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In this article we define a finite-element method for elliptic partial differential equations (PDEs) on curves
or surfaces, which are given implicitly by some level set function. The method is specially designed for
complicated surfaces. The key idea is to solve the PDE on a narrow band around the surface. The width
of the band is proportional to the grid size. We use finite-element spaces that are unfitted to the narrow
band, so that elements are cut off. The implementation nevertheless is easy. We prove error estimates of
optimal order for a Poisson equation on a surface and provide numerical tests and examples.
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1. Introduction

Partial differential equations (PDEs) on surfaces occur in many applications. For example, traditionally
they arise naturally in fluid dynamics and materials science and more recently in the mathematics of
images. Denoting by1Γ theLaplace–Beltrami operator on a hypersurfaceΓ contained in a bounded
domainΩ ⊂ Rn+1, we consider the model problem

−1Γ u + cu = f onΓ, (1.1)

wherec and f are prescribed data on the closed surfaceΓ . For strictly positivec, there is a unique solu-
tion (Aubin,1982). A surface finite-element method was developed inDziuk (1988) for approximating
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352 K. DECKELNICK ET AL.

(1.1) using triangulated surfaces, see alsoDemlow & Dziuk (2007). This approach has been extended
to parabolic equations (Dziuk & Elliott, 2007b) and the evolving surface finite-element method for
parabolic conservation laws on time-dependent surfaces (Dziuk & Elliott, 2007a).

1.1 Implicit surface equation

In this paper we consider an Eulerian level set formulation of elliptic PDEs on an orientable hyper-
surfaceΓ without boundary. The method is based on formulating the PDE on all level set surfaces of
a prescribed functionΦ whose zero level set isΓ and for which∇Φ does not vanish. Eulerian sur-
face gradients are formulated by using a projection of the gradient inRn+1 onto the level surfaces of
Φ. These Eulerian surface gradients are used to define weak forms of surface elliptic operators and so
generate weak formulations of surface elliptic equations. The resulting equation is then solved in one
dimension higher but can be solved on a finite-element mesh that is unaligned to the level sets ofΦ.
Using extensions of the datac and f , we solve the equation

−1Φu + cu = f (1.2)

in all of Ω, where theΦ-Laplacian1Φ = ∇Φ ∙ ∇Φ is defined using theΦ-projected gradient

∇Φu = P∇u, P = I − ν ⊗ ν, ν :=
∇Φ

|∇Φ|
.

Equation(1.2) can be rewritten as

−∇ ∙ (P∇u|∇Φ|)+ cu|∇Φ| = f |∇Φ| in Ω, (1.3)

which can be viewed as a diffusion equation in an infinitesimally striated medium with an anisotropic
diffusivity tensor|∇Φ|P. This approach to surface PDEs consisting of solving implicitly on all level sets
of a given function is due toBertalmioet al.(2001) where finite-difference methods were proposed. The
idea is to use regular Cartesian grids that are completely independent of the surfaceΓ . Finite-difference
formulae for derivatives on the Cartesian grid are used to generate approximations of the implicit PDE.

1.2 Finite-element approach

It is natural to consider the finite-element approximation of implicit surface PDEs based on the following
variational form of (1.3):

∫

Ω
∇Φu ∙ ∇Φv|∇Φ| +

∫

Ω
cuv|∇Φ| =

∫

Ω
f v|∇Φ|,

wherev is an arbitrary test function in a suitable function space. This was proposed and developed in
Burger(2008) where weighted Sobolev spaces were introduced. Then the existence and uniqueness of a
solution to the variational formulation was proved by the Lax–Milgram lemma. Standard finite-element
spaces can then be employed leading to a stable Galerkin algorithm.

1.3 Issues, related works and contributions

The finite-difference approximation of fourth-order parabolic equations on stationary implicit surfaces
was considered inGreeret al.(2006). An interesting modification involving a different projection of the
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ELLIPTIC EQUATIONS ON IMPLICIT SURFACES 353

surface was proposed byGreer(2006) and can be used to remove the degeneracy of the elliptic operator.
Finite-difference methods for implicit equations on evolving surfaces were considered inAdalsteinsson
& Sethian(2003) andXu & Zhao(2003). A finite-element method for evolutionary second- and fourth-
order implicit surface equations was formulated inDziuk & Elliott (2008a). The evolving surface finite
element method approach to conservation laws on evolving surfaces was extended to evolving implicit
surfaces inDziuk & Elliott (2008b). Recently, eigenvalue problems for elliptic implicit surface operators
were considered inBrandman(2007).

With this implicit surface approach, the complexity associated with equations on manifolds em-
bedded in a higher-dimensional space is removed at the expense of solving an equation in one space
dimension higher. However, it is clear that the stability, efficiency and accuracy of the numerical meth-
ods will depend on the following factors.

1.3.1 The degeneracy of the implicit equation and the regularity of solutions.We observe that the
anisotropic elliptic operator is degenerate in the sense that the diffusivity tensorP has a zero eigenvalue,
Pν = 0, and there is no diffusion in the normal direction. The solution on each surface only depends on
the values of the data on that surface. Elliptic regularity is restricted to each surface, see Theorem3.1.
For example, theΦ-Laplace equation

−1Φu = 0

hasthe general solution, constant on each level surface ofΦ,

u = g(Φ),

whereg : R → R is smooth, but weak solutions of the above PDE can be defined withg having no
continuity properties.

Note that although the solution on a particular level set is independent of the solutions on any other
(except by the extensions of the data) this will not be the case for the solution of the finite-element
approximation where the discretization of the operator yields interdependence.

Another degeneracy for the equation is associated with critical points ofΦ, where∇Φ = 0. If Φ
has an isolated critical point inΩ, then generically this is associated with the self-intersection of a level
surface. It is easily observed that the finite-element approximation is still well defined but the analysis
in the neighbourhood of such points is still open.

1.3.2 Ω and the boundary conditions on∂Ω. For an arbitrary domainΩ, the level sets ofΦ will
intersect the boundary∂Ω. It is then necessary to formulate boundary conditions for equation (1.2) in
order to define a well-posed boundary-value problem. It is easy to see that there is a unique solution to
the variational form (3.3) of the equation with the natural variational boundary condition

∇Φu ∙ ν∂Ω = 0.

Notethat, ifΩ is a domain whose boundary is composed of level sets ofΦ satisfying the condition

Ω = {x ∈ Rn+1|α < Φ(x) < β}, (1.4)

with −∞ < α < β < ∞, then this natural boundary condition is automatically satisfied.
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354 K. DECKELNICK ET AL.

1.3.3 Well posedness and function spaces.In order to formulate a well-posedness theory, we intro-
duce implicit surface function spaces, see Section2, Wk,p

Φ (Ω) (e.g.W1,p
Φ (Ω) := { f ∈ L p(Ω)|∇Φ f ∈

L p(Ω)}). In particular, we prove a density result for smooth functions inW1,p
Φ (Ω). Under condition

(1.4), this density result allows us to establish the relation betweenW1,p
Φ (Ω) and the spacesW1,p(Γr )

onther -level setsΓr = {x ∈ Ω|Φ(x) = r } ofΦ. This leads to establishing the surface elliptic regularity
result of Theorem3.1,

‖u‖W2,2
Φ (Ω)

6 C‖ f ‖L2(Ω).

Regularity across level sets is then established in Theorem3.2 by assuming smoothness of the normal
derivatives of the data.

