
n+1, x · y denotes the usual scalar

product and ∇η denotes the usual gradient on R
n+1. Note

that ∇Φη · ν = 0 and ∇Γ η = ∇Φη|Γ only depends on the
values of η restricted to Γ and is the usual tangential (surface)
gradient on Γ .

The Eulerian mean curvature is defined in the usual level
set way by

HΦ = −∇ · ν = −∇ · ∇Φ

|∇Φ| .
Eulerian surface elliptic operators can then be defined in
a natural way, for example the Eulerian Laplace–Beltrami
operator is defined by

∆Φη = ∇Φ · ∇Φη.

We recall the coarea formula

Lemma 1 (Coarea formula) Let for each t ∈ [0, T ], Φ(·, t) :
Ω → R be Lipschitz continuous and assume that for for
each r ∈ (infΩ Φ, supΩ Φ) the level set Γr := {x ∈ Ω :
Φ(x, ·) = r} is a smooth n-dimensional hypersurface in
R

n+1. Suppose η : Ω → R is continuous and integrable.
Then

supΩ Φ∫

infΩ Φ

⎛
⎜⎝

∫

Γr

η

⎞
⎟⎠ dr =

∫

Ω

η|∇Φ|. (2.3)

The Eulerian formula for integration by parts over level
surfaces is given by the following Lemma.

Lemma 2 (Eulerian integration by parts) Assume that the
following quantities exist. For a scalar functionη and a vector
field Q we have∫

Ω

∇Φη|∇Φ| = −
∫

Ω

ηHΦν|∇Φ|

+
∫

∂Ω

η(ν∂Ω − ν · ν∂Ω ν)|∇Φ|, (2.4)

∫

Ω

∇Φ · Q|∇Φ| = −
∫

Ω

HΦQ · ν|∇Φ|

+
∫

∂Ω

Q · (ν∂Ω − ν · ν∂Ων)|∇Φ|, (2.5)

∫

Ω

∇Φ · Qη|∇Φ| +
∫

Ω

Q · ∇Φη|∇Φ|

= −
∫

Ω

Q · νηHΦ |∇Φ|

+
∫

∂Ω

Q · (ν∂Ω − ν · ν∂Ων)η|∇Φ|. (2.6)

Proof We employ the notation ∂i = ∂
∂xi

and ∂i j = ∂2

∂xi ∂x j
.

Elementary calculations yield

∂i |∇Φ| = νk∂ikΦ = (D2Φ ν)i ,

|∇Φ|∂ jνk = ∂ jkΦ − νk(D2Φ ν) j ,

|∇Φ|HΦ = −T r(D2Φ) + ν · D2Φ ν,

where D2Φ is the Hessian matrix of second derivatives, T r(·)
is the trace of a matrix and we employ the summation con-
vention for repeated indices. Using the definition of ∇Φ we
find that the left-hand side in (2.4) is

LHS :=
∫

Ω

∇Φη|∇Φ| =
∫

Ω

|∇Φ|(∇η − ν · ∇ην)

and then we employ the standard integration formula on Ω .
It follows that

(LHS)i = −
∫

Ω

η∂i |∇Φ| +
∫

Ω

η∂m(νiνm |∇Φ|)

+
∫

∂Ω

η|∇Φ|((ν∂Ω)i − νi (ν · ν∂Ω))

= I + I I + I I I.

Straightforward calculations yield

I I =
∫

Ω

η(νi T r(D2Φ) + (D2Φν)i − ν · D2Φννi ).

Combining I and I I using the formula for HΦ gives the
desired result. 	

Remark 2 The boundary terms in the integration by parts
formulae disappear when ν = ν∂Ω.