1.3.4 The choice of the computational domain.It is possible to triangulate the domainΩ and de-
fine the finite-element approximation on this triangulated domain. However, here we wish to consider
the approximation of the PDE on just one surfaceΓ , namely the zero level set ofΦ. It is natural to
consider defining the computational domain to be a narrow annular region containingΓ in the interior.
A possible choice is the domain{x ∈ Ω||Φ(x)| < δ}. In principle, the finite-element approach has
the attraction of being able to discretize arbitrary domains accurately using a union of triangles to de-
fine an approximating domain. However, we wish to avoid fitting the triangulation to the level surfaces
of Φ in the neighbourhood ofΓ . Our approach is based on theunfitted finite-element method(Bar-
rett & Elliott, 1984,1987,1988), in which the domain on which we approximate the equation is not a
union of elements. In this paper, we propose a narrow band finite-element method based on an unfitted
mesh that ish-narrow in the sense that the domain of integration isDh := {x ∈ Ω||Φh(x)| < γ h},
whereΦh is an interpolation ofΦ. The finite-difference approach has to deal with the nonalignment of
∂Ω with the Cartesian grid and discretize the equation at grid points on the boundary of the compu-
tational domain. Previous works concerning finite-difference approximations have used Neumann and
Dirichlet boundary conditions (Adalsteinsson & Sethian, 2003;Xu & Zhao, 2003;Greer,2006;Greer
et al.,2006).

1.3.5 Order of accuracy of the numerical solution.Currently works on finite-difference approxima-
tions of implicit surface equations have focused on practical issues and there is no error analysis. The
natural Galerkin error bound in a weighted energy norm was derived inBurger(2008). However, this is
an error bound over all level surfaces contained inΩ. Since the finite-element mesh does not respect the
surface it is not clear that the usual order of accuracy will hold on one level surface. The main theoretical
numerical analysis result of this paper is an O(h) error bound in theH1(Γ )-norm for our finite-element
method based on piecewise linear finite elements on an unfittedh-narrow band.

1.4 Outline of paper

The organization of the paper is as follows. In Section2 we introduce the notion ofΦ-implicit surface
derivatives andΦ-implicit surface function spacesWk,p

Φ (Ω). In particular, we prove a density result for

smooth functions inW1,p
Φ (Ω) that allows us to establish the relation between the spacesW1,p(Γr ) on

the r -level sets ofΦ andW1,p
Φ (Ω). The existence, uniqueness and regularity theory for theΦ-elliptic

equation is addressed in Section3. The finite-element approximation is described in Section4 and error
bounds are proved. Finally, in Section5 the numerical implementation is discussed together with the
results of numerical experiments.
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2. Preliminaries

2.1 Φ-derivatives

In what follows we shall assume that the given hypersurfaceΓ is closed and can be described as the
zero level set of a smooth functionΦ : Ω̄ → R, i.e.

Γ = {x ∈ Ω|Φ(x) = 0} and ∇Φ(x) 6= 0, ∀ x ∈ Ω̄. (2.1)

HereΩ is a bounded domain inRn+1 thatcontainsΓ . We define

ν(x) :=
∇Φ(x)

|∇Φ(x)|
, x ∈ Ω (2.2)

as well as

P(x) := I − ν(x)⊗ ν(x), x ∈ Ω. (2.3)

Note thatP is an orthogonal projection satisfyingP = P2 = PT, where we use the superscript T to
denote transpose. With a differentiable functionf : Ω → R, we associate itsΦ-gradient

∇Φ f := ∇ f − (∇ f ∙ ν)ν = P∇ f.

Note that, restricting to anyr -level setΓr = {x ∈ Ω|Φ(x) = r } ofΦ, (∇Φ f )|Γr is just the usual surface
(tangential) gradient off |Γr (cf. Gilbarg & Trudinger, 1983, Section 16.1). It is also the case thatν|Γr

is the unit normal toΓr pointingin the direction of increasingΦ. We define the mean curvatureH by

H := −
n+1∑

i =1

νi,xi .

In what follows we shall sum from 1 ton+1 over repeated indices. Note thatH |Γr is the mean curvature
of the level surfaceΓr . We shall write

∇Φ f (x) = (D1 f (x), . . . , Dn+1 f (x)), x ∈ Ω

andhave the following implicit surface integration formula (Dziuk & Elliott, 2008a):
∫

Ω
∇Φ f |∇Φ| = −

∫

Ω
f Hν|∇Φ| +

∫

∂Ω
f Pν∂Ω |∇Φ|, (2.4)

provided that f and∂Ω are sufficiently smooth. Hereν∂Ω is the unit outer normal to∂Ω.

LEMMA 2.1 Let g : Ω → Rn+1 bea differentiable vector field withg ∙ ν = 0 inΩ. Then

∇Φ ∙ g =
1

|∇Φ|
∇ ∙ (g|∇Φ|) in Ω.

Proof. Recalling (2.2), we have

1

|∇Φ|
∇ ∙ (g|∇Φ|) = gi,xi + gi

Φx jΦx j xi

|∇Φ|2
= gi,xi + gi ν j

Φxi x j

|∇Φ|
.
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356 K. DECKELNICK ET AL.

Differentiating the identityg ∙ ν = 0 with respect toxj , we obtain

gi,x j νi = −gi νi,x j = −gi
Φxi x j

|∇Φ|
, 16 j 6 n + 1,

which implies that

1

|∇Φ|
∇ ∙ (g|∇Φ|) = gi,xi − gi,x j νi ν j = ∇Φ ∙ g,

proving the desired result. �

2.2 Implicit surface function spaces

Following Burger (2008), we introduce weak derivatives: for a functionf ∈ L1
loc(Ω), i ∈ {1, . . . ,

n + 1}, we say thatg = Di f weaklyif g ∈ L1
loc(Ω,R

n+1) and

∫

Ω
f Di ζ |∇Φ| = −

∫

Ω
gζ |∇Φ| −

∫

Ω
f ζHνi |∇Φ|, ∀ ζ ∈ C∞

0 (Ω). (2.5)

It is not difficult to see that (2.5) is equivalent to

∫

Ω
f Di ζ = −

∫

Ω
Di f ζ +

∫

Ω
f ζ(hi − Hνi ), ∀ ζ ∈ C∞

0 (Ω), (2.6)

wherehi = νi,x j ν j (see(3.8) below). Let 16 p 6∞. Then we define

W1,p
Φ (Ω) := { f ∈ L p(Ω)|Di f ∈ L p(Ω), i = 1, . . . ,n + 1},

which we equip with the norm

‖ f ‖
W1,p
Φ

:=

(∫

Ω

(

| f |p +
n+1∑

i =1

|Di f |p

)) 1
p

, p < ∞,

with the usual modification in the casep = ∞. In the same way, we can define the spacesWk,p
Φ (Ω) for

k ∈ N, k > 2. Also, letW0,p
Φ (Ω) = L p(Ω). We note that the spacesWk,2

Φ (Ω) are Hilbert spaces.

LEMMA 2.2 Let 16 p < ∞. ThenC∞(Ω) ∩ W1,p
Φ (Ω) is dense inW1,p

Φ (Ω).

Proof. For ε > 0, we set

uε(x) :=
∫

Ω
ρε(x − y)u( y)dy,

whereρε is a standard mollifier. Employing a partition of unity, it is sufficient to prove that

‖uε − u‖
W1,p
Φ (Ω ′)

→ 0, ε → 0 for everyΩ ′ ⊂⊂ Ω.
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ELLIPTIC EQUATIONS ON IMPLICIT SURFACES 357

Fix Ω ′ ⊂⊂ Ω andchooseΩ ′′ with Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω. For 0< ε < dist(Ω′, ∂Ω ′′) andx ∈ Ω ′, we
have

(Di uε)(x)=
∫

Ω
ρε,xi (x − y)u( y)dy −

∫

Ω
ρε,xk(x − y)νk(x)νi (x)u( y)dy

= −
∫

Ω
Dy

i ρε(x − y)u( y)dy −
∫

Ω
ρε,yk(x − y)ri k(x, y)u( y)dy,

wherewe have abbreviated:

ri k(x, y) = νk( y)νi ( y)− νk(x)νi (x).

Using(2.6), we obtain, for 0< δ < dist(Ω′′, ∂Ω),

(Di uε)(x)=
∫

Ω
ρε(x − y)Di u( y)dy −

∫

Ω
ρε(x − y)u( y)(hi ( y)− H( y)νi ( y))dy

−
∫

Ω
ρε,yk(x − y)ri k(x, y)uδ( y)dy −

∫

Ω
ρε,yk(x − y)ri k(x, y)(u( y)− uδ( y))dy.

Integrating by parts the third term and observing the relation

∂

∂yk
ri k(x, y) =

∂

∂yk
(νkνi )( y) = hi ( y)− H( y)νi ( y),

wemay continue as follows:

(Di uε)(x)= (Di u)ε(x)+
∫

Ω
ρε(x − y)(uδ( y)− u( y))(hi ( y)− H( y)νi ( y))dy

+
∫

Ω
ρε(x − y)ri k(x, y)uδ,ykdy +

∫

Ω
ρε,yk(x − y)ri k(x, y)(uδ( y)− u( y))dy.

If we use standard arguments for convolutions and observe that|ri k(x, y)| 6 C|x−y| for x ∈ Ω ′and|x−
y| 6 ε, we finally conclude

‖Di uε − Di u‖L p(Ω ′) 6 ‖(Di u)ε − Di u‖L p(Ω ′) + ‖Di uε − (Di u)ε‖L p(Ω ′)

6 ‖(Di u)ε − Di u‖L p(Ω ′) + C‖uδ − u‖L p(Ω ′′) + C
ε

δ
‖u‖L p(Ω)

→ 0,

asδ → 0 and εδ → 0. �
In what follows we assume in addition to (2.1) thatΩ is of the form (1.4), i.e.

Ω = {x ∈ Rn+1|α < Φ(x) < β}, −∞ < α < β < ∞

and recall thatΓr = {x ∈ Ω|Φ(x) = r } is ther -level set ofΦ. We suppose thatΓα andΓβ areclosed

hypersurfaces. The next result gives a characterization of functions inW1,p
Φ (Ω) in terms of the spaces

W1,p(Γr ) (seeAubin, 1982for the corresponding definition).

 at U
niversity of W

arw
ick on July 24, 2010 

http://im
ajna.oxfordjournals.org

D
ow

nloaded from
 

http://imajna.oxfordjournals.org


358 K. DECKELNICK ET AL.

COROLLARY 2.1 Let 1< p < ∞ andu ∈ L p(Ω). Then

u ∈ W1,p
Φ (Ω) ⇐⇒ u|Γr ∈ W1,p(Γr ) for almost allr ∈ (α, β), andr 7→ ‖u‖W1,p(Γr )

∈ L p(α, β).

Proof. Let u ∈ W1,p
Φ (Ω). In view of Lemma2.2, there exists a sequence(uk)k∈N ⊂ C∞(Ω)∩W1,p

Φ (Ω)

such thatuk → u in W1,p
Φ (Ω). The coarea formula gives

∫ β

α

∫

Γr

(|uk − u|p + |∇Φ(uk − u)|p)dAdr =
∫

Ω
(|uk − u|p + |∇Φ(uk − u)|p)|∇Φ| → 0, k → ∞,

so that there exists a subsequence(ukj ) j ∈N with
∫

Γr

(|ukj − u|p + |∇Φ(ukj − u)|p)dA → 0, j → ∞, for almost allr ∈ (α, β).

This implies thatu|Γr ∈ W1,p(Γr ) for almost allr ∈ (α, β), while the fact thatr 7→ ‖u‖W1,p(Γr )
belongs

to L p(α, β) is again a consequence of the coarea formula.
Assume now thatu|Γr ∈ W1,p(Γr ) for almost allr ∈ (α, β), andr 7→ ‖u‖W1,p(Γr )

∈ L p(α, β). Fix
i ∈ {1, . . . ,n + 1}. The coarea formula and integration by parts onΓr imply that, forζ ∈ C∞

0 (Ω),

∫

Ω
uDi ζ |∇Φ| =

∫ β

α

∫

Γr

uDi ζ dAdr = −
∫ β

α

∫

Γr

(∇Γr u)i ζ dAdr −
∫ β

α

∫

Γr

uζHνi dAdr.

Sincer 7→ ‖u‖W1,p(Γr )
belongsto L p(α, β), the linear functional

Fi (ζ ) :=
∫

Ω
uDi ζ |∇Φ| +

∫

Ω
uζHνi |∇Φ|

satisfiesthe estimate|Fi (ζ )| 6 C‖ζ‖L p′ for all ζ ∈ C∞
0 (Ω) (wherep′−1 = 1 − p−1). Sincep′ < ∞,

C∞
0 (Ω) is dense inL p′

(Ω) and hence there existsvi ∈ L p(Ω) satisfyingFi (ζ ) = −
∫
Ω vi ζ |∇Φ| for

all ζ ∈ C∞
0 (Ω). Thus (2.5) holds and we infer thatu ∈ W1,p

Φ (Ω). �

3. Implicit surface elliptic equation

In this section we prove existence and regularity for solutions of the model equation (1.2).

3.1 Φ-elliptic equation

LetΩ andΦ be as above and assume thatf ∈ L2(Ω) andc ∈ L∞(Ω) with

c > c̄ a.e. inΩ, (3.1)

wherec̄ is a positive constant. We consider the implicit surface equation

−1Φu + cu = f in Ω.

Using Lemma2.1, we may rewrite this equation in the form

−∇ ∙ (P∇u|∇Φ|)+ cu|∇Φ| = f |∇Φ| in Ω. (3.2)
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Multiplying by a test function, integrating overΩ and using integration by parts leads to the following
variational problem: findu ∈ W1,2

Φ (Ω) such that

∫

Ω
∇Φu ∙ ∇Φv|∇Φ| +

∫

Ω
cuv|∇Φ| =

∫

Ω
f v|∇Φ|, ∀ v ∈ W1,2

Φ (Ω). (3.3)

Note that the boundary term vanishes because the unit outer normal to∂Ω points in the direction of
∇Φ. It follows from Burger(2008) that (3.3) has a unique solutionu ∈ W1,2

Φ (Ω) and one can show that
u|Γr is the weak solution of

−1Γ u + cu = f onΓr

for almost allr ∈ (α, β). Since f ∈ L2(Γr ) for almost allr ∈ (α, β), the regularity theory for elliptic
PDEs on manifolds implies thatu ∈ W2,2(Γr ) for almost allr ∈ (α, β) and

‖u‖W2,2(Γr )
6 C‖ f ‖L2(Γr )

.

Hence
∫ β

α
‖u‖2

W2,2(Γr )
dr 6 C

∫ β

α
‖ f ‖2

L2(Γr )
dr =

∫

Ω
| f |2|∇Φ| < ∞,

sothat Corollary2.1implies thatu ∈ W2,2
Φ (Ω) with ‖u‖W2,2

Φ (Ω)
6 C‖ f ‖L2(Ω), and we have proved the

following theorem.

THEOREM 3.1 LetΩ ⊂ Rn+1 satisfy(1.4) withΦ ∈ C2(Ω) and∇Φ 6= 0 onΩ. Then there exists a
unique solutionu ∈ W2,2

Φ (Ω) of equation (3.3) and

‖u‖W2,2
Φ (Ω)

6 C‖ f ‖L2(Ω). (3.4)

3.2 Regularity

The goal of this section is to investigate the regularity of the solution of (3.3) in the normal direction.
For this purpose, we define, for a differentiable functionf ,

Dν f := fxi νi ,

andsimilarly we sayz = Dν f weaklyif

∫

Ω
f Dνζ = −

∫

Ω
zζ +

∫

Ω
f Hζ ∀ ζ ∈ C∞

0 (Ω).