2.2 The material derivative and Leibniz formulae

Let v : ΩT → R
n+1 be a prescribed velocity field which has

the decomposition

v = V ν + vS

where

V = v · ν

so that vS is orthogonal to ν and tangential to all level surfaces
of Φ. By a dot we denote the material derivative of a scalar
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20 G. Dziuk, C. M. Elliott

function η = η(x, t) defined on ΩT :

η̇ = ∂η

∂t
+ v · ∇η. (2.7)

In particular we note that η̇ restricted to a given level surface

Γr := {(x, t) : x ∈ Ω, t ∈ (0, T ),Φ(x, t) = r}
depends only on the values of η on that level surface in space-
time.

It is convenient to note that

∇Φ · v = ∇Φ · (V ν) + ∇Φ · vS
= V ∇Φ · ν + ∇Φ · vS = −V HΦ + ∇Φ · vS (2.8)

and

∇Φ · v = trace ((PΦ∇v) .

For a scalar η we have

v · ∇η = V ν · ∇η + vS · ∇η. (2.9)

Lemma 3 (Implicit surface Leibniz formula) Let Φ be a
level set function and η be an arbitrary function defined on
ΩT such that the following quantities exist. Then

d

dt

∫

Ω

η|∇Φ| =
∫

Ω

(η̇ + η∇Φ · v) |∇Φ| −
∫

∂Ω

η v · ν∂Ω |∇Φ|.

(2.10)

Proof Noting that ∂t |∇Φ| = ν · ∇Φt straightforward calcu-
lation yields

d

dt

∫

Ω

η|∇Φ| =
∫

Ω

(ηt |∇Φ| + ην · ∇Φt ) .

Integration by parts on the second term in the integrand gives

d

dt

∫

Ω

η|∇Φ| =
∫

Ω

|∇Φ| (ηt + V ∇η · ν − ηv · νHΦ)

−
∫

∂Ω

ην · ν∂Ω V |∇Φ|.

The Eulerian divergence theorem (2.5) gives

−
∫

Ω

ηv · νHΦ |∇Φ| =
∫

Ω

∇Φ · (ηv) |∇Φ|

−
∫

∂Ω

ηv · (ν∂Ω − ν · ν∂Ων) |∇Φ|

and observing that

V ∇η · ν + ∇Φ · (ηv) = v · ∇η + η∇Φ · v

yields the desired result. 	


3 Conservation and diffusion

3.1 Eulerian conservation and diffusion

Let Φ : ΩT → R be a prescribed non-degenerate level set
function. Let Q : ΩT → R

n+1 be a given flux. Then the
Eulerian conservation law we consider is

d

dt

∫

R

u|∇Φ| = −
∫

∂ R

(Q + |∇Φ|uv) · ν∂ R (3.1)

for each sub-domain R of Ω where ν∂ R is the outward unit
normal to ∂ R. In particular we consider a flux of the form

Q = |∇Φ|qΦ

where qΦ : ΩT → R
n+1 is a flux satisfying

qΦ · ν = 0. (3.2)

It follows by the implicit surface Leibniz formula (2.10) that

d

dt

∫

R

u|∇Φ| =
∫

R

(u̇ + u∇Φ · v) |∇Φ|

−
∫

∂ R

uv · ν∂ R |∇Φ| (3.3)

and by Eulerian integration by parts and (3.2) that∫

∂ R

qΦ · ν∂ R |∇Φ| =
∫

R

∇Φ · qΦ |∇Φ|. (3.4)

It follows that∫

R

|∇Φ|(u̇ + u∇Φ · v + ∇Φ · qΦ) = 0

for every sub-domain R which implies the partial differential
equation

u̇ + u∇Φ · v + ∇Φ · qΦ = 0 in Ω. (3.5)

Taking qΦ to be the diffusive flux

qΦ = −A∇Φu (3.6)

leads to the diffusion equation

u̇ + u∇Φ · v − ∇Φ · (A∇Φu) = 0. (3.7)

Here A ≥ 0 is a symmetric mobility tensor with the property
that it maps the tangent space

T = {ν⊥ ∈ R
n+1 : ν · ν⊥ = 0}

into itself, so that

Aν⊥ · ν = 0 ∀ν⊥ ∈ T .

Observe that (3.7) is a linear degenerate parabolic equation
because PΦ has a zero eigenvalue in the normal direction ν.
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An Eulerian approach to transport and diffusion on evolving implicit surfaces 21

Fig. 1 Heating by motion:
Solution of Example 5 for the
times t = 0.0, 0.039 and 0.12 on
the strip Ωδ

Another form of this PDE, less suitable for numerical pur-
poses than (3.7) is given as

ut + V
∂u

∂ν
+ ∇Φ · (uvS) − V HΦu − ∇Φ · (A∇Φu) = 0.

In Fig. 1 we show an example for the influence of motion of
the levels of Φ onto the solution u. We use Ω = (−1, 1)2 ⊂
R

2 and a level set function Φ [see (6.5)] which deforms
straight lines in Ω into curved lines. Constant initial data
u0 = 1 then become nonconstant during the evolution. In
Fig. 1 we show a strip cut out of the computational domain.
For a detailed description we refer to Example 5.

The variational form of (3.7) is obtained in the following
way. For each level surface of Φ we multiply Eq. (3.7) by a
test function η and get
∫

Ω

(u̇ + u∇Φ · v − ∇Φ · (A∇Φu)) η|∇Φ| = 0.

Observe that the Leibniz formula, (2.10), gives

d

dt

∫

Ω

uη|∇Φ| =
∫

Ω

(u̇ + u∇Φ · v) η|∇Φ|

+
∫

Ω

uη̇|∇Φ| −
∫

∂Ω

uηv · ν∂Ω |∇Φ|,

and because of A∇Φu ·ν = 0 integration by parts (2.6) gives
∫

Ω

A∇Φu · ∇Φη|∇Φ| = −
∫

Ω

η∇Φ · (A∇Φu) |∇Φ|

+
∫

∂Ω

A∇Φu · ν∂Ωη|∇Φ|.

In order to proceed we need a boundary condition for u on
∂Ω . For the purpose of this paper, we shall assume that

v · ν∂Ω = 0 on ∂Ω (3.8)

and impose the zero flux condition

|∇Φ|A∇Φu · ν∂Ω = 0 on ∂Ω. (3.9)

Finally, we obtain

d

dt

∫

Ω

uη|∇Φ|+
∫

Ω

A∇Φu · ∇Φη|∇Φ|=
∫

Ω

uη̇|∇Φ|. (3.10)

Remark 3 Taking η = 1 we find the conservation equation

d

dt

∫

Ω

u|∇Φ| = 0.

4 Weak form and energy estimate

We introduce the notion of a weak solution of the linear
degenerate Eulerian parabolic (3.7), for which we derived a
variational form in (3.10). We define the normed linear spaces

L2
Φ(ΩT ) = {η : 〈η, η〉Φ < ∞},

H1
Φ(ΩT ) = {η : η, η̇,∇Φη ∈ L2

Φ(ΩT )},
where the norm is induced by the inner product

〈η, ξ 〉Φ =
T∫

0

∫

Ω

ηξ |∇Φ|,

〈η, ξ 〉H1
Φ

= 〈η, ξ 〉Φ + 〈η̇, ξ̇ 〉Φ + 〈∇Φη,∇Φξ 〉Φ,

and we set

||η||L2
Φ(ΩT ) = √〈η, η〉Φ,

||η||H1
Φ(ΩT ) =

√
〈η, η〉H1

Φ
.

Definition 1 (Weak solution) A function u ∈ H1
Φ(ΩT ) is a

weak solution of (3.7) and (3.9), if for almost every t ∈ (0, T )

d

dt

∫

Ω

uη|∇Φ|+
∫

Ω

A∇Φu · ∇Φη|∇Φ|=
∫

Ω

uη̇|∇Φ| (4.1)

for every η ∈ H1
Φ(ΩT ).