The derivativesDν andDi do not commute, but we have the following rules for exchanging the order
of differentiation, which can be derived with the help of the symmetry relationDi ν j = D j νi :

Di D j f − D j Di f = αk
i j Dk f, i, j = 1, . . . , n + 1, (3.5)

Di Dν f − DνDi f = hi Dν f + βk
i Dk f, i = 1, . . . , n + 1, (3.6)
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where

αk
i j = (Dkν j )νi − (Dkνi )ν j , (3.7)

hi = νi,x j ν j =
Di (|∇Φ|)

|∇Φ|
, (3.8)

βk
i = νi hk + Di νk. (3.9)

Let us in the following assume thatΦ ∈ C3(Ω̄). In order to examine the regularity of the solution
of (3.3), we consider the regularized equation

−εD2
νu
ε − Di Di u

ε + cεu
ε = fε in Ω, (3.10)

∂uε

∂ν∂Ω
= 0 on ∂Ω, (3.11)

in which fε andcε aremollifications of f andc with cε > c̄ in Ω. We associate with (3.10) and (3.11)
the following weak form:

aε(u
ε, v) =

∫

Ω
fεv|,∇Φ|, ∀ v ∈ H1(Ω), (3.12)

whereaε : H1(Ω)× H1(Ω) → R is given by

aε(u, v) := ε

∫

Ω
DνuDνv|∇Φ| + ε

∫

Ω
bDνuv|∇Φ| +

∫

Ω
∇Φu ∙ ∇Φv|∇Φ| +

∫

Ω
cεuv|∇Φ|

andb = (νi |∇Φ|)xi |∇Φ|−1. It is not difficult to verify that the above problem is uniformly elliptic and
that

aε(u, u) >
ε

2

∫

Ω
|Dνu|2|∇Φ| +

∫

Ω
|∇Φu|2|∇Φ| +

c̄

2

∫

Ω
|u|2|∇Φ| (3.13)

for all u ∈ H1(Ω) andε 6 ε0. In particular, (3.10) and (3.11) has a smooth solutionuε thatsatisfies

ε

∫

Ω
|Dνu

ε |2|∇Φ| +
∫

Ω
|∇Φuε |2|∇Φ| +

∫

Ω
|uε |2|∇Φ| 6 C

∫

Ω
f 2
ε |∇Φ| 6 C

∫

Ω
f 2|∇Φ|. (3.14)

Hencethere exists a sequence(εk)k∈N suchthatεk ↘ 0,k → ∞ and

uεk ⇀ u in W1,2
Φ (Ω), k → ∞, (3.15)

whereu is the solution of (3.3). We shall examine the regularity ofu in the normal direction by deriving
bounds on the corresponding derivatives ofuε thatare independent ofε.

LEMMA 3.1 Let Ω ⊂ Rn+1 satisfy(1.4) withΦ ∈ C2(Ω) and∇Φ 6= 0 onΩ. Suppose thatDνc ∈
L∞(Ω) and Dν f ∈ L2(Ω). ThenDνu ∈ W1,2

Φ (Ω ′) for all Ω ′ ⊂⊂ Ω andv := 1
|∇Φ| Dνu is a weak

solution of the equation

−1Φv + cv = g in Ω ′, (3.16)

for all Ω ′ ⊂⊂ Ω, where

g =
1

|∇Φ|
Dν f −

1

|∇Φ|
uDνc −

1

|∇Φ|
(Diβ

k
i Dku + (βk

i + β i
k)Di Dku − hiβ

k
i Dku). (3.17)
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Proof. Chooser1 < t1 < t2 < r2 andΩ ′′ ⊂⊂ Ω suchthat

Ω ′ ⊂ {x ∈ Ω|t1 < Φ(x) < t2} ⊂ {x ∈ Ω|r1 < Φ(x) < r2} ⊂ Ω ′′

andlet η ∈ C∞
0 (r1, r2) with η = 1 on [t1, t2]. Defineζ(x) := η(Φ(x)). Similarly to the proof of Lemma

2.2, it can be shown that

fε, Dν fε → f, Dν f in L2(Ω ′′) (3.18)

cε, Dνcε → c, Dνc a.e.in Ω ′′ and ‖Dνcε‖L∞ 6 C. (3.19)

Applying Dν to (3.10) and multiplying by|∇Φ|−1 yields

−ε
1

|∇Φ|
D3
νu
ε −

1

|∇Φ|
DνDi Di u

ε + cε
1

|∇Φ|
Dνu

ε =
1

|∇Φ|
Dν fε −

1

|∇Φ|
uεDνcε in Ω. (3.20)

Let us introducevε := 1
|∇Φ| Dνuε . A straightforward calculation shows that

1

|∇Φ|
D3
νu
ε = D2

νv
ε + γ1Dνv

ε + γ2v
ε, (3.21)

where

γ1 = 2
1

|∇Φ|
Dν(|∇Φ|) and γ2 =

1

|∇Φ|
D2
ν (|∇Φ|).

Next, we deduce with the help of (3.6) that

DνDi Di u
ε = Di DνDi u

ε − hi DνDi u
ε − βk

i Dk Di u
ε

= Di (Di Dνu
ε−hi Dνu

ε − βk
i Dkuε)−hi Di Dνu

ε + hi hi Dνu
ε + hiβ

k
i Dkuε − βk

i Dk Di u
ε

= Di Di Dνu
ε − Di (hi Dνu

ε)− Diβ
k
i Dkuε − βk

i Di Dkuε − hi Di Dνu
ε + hi hi Dνu

ε

+hiβ
k
i Dkuε − βk

i Dk Di u
ε . (3.22)

On the other hand, (3.8) yields

Di Di v
ε = Di

(
−hi

1

|∇Φ|
Dνu

ε +
1

|∇Φ|
Di Dνu

ε

)

=
1

|∇Φ|
(−Di (hi Dνu

ε)+ hi hi Dνu
ε + Di Di Dνu

ε − hi Di Dνu
ε),

whichcombined with (3.22) implies that

Di Di v
ε =

1

|∇Φ|
(DνDi Di u

ε + Diβ
k
i Dkuε + (βk

i + β i
k)Di Dkuε − hiβ

k
i Dkuε). (3.23)

Inserting(3.21) and (3.23) into (3.20), we find thatvε is a solution of the equation

−εD2
νv
ε − Di Di v

ε + cεv
ε = gε, (3.24)
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where

gε =
1

|∇Φ|
Dν fε −

1

|∇Φ|
uεDνcε + εγ1Dνv

ε + εγ2v
ε

−
1

|∇Φ|
(Diβ

k
i Dkuε + (βk

i + β i
k)Di Dkuε − hiβ

k
i Dkuε).

Multiplying (3.24) byζ 2vε |∇Φ|, recalling thatζ = η(Φ(x)) and integrating overΩ, we obtain, in
view of (2.5), the regularity ofΦ andDiΦ = 0, that

−ε
∫

Ω
ζ 2D2

νv
εvε |∇Φ| +

∫

Ω
ζ 2|∇Φv

ε |2|∇Φ| +
∫

Ω
cεζ

2|vε |2|∇Φ| =
∫

Ω
ζ 2gεv

ε |∇Φ|. (3.25)

Integration by parts yields

−ε
∫

Ω
ζ 2D2

νv
εvε |∇Φ| = −ε

∫

Ω
ζ 2(Dνv

ε)xi v
ενi |∇Φ|

= ε

∫

Ω
ζ 2|Dνv

ε |2|∇Φ| + ε

∫

Ω
ζ 2Dνv

εvε(νi |∇Φ|)xi + 2ε
∫

Ω
ζDνζDνv

εvε |∇Φ|

>
ε

2

∫

Ω
ζ 2|Dνv

ε |2|∇Φ| − Cε
∫

Ω
|vε |2|∇Φ|. (3.26)

Let us next examine the terms on the right-hand side. Firstly,
∣
∣
∣
∣

∫

Ω

(
1

|∇Φ|
Dν fε −

1

|∇Φ|
uεDνcε + εγ1Dνv

ε + εγ2v
ε

)
ζ 2vε |∇Φ|

∣
∣
∣
∣

6
c̄

4

∫

Ω
ζ 2|vε |2|∇Φ| +

ε

4

∫

Ω
ζ 2|Dνv

ε |2|∇Φ| + C
∫

Ω ′′
|Dν fε |

2 + C‖Dνcε‖
2
L∞(Ω ′′)

∫

Ω
|uε |2

provided that 0< ε 6 ε0. Next
∣
∣
∣
∣

∫

Ω
(Diβ

k
i Dkuε − hiβ

k
i Dkuε)ζ 2vε

∣
∣
∣
∣ 6

c̄

4

∫

Ω
ζ 2|vε |2|∇Φ| + C

∫

Ω
ζ 2|∇Φuε |2|∇Φ|.