Weak solutions satisfy the following basic energy estimate
whose discrete counterpart implies stability. Throughout we
will assume the initial condition

u(·, 0) = u0(·) on Ω. (4.2)

123
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Lemma 4 Let u satisfy (4.1). Then
1

2

d

dt

∫

Ω

u2|∇Φ| +
∫

Ω

A∇Φu · ∇Φu|∇Φ|

+ 1

2

∫

Ω

u2 ∇Φ · v|∇Φ| = 0. (4.3)

Proof We choose η = u in (4.1) and obtain
d

dt

∫

Ω

u2|∇Φ| +
∫

Ω

A∇Φu · ∇Φu|∇Φ|

=
∫

Ω

uu̇|∇Φ|

= 1

2

∫

Φ

(
u2

)
˙|∇Φ|

= 1

2

d

dt

∫

Ω

u2|∇Φ| − 1

2

∫

Ω

u2 ∇Φ · v|∇Φ|

+ 1

2

∫

∂Ω

u2v · ν∂Ω |∇Φ|,

where the last term vanishes because of (3.8), and this was
the claim. 	


5 Finite element approximation

5.1 Semi-discrete approximation

Our Eulerian ESFEM is based on the the weak form (4.1) of
the diffusion equation. We use fixed in time finite element
functions so that the test functions now will satisfy

η̇ = v · ∇η.

We assume that the domain Ω is triangulated by an admis-
sible triangulation Th = ∪T ∈Th T which consists of simplices
T . The discrete space then is

Sh = {U ∈ C0(Ω)|U |T is a linear polynomial, T ∈ Th}.
The discrete space is generated by the nodal basis functions
χi , i = 1, . . . , N ,

Sh = span{χ1, . . . , χN }.
It is possible to generalize the method to higher order finite
elements.

Definition 2 (Semi-discretization in space) Find U (·, t) ∈
Sh such that

d

dt

∫

Ω

Uη|∇Φ| +
∫

Ω

A∇ΦU · ∇Φη|∇Φ|

=
∫

Ω

Uv · ∇η|∇Φ| ∀η ∈ Sh . (5.1)

Using the Leibniz formula it is easily seen that an equiv-
alent formulation is:∫

Ω

U̇η|∇Φ| +
∫

Ω

Uη∇Φ · v|∇Φ|

+
∫

Ω

A∇ΦU · ∇Φη|∇Φ| = 0 ∀η ∈ Sh .

Setting

U (·, t) =
N∑

j=1

α j (t)χ j (·, t)

we find that

d

dt

⎛
⎝

∫

Ω

N∑
j=1

α jχ jη|∇Φ|
⎞
⎠+

∫

Ω

A
N∑

j=1

α j∇Φχ j · ∇Φη|∇Φ|

=
∫

Ω

N∑
j=1

α jχ jv · ∇η|∇Φ|

forall η ∈ Sh and taking η = χk , k = 1, . . . , N , we obtain

d

dt
(M(t)α) + S(t)α = C(t)α (5.2)

where M(t) is the evolving mass matrix

M(t)k j =
∫

Ω

χ jχk |∇Φ|,

C(t) is a transport matrix

C(t)k j =
∫

Ω

χ jv · ∇χk |∇Φ|,

and S(t) is the evolving stiffness matrix

S(t) jk =
∫

Ω

A∇Φχ j∇Φχk |∇Φ|.

Since the mass matrix M(t) is uniformly positive definite on
[0, T ] and the other matrices are bounded, we get existence
and uniqueness of the semi-discrete finite element solution.

Remark 4 A significant feature of our approach is the fact
that the matrices M(t), C(t) and S(t) depend only on the
evaluation of the gradient of the level set function Φ and the
velocity field v. The method does not require a numerical
evaluation of the curvature.

5.2 Stability

The basic stability result for our spatially discrete scheme
from Definition 2 is given in the following Lemma.
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Lemma 5 (Stability) Let U be a solution of the semi-discrete
scheme as in Definition 2 with initial value U (·, 0) = U0.