Integration by parts gives
∫

Ω

1

|∇Φ|
(βk

i + β i
k)Di Dkuεζ 2vε |∇Φ|

= −
∫

Ω
ζ 2Di

(
1

|∇Φ|
(βk

i + β i
k)

)
Dkuεvε |∇Φ| −

∫

Ω

1

|∇Φ|
(βk

i + β i
k)ζ

2DkuεDi v
ε |∇Φ|

andhence
∣
∣
∣
∣

∫

Ω

1

|∇Φ|
(βk

i + β i
k)Di Dkuεζ 2vε |∇Φ|

∣
∣
∣
∣

6
c̄

4

∫

Ω
ζ 2|vε |2|∇Φ| +

1

2

∫

Ω
ζ 2|∇Φv

ε |2|∇Φ| + C
∫

Ω
|∇Φuε |2|∇Φ|.
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Insertingthe above estimates into (3.25) and recalling (3.14) as well as (3.18) and (3.19), we conclude
that

ε

∫

Ω
ζ 2|Dνv

ε |2|∇Φ| +
∫

Ω
ζ 2|∇Φv

ε |2|∇Φ| +
∫

Ω
ζ 2|vε |2|∇Φ|

6 C
∫

Ω ′′
|Dν fε |

2 + C
∫

Ω
(|uε |2 + |∇Φuε |2)|∇Φ| 6 C.

Sinceζ ≡ 1 onΩ ′, we infer that(vε)0<ε<ε0 is bounded inW1,2
Φ (Ω ′). Thus there exists a sequence

(εk)k∈N, εk ↘ 0 such that (3.15) holds and

vεk ⇀ v ∈ W1,2
Φ (Ω ′). (3.27)

It is not difficult to show that this implies thatDνu exists and satisfiesDνu = |∇Φ|v ∈ W1,2
Φ (Ω ′).

Let us finally derive the equation that is satisfied byv. For this purpose, we return to (3.24) and multiply
this equation byς |∇Φ| for an arbitraryς ∈ C∞

0 (Ω
′). Thus

−εk

∫

Ω ′
D2
νv
εkς |∇Φ| +

∫

Ω ′
Di v

εk Di ς |∇Φ| +
∫

Ω ′
cεkv

εkς |∇Φ| =
∫

Ω ′
gεkς |∇Φ|.

Combiningthe relationεk Dνvεk → 0 in L2(Ω ′) with (3.15) and (3.27) and the fact thatu ∈ W2,2
Φ (Ω),

one can pass to the limit in the above relation to obtain
∫

Ω ′
∇Φv ∙ ∇Φς |∇Φ| +

∫

Ω ′
cvς |∇Φ| =

∫

Ω ′
gς |∇Φ|,

whereg is given in (3.17). �
Observing thatg ∈ L2(Ω ′), we have proved the following regularity theorem.

THEOREM 3.2 In addition to the assumptions of Theorem3.1, suppose thatΦ ∈ C3(Ω) and that the
coefficients satisfyDνc ∈ L∞(Ω) andDν f ∈ L2(Ω). ThenDνu ∈ W2,2

Φ (Ω ′) for all Ω ′ ⊂⊂ Ω and

‖Dνu‖W2,2
Φ (Ω ′)

6 C(‖ f ‖L2(Ω) + ‖Dν f ‖L2(Ω)). (3.28)

TheconstantC depends onΩ,Ω ′, Φ, c̄ andc.

REMARK 3.1 Since∇ f = ∇Φ f + Dν f ν, Theorems3.1 and3.2 imply that u ∈ W1,2(Ω ′) for all
Ω ′ ⊂⊂ Ω. Higher regularity ofu can now be obtained by iterating the above arguments under appro-
priately strengthened hypotheses on the data of the problem. For example, estimating the second normal
derivative would require deriving an equation forw = |∇Φ|−2D2

νu.

4. Numerical scheme and error analysis

4.1 Finite-element approximation

Let Ω0 be an open polyhedral domain such thatBδ(Γ ) ⊂ Ω0 ⊂⊂ Ω for someδ > 0, where
Bδ(Γ ) = {x ∈ Ω|dist(x, Γ ) < δ}. Let Th be a triangulation ofΩ0 with maximum mesh sizeh :=
maxT∈Th diam(T). We suppose that the triangulation is quasi-uniform in the sense that there exists a
constantκ > 0 (independent ofh) such that eachT ∈ Th is contained in a ball of radiusκ−1h and
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containsa ball of radiusκh. We denote bya1, . . . , aN thenodes of the triangulation and byψ1, . . . , ψN

thecorresponding linear basis functions, i.e.ψi ∈ C0(Ω̄0) andψi |T ∈ P1(T) for all T ∈ Th satisfying
ψi (aj ) = δi j for all i, j = 1, . . . ,N.

Let us defineΦh := IhΦ =
∑N

i =1Φ(ai )ψi asthe usual Lagrange interpolation ofΦ. In view of the
smoothness ofΦ, we have

‖Φ −Φh‖L∞(Ω0) + h‖∇Φ − ∇Φh‖L∞(Ω0) 6 Ch2, (4.1)

from which we infer in particular that|∇Φh| > c0 in Ω̄0 for 0< h 6 h0. Hence we can define

Ph = I − νh ⊗ νh, where νh =
∇Φh

|∇Φh|
.

Ouraim is to estimate the error betweenuh andthe exact solutionu. Since the equation foru is given in
terms of the level set ofΦ rather than that ofΦh, it turns out to be useful to work with the transformation
Fh definedin Lemma4.1.

LEMMA 4.1 Forh sufficiently small, there exists a bilipschitz mappingFh : Ω0 → Ωh
0 = Fh(Ω0) such

thatΦ ◦ Fh = Φh and

‖id − Fh‖L∞(Ω0) + h‖I − DFh‖L∞(Ω0) 6 Ch2. (4.2)

Proof. We try to findFh in the form

Fh(x) = x +
ηh(x)

|∇Φ(x)|
ν(x), x ∈ Ω0,

whereηh : Ω0 → R hasto be determined. A Taylor expansion yields

Φ(Fh(x))=Φ(x)+ ∇Φ(x) ∙
ηh(x)

|∇Φ(x)|
ν(x)

+
ηh(x)2

|∇Φ(x)|2

∫ 1

0
(1 − t)D2Φ

(
x + t

ηh(x)

|∇Φ(x)|
ν(x)

)
dtν(x) ∙ ν(x)

=Φ(x)+ ηh(x)+
ηh(x)2

|∇Φ(x)|2

∫ 1

0
(1 − t)D2Φ

(
x + t

ηh(x)

|∇Φ(x)|
ν(x)

)
dtν(x) ∙ ν(x)

in view of (2.2). HenceΦ(Fh(x)) = Φh(x) if and only if

ηh(x) = Φh(x)−Φ(x)−
ηh(x)2

|∇Φ(x)|2

∫ 1

0
(1 − t)D2Φ

(
x + t

ηh(x)

|∇Φ(x)|
ν(x)

)
dtν(x) ∙ ν(x), x ∈ Ω0.

(4.3)
This equation can be solved by applying Banach’s fixed point theorem to the operatorS : B →
W1,∞(Ω0):

(Sψ)(x) := Φh(x)−Φ(x)−
ψ(x)2

|∇Φ(x)|2

∫ 1

0
(1− t)D2Φ

(
x + t

ψ(x)

|∇Φ(x)|
ν(x)

)
dtν(x) ∙ν(x), x ∈ Ω0.

HereB is the closed subset ofW1,∞(Ω0) given by

B := {ψ ∈ W1,∞(Ω0)|‖ψ‖L∞(Ω0) + h‖Dψ‖L∞(Ω0) 6 K h2},

whereK is chosen sufficiently large andh is sufficiently small. We omit the details. �
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4.2 Finite-element scheme

Let us next describe the numerical scheme. The computational domain is taken as a narrow band of the
form

Dh := {x ∈ Ω0||Φh(x)| < γ h}.

Let T C
h := {T ∈ T h|T ∩ Dh 6= ∅} denote the computational elements and consider the nodes

of all simplicesT belonging toT C
h . After relabelling we may assume that these nodes are given by

a1, . . . , am. Let Sh := span{ψ1, . . . , ψm}. The discrete problem now reads: finduh ∈ Sh suchthat
∫

Dh

Ph∇uh ∙ ∇vh|∇Φh| +
∫

Dh

cuhvh|∇Φh| =
∫

Dh

f vh|∇Φh|, ∀ vh ∈ Sh. (4.4)

Ourerror analysis requires the conditions

Γ ⊂
⋃

Γ ∩T 6=∅

T ⊆ D̄h, 0< h 6 h1, (4.5)

and

|Dh| 6 Ch. (4.6)

Condition (4.5) can be satisfied by choosing

γ = max
x∈Ω̄

|∇Φ(x)|.

To see this, note that ifx ∈ Γ ∩ T andy ∈ T we have, becauseΦh is linear, that, for a vertexa of T ,

|Φh( y)| 6 |Φh(a)| = |Φ(a)| = |Φ(a)−Φ(x)| 6 h max
Ω̄

|∇Φ| = γh.

REMARK 4.1 In the case thatΦ is a signed distance function then we can chooseγ = 1.

The bound on the measure ofDh, (4.6), follows from the observation that, forh sufficiently small,
|Φ| < 2γh on Dh and,since|∇Φ| > cΦ > 0 onΩ0, using the coarea formula we have

|Dh| 6
∫ 2γh

−2γh

∫

Γr

1

|∇Φ|
6

4γ |Γ∗|

cΦ
h,

where|Γ∗| is a bound for the measure of the level sets ofΦ in Ω0.

4.3 Error analysis

THEOREM 4.1 Assume that the solutionu of (3.3) belongs toW2,∞(Ω0) andthatc, f ∈ W1,∞(Ω0).
Let uh bethe solution of the finite-element scheme defined as in Section4.2satisfying (4.5). Then

‖u − uh‖H1(Γ ) 6 Ch.

Proof. We use the transformationFh definedin Lemma4.1. In order to derive the corresponding error
relation, we take an arbitraryvh ∈ Sh, multiply (3.2) byvh ◦ F−1

h andintegrate overDh := Fh(Dh) =

 at U
niversity of W

arw
ick on July 24, 2010 

http://im
ajna.oxfordjournals.org

D
ow

nloaded from
 

http://imajna.oxfordjournals.org


366 K. DECKELNICK ET AL.

{x ∈ Ω0||Φ(x)| < γ h}. Since the unit outer normal to∂Dh pointsin the direction of∇Φ, integration
by parts yields

∫

Dh
P∇u ∙ ∇(vh ◦ F−1

h )|∇Φ| +
∫

Dh
cuvh ◦ F−1

h |∇Φ| =
∫

Dh
f vh ◦ F−1

h |∇Φ|, ∀ vh ∈ Sh. (4.7)

FromΦ ◦ Fh = Φh, it follows that

∇Φ = (DFh)
−T∇Φh,

whichyields

P(DFh)
−T Ph = P

(
(DFh)

−T −
|∇Φ|

|∇Φh|
ννT

h

)
= P(DFh)

−T.

Hencewe have

P∇(vh ◦ F−1
h ) = P(DFh)

−T(Ph∇vh) ◦ F−1
h . (4.8)

Usingthe transformation rule, (4.8) and the fact thatP2 = P, we obtain

∫

Dh
P∇u ∙ ∇(vh ◦ F−1

h )|∇Φ|

=
∫

Dh

(P∇u) ◦ Fh ∙ (P∇(vh ◦ F−1
h )) ◦ Fh|(∇Φ) ◦ Fh||detDFh|

=
∫

Dh

(P∇u) ◦ Fh ∙ (DFh)
−T Ph∇vh|(∇Φ) ◦ Fh||detDFh|

=
∫

Dh

Ph∇u ∙ ∇vh|∇Φh| +
∫

Dh

Rh ∙ Ph∇vh,

where

|Rh| = |(DFh)
−1(P∇u) ◦ Fh|(∇Φ) ◦ Fh||detDFh| − Ph∇u|∇Φh||

6 |[(DFh)
−1|detDFh| − I ](P∇u) ◦ Fh|(∇Φ) ◦ Fh||

+ |(P∇u) ◦ Fh|(∇Φ) ◦ Fh| − P∇u|∇Φ|| + |P∇u|∇Φ| − Ph∇u|∇Φh||

6C(‖DFh − I ‖L∞(Ω0) + ‖∇(Φ −Φh)‖L∞(Ω0))‖∇u‖L∞(Ω0)

+ C(‖∇u‖W1,∞(Ω0)
+ ‖∇Φ‖W1,∞(Ω0)

)‖Fh − id‖L∞(Ω0).

Hence
∫

Dh
P∇u ∙ ∇(vh ◦ F−1

h ) |∇Φ| =
∫

Dh

Ph∇u ∙ ∇vh|∇Φh| + R1
h(vh),
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while (4.1) and (4.2) imply that

|R1
h(vh)| 6

∣
∣
∣
∣

∫

Dh

Rh ∙ Ph∇vh

∣
∣
∣
∣ 6 Ch|Dh|

1
2 ‖Ph∇vh‖L2(Dh)

6 Ch
3
2 ‖Ph∇vh‖L2(Dh)

, (4.9)

wherewe have used the bound on|Dh|, (4.6). Sincec, f ∈ W1,∞(Ω0), one shows in a similar way that

∫

Dh
cuvh ◦ F−1

h |∇Φ| =
∫

Dh

cuvh|∇Φh| + R2
h(vh),

∫

Dh
f vh ◦ F−1

h |∇Φ| =
∫

Dh

f vh|∇Φh| + R3
h(vh),

where

|Rj
h(vh)| 6 Ch

3
2 ‖vh‖L2(Dh)

, j = 2,3. (4.10)

Let us introducee : Dh → R, e := u − uh; in view of the above calculations,e satisfies the relation
∫

Dh

Ph∇e ∙ ∇vh|∇Φh| +
∫

Dh

cevh|∇Φh| = R3
h(vh)− R1

h(vh)− R2
h(vh) (4.11)

for all vh ∈ Sh. As usual, we spliteas follows:

e =

(

u −
m∑

i =1

u(ai )ψi

)

+

(
m∑

i =1

u(ai )ψi − uh

)

≡ ρh + θh,

whereρh is the interpolation error andθh ∈ Sh. Since∪T∈T C
h

T ⊂ BCh(Γ ), we have

‖ρh‖2
H1(Dh)

6 Ch max
T∈T C

h

‖ρh‖
2
W1,∞(T) 6 Ch3 max

T∈T C
h

‖D2u‖2
L∞(T) 6 Ch3‖D2u‖2

L∞(Ω0)
, (4.12)

‖ρh‖H1(Γ ) 6 C‖ρh‖W1,∞(Γ ) 6 Ch‖D2u‖L∞(Ω0). (4.13)

Next, insertingvh = θh into (4.11) and recalling (4.9) and (4.10) as well as (4.12), we obtain

∫

Dh

(|Ph∇θh|2 + |θh|
2)6C‖ρh‖H1(Dh)

(∫

Dh

(|Ph∇θh|2 + |θh|2)
) 1

2

+ C
3∑

j =1

|Rj
h(θh)|

6Ch
3
2

(∫

Dh

(|Ph∇θh|
2 + |θh|2)

) 1
2

andhence
∫

Dh

(|Ph∇θh|2 + |θh|2) 6 Ch3. (4.14)
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Let us now turn to the error estimate onΓ . Using inverse estimates together with (4.1), (4.5) and (4.14),
we infer

‖θh‖2
H1(Γ )

=
∫

Γ
(|θh|2 + |P∇θh|2)

6
∑

T∩Γ 6=∅

|T ∩ Γ |(‖θh‖2
L∞(T) + |(Ph∇θh)|T |2 + Ch2

T |∇θh|T |2)

6C
∑

T∩Γ 6=∅

hn
T (h

−(n+1)
T ‖θh‖2

L2(T) + |(Ph∇θh)|T |2)

6C
∑

T∩Γ 6=∅

h−1
T

∫

T
(|θh|2 + |Ph∇θh|

2)

6Ch−1
∫

Dh

(|θh|2 + |Ph∇θh|2)

6Ch2.