Assume that
T∫

0

‖∇Φ · v‖L∞(Ω) < ∞

and that

Aξ · ξ ≥ a0|ξ |2
with some a0 > 0 for every ξ ∈ R

n+1 with ξ · ν = 0.
Then the following stability estimate holds:

sup
(0,T )

‖U‖2
L2

Φ(Ω)
+

T∫

0

‖∇ΦU‖2
L2

Φ(Ω)
≤ c‖U0‖2

L2
Φ(Ω)

. (5.3)

Proof The estimate follows from the Leibniz formula in
Lemma 3 in the same way as this was done for the continu-
ous equation in Lemma 4 and a standard Gronwall argument.

	


6 Implementation and numerical results

6.1 Implicit Euler scheme

The time discretization in our computations is done by an
implicit method. We discretize the variational form (3.10) in
time. The spatially discrete problem is

d

dt

∫

Ω

Uη|∇Φ| +
∫

Ω

A∇ΦU · ∇Φη|∇Φ|

=
∫

Γh(t)

U η̇|∇Φ| ∀η ∈ Sh . (6.1)

We introduce a time step size τ > 0 and use upper indices
for the time levels. Thus U m represents U (·, mτ). With these
notations we propose the following Algorithm.

Algorithm 1 (Fully discrete scheme) Let U 0 ∈ Sh be given.
For m = 0, . . . , mT solve the linear system

1

τ

∫

Ω

U m+1η|∇Φm+1|

+
∫

Ω

Am+1∇Φm+1U m+1 · ∇Φm+1η|∇Φm+1|

= 1

τ

∫

Ω

U mη|∇Φm | +
∫

Ω

U mvm · ∇η|∇Φm | (6.2)

for all η ∈ Sh .

The transport term on the right-hand side of (6.2) is treated
explicitly. Depending on the velocity v of the levels it may
be necessary to employ techniques for diffusion convection
equations.

6.2 Numerical tests

Example 1 To start with we solve the heat equation on a
moving circle. We choose Ω to be the annular region with
outer radius 1 and inner radius 0.5. We set

Φ(x, t) = |x | − 0.75 + sin (4t) (|x | − 0.5) (1 − |x |)
so that the boundary ∂Ω comprises level lines of Φ. The
velocity v is chosen to be normal, vS = 0. The function
u(x, t) = exp (−t/|x |2)x1/|x | then solves

u̇ + u∇Φ · v − ∆Φu = f

where we calculate f = V u
(

2t
r3 + 1

r

)
from

f = ut + V
∂u

∂r
− uV H − 1

r2 uθθ

where x = r(cos θ, sin θ). We are interested in u on the
moving curve

Γ (t) =
{

x ∈ Ω| Φ(x, t) = 3

4

}
.

Fig. 2 Example 1: Triangulation of Ω (black) and Curve Γ (red) for
a quarter of the annulus

Table 1 Heat equation on an evolving curve

h L∞(L2
Φ(Ω)) eoc L2(H1

Φ(Ω)) eoc

0.5176 0.1219 – 0.1742 –

0.2805 0.08354 0.61 0.07678 1.33

0.1563 0.02914 1.80 0.02846 1.69

0.08570 0.009000 1.95 0.01095 1.58

0.04657 0.002681 1.98 0.004598 1.42

0.02492 0.0007709 1.99 0.002077 1.27

Errors and experimental orders of convergence in Φ-norms for Exam-
ple 1 on Ω
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Table 2 The same situation as in Table 1