Combiningthis estimate with (4.13), we then obtain

‖u − uh‖H1(Γ ) 6 ‖ρh‖H1(Γ ) + ‖θh‖H1(Γ ) 6 Ch

and the theorem is proved. �

5. Numerical results

In this section we present the results of some numerical tests and experiments. In particular, they confirm
the orderh convergence in theH1(Γ )-norm and suggest higher-order convergence in theL2(Γ )-norm.
A detailed description of the finite-element space was given in Section4.2.

5.1 Implementing the unfitted finite-element method

As described in Section4.2, we replace the smooth level set functionΦ by its piecewise linear inter-
polantΦh = IhΦ andwork onDh = {x ∈ Ω0||Φh(x)| < γ h}, yielding the finite-element scheme (4.4).
The setDh thenconsists of simplicesT and sub-elements̃T that are ‘cut-off’ simplices. In practice, it
is not necessary to keep the mesh data structures for a uniformly refined triangulation ofΩ0 aselements
not intersectingDh playno part in the computation. So, in the implementation reported here, the domain
Ω0 is triangulated coarsely and then the grid is refined in a strip that includes the computational domain
Dh.

For example, a typical situation for a curve in two space dimensions is shown in Fig.1. The curve
Γ intersects the two-dimensional grid quite arbitrarily, giving rise to sub-elementsT̃ that are triangles
or quadrilaterals of arbitrary size and regularity. The method then yields a standard linear system

SU + MU = b,
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ELLIPTIC EQUATIONS ON IMPLICIT SURFACES 369

FIG. 1. The curveΓ (red in the electronic version of the article) intersects the cartesian grid in an uncontrolled way (left). The
unfitted finite-element method is applied to the white strip around the curve (right).

with stiffness matrixS, mass matrixM and right-hand sideb given by

Si j =
∫

Dh

Ph∇ψi ∙∇ψ j |∇Φh|, Mi j =
∫

Dh

cψiψ j |∇Φh|, bi =
∫

Dh

fψi |∇Φh|, i, j = 1, . . . ,m,

wherem denotes the number of vertices of the triangles belonging toT C
h . Note that this includes vertices

lying outsideDh.
In the usual way, one assembles the matrices element by element. In the case of elements that

intersectDh, one has to calculate the sub-element mass matrixMT̃ and the element stiffness matrixST̃ :

MT̃
i j =

∫

T̃
cψT

i ψ
T
j |∇Φh|, ST̃

i j =
∫

T̃
Ph∇ψT

i ∙ ∇ψT
j |∇Φh|, i, j = 1, . . . ,m.

HereψT
i denotes thei th local basis function onT ⊃ T̃ . The quantity∇Φh is constant onT̃ . For the

computation of the integrals we splitT̃ into simplices and use standard integration formulas on these.
Note that, since the sub-elementsT̃ of the cut-off triangulation can be arbitrarily small, it is possible

that the resulting equations for vertices inT C
h that lie outside ofDh may have arbitrarily small elements.

Thus, in this form, the resulting equations can have an arbitrarily large condition number. However, in
our case of piecewise linear finite elements, by diagonal preconditioning the degenerate conditioning is
removed. For higher-order finite elements this simple resolution of the ill-conditioning problem is not
possible and for deeper insight into the stabilization of higher-order unfitted finite elements we refer to
Heine(2008).

5.2 Two space dimensions

We begin with a test computation for a problem with a known solution so that we are able to calculate
the error between the continuous and discrete solutions.

EXAMPLE 5.1 We are going to solve the PDE

−1Γ u + u = f (5.1)

on the curve

Γ = {x ∈ R2||x| = 1}.
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FIG. 2. Upper right part in(0,2)× (0,2) of the triangulation for Example5.1. We show the triangulation levels 1 with 217 nodes,
3 with 997 nodes and 10 with 140677 nodes.

The level set function is chosen asΦ(x) = |x| − 1. We chooseΩ0 = (−2,2)2, which is triangulated
as shown in Fig.2. As the right-hand side for (5.1) we take

f (x) = 26(x5
1 − 10x3

1x2
2 + 5x1x4

2), x ∈ Γ,

and extend it constantly in the normal direction as

f (x) =
26

|x|5
(x5

1 − 10x3
1x2

2 + 5x1x4
2) = 26 cos(5ϕ), x ∈ Ω \ {0}.

The function

u(x) =
1

|x|5
26|x|2

|x|2 + 25
(x5

1 − 10x3
1x2

2 + 5x1x4
2) =

26r 2

r 2 + 25
cos(5ϕ) (x = (r cosϕ, r sinϕ))

is then obviously the solution of the PDE (5.1) on the curveΓ , and a short calculation also shows that
u, is a solution of

−1Φu + u = f, x ∈ R2 \ {0}. (5.2)

Figure 3 shows this solution and in Table 1 we give the errors and experimental orders of conver-
gence (EOC) for this test problem. We calculated the errors on the stripDh = {x ∈ Ω0||Φh(x)| < γ h}:

E(L2
Φ(Dh))=

(∫

Dh

(u − uh)
2|∇Φh|

) 1
2

/|Dh|
1/2,

E(H1
Φ(Dh))=

(∫

Dh

|∇Φh(u − uh)|
2|∇Φh|

) 1
2

/|Dh|1/2,

and on the curveΓh = {x ∈ Ω0|Φh(x) = 0}:

E(L2(Γh)) = ‖u − uh‖L2(Γh)
, E(H1(Γh)) = ‖∇Φh(u − uh)‖L2(Γh)

.
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FIG. 3. Upper right part in(0,2)×(0,2)of the solution for Example5.1. We show the levels 1, 3 and 4. The values of the solution
are coloured linearly between−1 (blue) and 1 (red). The solution is shown in the strip{x ∈ (0,2)2|||x| − 1|6 h} only.

TABLE 1 Errors and orders of convergence for Example5.1 for the choiceγ = 1

h E(L2
Φ(Dh)) EOC E(H1

Φ(Dh)) EOC E(L2(Γh)) EOC E(H1(Γh)) EOC
0.5 0.1939 — 1.426 — 0.5744 — 4.382 —
0.25 0.05545 1.81 0.7293 0.97 0.1321 2.12 2.124 1.05
0.125 0.0191 1.54 0.3611 1.01 0.0424 1.64 1.089 0.96
0.0625 0.007185 1.41 0.1765 1.03 0.01339 1.66 0.4877 1.16
0.03125 0.002562 1.49 0.08708 1.02 0.004748 1.50 0.2548 0.94
0.01562 0.0008775 1.55 0.04319 1.01 0.001439 1.72 0.1234 1.05
0.007812 0.0003267 1.43 0.02153 1.00 0.0004022 1.84 0.06124 1.01
0.003906 0.0001366 1.26 0.01073 1.00 0.0001096 1.88 0.03013 1.02
0.001953 6.186× 10−5 1.14 0.005367 1.00 2.968× 10−5 1.88 0.01515 0.99
0.0009766 2.929× 10−5 1.08 0.002681 1.00 8.116× 10−6 1.87 0.00747 1.02
0.0004883 1.416× 10−5 1.05 0.00134 1.00 2.251× 10−6 1.85 0.003705 1.01

For errorsE(h1) and E(h2) for the grid sizesh1 and h2, the experimental order of convergence is
defined as

EOC(h1, h2) = log
E(h1)

E(h2)

(
log

h1

h2

)−1

.

We also include a table for the choiceγ = 5. The results in Tables1 and2 for the choicesγ = 1 and
γ = 5 confirm the theoretical results from Theorem4.1for the H1(Γ )-norm.

Our analysis does not provide a higher-order convergence in theL2(Γ )-norm. However, the nu-
merical results indicate the possibility of quadratic convergence for theL2(Γ )-norm in two space di-
mensions. However, this quadratic convergence may needh to be sufficiently small. Note that for the
larger values ofh the behaviour of theL2(Γ )-norm in Table2 is erratic, and for smaller values ofh the
L2(Γ )-error is larger than that in the narrower band. We do not have an explanation for this. We observe
that using the coarea formula as in the derivation of the bound (4.6) implies that|Dh| > ch, so that
the estimate (4.14) suggests that the error in the weighted normE(H1

Φ(Dh)) is of O(h). The numerical
experiments agree with this.

We add a computation on an asymptotically larger strip. For this, we have chosen

Dh = {x ∈ Ω0||Φh(x)| < 2
√

h}. (5.3)
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TABLE 2 Errors and orders of convergence for Example5.1 for the choiceγ = 5

h E(L2
Φ(Dh)) EOC E(H1

Φ(Dh)) EOC E(L2(Γh)) EOC E(H1(Γh)) EOC
0.125 0.01419 0.3679 — 0.03491 — 1.096 —
0.0625 0.00514 1.47 0.1855 0.99 0.008297 2.07 0.5249 1.06
0.03125 0.00245 1.07 0.09261 1.00 0.002219 1.90 0.2685 0.97
0.01562 0.0014 0.81 0.04605 1.01 0.001778 0.32 0.131 1.04
0.007812 0.0008785 0.67 0.02279 1.01 0.001899 −0.10 0.06599 0.99
0.003906 0.0004603 0.93 0.01121 1.02 0.001171 0.70 0.03174 1.06
0.001953 0.0001785 1.37 0.005517 1.02 0.0004752 1.30 0.01544 1.04
0.0009766 5.698× 10−5 1.65 0.002731 1.01 0.0001539 1.63 0.007531 1.04
0.0004883 1.645× 10−5 1.79 0.00136 1.01 4.405× 10−5 1.80 0.003714 1.02

TABLE 3 Resultsfor Example5.1 for a computation on the larger strip(5.3)

h E(L2
Φ(Dh)) EOC E(H1

Φ(Dh)) EOC E(L2(Γh)) EOC E(H1(Γh)) EOC
0.125 0.014 0.3665 — 0.03483 — 1.096 —
0.0625 0.004774 1.55 0.1852 0.99 0.008195 2.09 0.5251 1.06
0.03125 0.001929 1.31 0.09314 0.99 0.002028 2.01 0.2678 0.97
0.01562 0.0008406 1.20 0.04668 1.00 0.0004825 2.07 0.1299 1.04
0.007812 0.0003966 1.08 0.02337 1.00 0.0001211 1.99 0.06588 0.98
0.003906 0.0001933 1.04 0.01169 1.00 2.975× 10−5 2.02 0.03267 1.01
0.001953 9.558× 10−5 1.02 0.005848 1.00 7.343× 10−6 2.02 0.01619 1.01
0.0009766 4.741× 10−5 1.01 0.002925 1.00 1.838× 10−6 2.00 0.008052 1.01
0.0004883 2.363× 10−5 1.00 0.001463 1.00 4.747× 10−7 1.95 0.004004 1.01

Theresults for this case are shown in Table3. Apparently, theL2(Γ )-norm converges quadratically. The
numerical analysis onΓ for larger strips remains an open question.

5.3 Three space dimensions

In three space dimensions we are solving PDEs on surfaces. The numerical method is principally the
same as in two dimensions. But now we have to calculate mass and stiffness matrices on cut-off tetra-
hedra. As a test for the asymptotic errors we use a similar example to the previous two-dimensional
example.

EXAMPLE 5.2 We chooseΓ = S2 andΩ0 = (−2,2)3 togetherwith Φ(x) = |x| − 1. For any constant
a, the function

u(x) = a
|x|2

12+ |x|2
(3x2

1x2 − x3
2), x ∈ Ω0 \ {0}

is a solution of (5.2) for the right-hand side

f (x) = a(3x2
1x2 − x3

2), x ∈ Ω0 \ {0}.

For the computations, we have chosena = −13
8

√
35
π . In Table4 we show the errors and experimental

orders of convergence for this example. They confirm our theoretical results and again indicate higher-
order convergence inL2(Γ ).
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TABLE 4 Three-dimensional results for Example5.2 for the choiceγ = 1

h E(L2
Φ(Dh)) EOC E(H1

Φ(Dh)) EOC E(L2(Γh)) EOC E(H1(Γh)) EOC
0.866 0.0391 — 0.2598 — 0.2041 — 1.268 —
0.433 0.01339 1.55 0.1354 0.94 0.04091 2.32 0.5131 1.30
0.2165 0.004791 1.48 0.06889 0.97 0.01199 1.77 0.2677 0.94
0.1083 0.002024 1.24 0.03459 0.99 0.00409 1.55 0.1362 0.97
0.05413 0.0008095 1.32 0.01714 1.01 0.00157 1.38 0.06595 1.05
0.02706 0.0003299 1.30 0.008548 1.00 0.000484 1.70 0.03307 1.00
0.01353 0.0001471 1.16 0.004262 1.00 0.0001353 1.84 0.016381.01

FIG. 4. Slice through the grid that was used for the computations from Example5.3.

EXAMPLE 5.3 We end with a three-dimensional example. We solve the linear PDE (5.1) on a compli-
cated two-dimensional surfaceΓ = {x ∈ Ω0|Φ(x) = 0}. The surface is given as the zero level set of
the function

Φ(x) = (x2
1 +x2

2 −4)2+ (x2
3 −1)2+ (x2

2 +x2
3 −4)2+ (x2

1 −1)2+ (x2
3 +x2

1 −4)2+ (x2
2 −1)2−3. (5.4)

The computational grid for this problem is shown in Fig.4. As a right-hand side we have chosen the
function

f (x) = 100
4∑

j =1

exp(−|x − x( j )|
2), (5.5)

with

x(1)= (−1.0,1.0,2.04), x(2) = (1.0,2.04,1.0),

x(3)= (2.04,0.0,1.0), x(4) = (−0.5,−1.0,−2.04).
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FIG. 5. Solution of the PDE (5.1) on the surface given by the zero level set of the function (5.4) for the right-hand side (5.5). The
values of the solution are coloured according to the displayed scheme between the minimum−43.00 and the maximum 49.71.

FIG. 6. Solution of the PDE (5.6) for the right-hand side (5.7). The surface is the same as in Fig.5. Colouring ranges from the
minimum−96.24 to the maximum 89.25 of the solution.

The pointsx( j ) are close to the surfaceΓ . The triangulated domain isΩ0 = (−3,3)3 ⊂ R3. We used a
three-dimensional grid withm = 159880 active nodes, i.e. nodes of the triangulationT C

h . The diameters
of the simplices varied between 0.0001373291 and 0.03515625. In Fig.5 we show the solution of this
problem.

Figure6 shows the solution of the PDE

−1Γ u + cu = f, (5.6)
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with c = 100and the right-hand side

f (x) = 10000 sin(5(x1 + x2 + x3)+ 2.5). (5.7)

Thecomputational data are the same as for Fig.5.
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