h L∞(L2(Ω)) eoc L2(H1(Ω)) eoc

0.5176 0.1210 – 0.6770 –

0.2805 0.08648 0.54 0.4779 0.56

0.1563 0.02939 1.84 0.2151 1.36

0.08570 0.009019 1.96 0.1166 1.01

0.04657 0.002682 1.98 0.06947 0.84

0.02492 0.0007887 1.95 0.04427 0.72

Errors and experimental orders of convergence in the full L2(Ω)-norms

Table 3 The same situation as in Table 1

h L∞(L2(Γ )) eoc L2(H1(Γ )) eoc

0.5176 0.1205 – 0.1803 –

0.2805 0.04464 1.62 0.08060 1.31

0.1563 0.01241 2.18 0.02807 1.80

0.08570 0.003408 2.14 0.01189 1.42

0.04657 0.0008736 2.23 0.005745 1.19

0.02492 0.0002445 2.03 0.002863 1.11

Errors and experimental orders of convergence on Γ

Table 4 Maximum errors on Ω and on Γ for the situation of Example 1

h L∞(L∞(Ω)) eoc L∞(L∞(Γ )) eoc

0.5176 0.2123 – 0.09084 –

0.2805 0.1712 0.35 0.03752 1.44

0.1563 0.06420 1.67 0.008879 2.46

0.08570 0.02667 1.46 0.002789 1.92

0.04657 0.01184 1.33 0.0007421 2.17

0.02492 0.005510 1.22 0.0001975 2.11

As initial data we take u0(x) = x1/|x |. We have chosen the
coupling τ = h2 in order to show the higher order conver-
gence for L2 and L∞ errors. The time interval is T = 1.0. In
Fig. 2 we show part of the used grid with the curve Γ (0) cut-
ting the triangulation. In Table 1 we show the absolute errors
and the corresponding experimental orders of convergence

for the Φ-norms on the full domain Ω , abbreviated by

L∞(L2
Φ(Ω)) = sup

(0,T )

‖u − uh‖L2
Φ(Ω),

L2(H1
Φ(Ω)) =

⎛
⎝

T∫

0

‖∇Φ(u − uh)‖2
L2

Φ(Ω)

⎞
⎠

1
2

.

Fig. 3 Solution u of Example 2 for the times t = 0.0, t = 0.011 and
t = 0.023. The colour red stands for u = 1 and the colour blue for
u = −1. Left column shows the solution on Ω in this colour code, right
column: the levels

Fig. 4 Solution u of
Example 2 for the times t = 0.0,
t = 0.01 and t = 0.05 on the
strip 0.7 < |x | < 0.8. The
colouring is the same as in Fig. 3

123



An Eulerian approach to transport and diffusion on evolving implicit surfaces 25

Fig. 5 Solution u of Example 3 with tangential velocity (6.3) for the
times t = 0.0, t = 0.046 and t = 0.37. The colour stands for the values
of u between maximum (red) and minimum (blue)

For comparison we show in Table 2 the usual L2(Ω)-norms
for the error,

L∞(L2(Ω)) = sup
(0,T )

‖u − uh‖L2(Ω),

L2(H1(Ω)) =
⎛
⎝

T∫

0

‖∇(u − uh)‖2
L2(Ω)

⎞
⎠

1
2

.

The most important errors are shown in Table 3. Here, we
show the asymptotic order of the adequate norms on the curve
Γ (t),

L∞(L2(Γ )) = sup
(0,T )

‖u − uh‖L2(Γ ),

L2(H1(Γ )) =
⎛
⎝

T∫

0

‖∇Φ(u − uh)‖2
L2(Γ )

⎞
⎠

1
2

.

We observe that despite the quite irregular discretization of
the curves induced by the triangulation of Ω the orders are
two for the L∞(L2(Γ ))-norm and one for the L2(H1(Γ ))-
norm.

As an additional information we show the maximum
norms

L∞(L∞(Ω)) = sup
(0,T )

‖u − uh‖L∞(Ω),

L∞(L∞(Γ )) = sup
(0,T )

‖u − uh‖L2(Γ )

on Ω and Γ in Table 4.
For an error E(h1) and E(h2) for the grid sizes h1 and h2

the experimental order of convergence is defined as

eoc(h1, h2) = log
E(h1)

E(h2)

(
log

h1

h2

)−1

.

Example 2 We solve the Φ-heat equation on concentric cir-
cles. We start with the stationary situation, i.e. Φt = 0. We
take

Ω =
{

x ∈ R
2| 1

2
< |x | < 1

}
,

u0(x) = sin (4ϕ) and

Φ(x, t) = |x | − 0.75

together with vS = 0. Since the mean value of u0 on concen-
tric circles vanishes, the solution tends to zero as time tends to
infinity. But this occurs at a rate which depends on the radius
of the circle because of the different diffusion coefficients on
the different circles. This effect is shown in Fig. 3 for small
times. In this computation we used the time step τ = 10−5

and spatial grid size h = 0.03026. In Fig. 4 we additionally
show the solution on a strip cut out of the domain by the level
set function Φ.

Fig. 6 Solution u of
Example 4 with normal velocity
induced by (6.4) for the time
steps 0,100 and 1,000. The
colour stands for the values of u
between maximum (red) and
minimum (blue) on Ω
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Fig. 7 Solution (left) of Example 5 with levels of Φ (right) for the
times t = 0.0, 0.039, 0.426, 0.813, 2.36 and 3.13 and Blue represents
the value u = −0.1 and red u = 1.1

Example 3 We next compute the solution for a similar situ-
ation as above but now with purely tangential velocity

vS = 10

(−Φx2 , Φx1

)
|∇Φ| . (6.3)

In Fig. 5 we show the solution at some time steps.

Fig. 8 Example 6: Values of the solution u for the times 0.47, 0.94
and 2.0 on the surface Φ = 0.75

Fig. 9 Example 6: Values of the solution u for the times 0.47, 0.94
and 2.0 on the surface Φ = 0.25

Example 4 Finally, we compute the evolution with purely
normal velocity. For this we have chosen

Φ((r cos θ, r sin θ), t)

= r − 0.75 + sin (8θ) sin (4t)(r − 0.5)(1 − r). (6.4)

In Fig. 6 we show some time steps. In order to identify the
zero level set of Φ, on which we want to solve the PDE, we
show a strip of width 0.05 around that zero level set. The
colouring is as in the previous examples. The colours range
from minimum to maximum of u on Ω .

Example 5 We choose Ω = (−1, 1)2 and constant initial
data

u0(x1, x2) = 1.

The level set function is given by

Φ(x1, x2, t) = x2 − (1 − x2
2 ) sin (4πx1) sin (t), (6.5)
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Fig. 10 Example 6: Values of the solution u for the times 0.47, 0.94
and 2.0 on the surface Φ = 0.0

Fig. 11 Example 6: Values of the solution u for the times 0.47, 0.94
and 2.0 on the surface Φ = −0.75

and we use τ = 0.000390625 and h = 0.0625. In Fig. 7 we
show the solution for times from one period of the level set
function Φ. The time dependent levels of Φ are shown in the
same Figure. In Fig. 1 we have shown the solution on the
strip

Ωδ = {x ∈ Ω| |Φ(x, t)| < δ}

for δ = 0.1 for some time steps to demonstrate the effect of
“heating by motion”.

Example 6 We finish with a three dimensional example. We
apply our numerical method to the domain Ω = (−1, 1)3 ⊂
R

3 and to the surfaces which are implicitly given by the

function

Φ(x, t) = x3 − 1

2
(1 − x2

3 ) sin (πx1) sin (πx2) sin
(π

2
t
)
.

(6.6)

As initial value we have chosen the constant function u0 = 1.
In Figs. 8, 9, 10 and 11 we show the results of the computation
for some time steps. The colouring of the surfaces is given by
the values of the solution u. Here, dark blue represents u =
0.0, red u = 2.0 and the colours are linearly interpolated.
Green represents the value u = 1.0. The computational data
were N = 35937 and τ = 0.0003125.
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