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In this article we define a finite-element method for elliptic partial differential equations (PDES) on curves

or surfaces, which are given implicitly by some level set function. The method is specially designed for
complicated surfaces. The key idea is to solve the PDE on a narrow band around the surface. The width
of the band is proportional to the grid size. We use finite-element spaces that are unfitted to the narrow
band, so that elements are cut off. The implementation nevertheless is easy. We prove error estimates of
optimal order for a Poisson equation on a surface and provide numerical tests and examples.
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1. Introduction
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Partial differential equations (PDEs) on surfaces occur in many applications. For example, traditionally
they arise naturally in fluid dynamics and materials science and more recently in the mathematics of 5
images. Denoting bw - the Laplace—Beltrami operator on a hypersurfd¢eontained in a bounded
domain® c R™?, we consider the model problem

—Aru4+cu=f onr, (1.1)

wherec and f are prescribed data on the closed surfAc&or strictly positivec, there is a unique solu-
tion (Aubin, 1982). A surface finite-element method was developddziuk (1988) for approximating
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(1.1) using triangulated surfaces, see dB®mlow & Dziuk (2007). This approach has been extended
to parabolic equations (Dziuk & Elligt2007b) and the evolving surface finite-element method for
parabolic conservation laws on time-dependent surfdeesik & Elliott, 2007a).

1.1 Implicit surface equation

In this paper we consider an Eulerian level set formulation of elliptic PDEs on an orientable hyper-
surfacel” without boundary. The method is based on formulating the PDE on all level set surfaces of
a prescribed functio® whose zero level set i8 and for whichV@ does not vanish. Eulerian sur-

face gradients are formulated by using a projection of the gradieRftf onto the level surfaces of

@. These Eulerian surface gradients are used to define weak forms of surface elliptic operators and so
generate weak formulations of surface elliptic equations. The resulting equation is then solved in one
dimension higher but can be solved on a finite-element mesh that is unaligned to the level&ets of
Using extensions of the dataand f, we solve the equation

—Agu+cu=f (1.2)

in all of 2, where thed-LaplacianA¢ = V4 - Vo is defined using the-projected gradient

Veu=PVu, P=1I ® =
oU = S = VRV, vi= |VCD|'
Equation(1.2) can be rewritten as
—V - (PVU|V®|) +culVP| = f|IVP| inQ, (1.3)

which can be viewed as a diffusion equation in an infinitesimally striated medium with an anisotropic
diffusivity tensor| V@|P. This approach to surface PDEs consisting of solving implicitly on all level sets
of a given function is due tBertalmioet al. (2001) where finite-difference methods were proposed. The
idea is to use regular Cartesian grids that are completely independent of the gurfén#e-difference
formulae for derivatives on the Cartesian grid are used to generate approximations of the implicit PDE.

1.2 Finite-element approach

Itis natural to consider the finite-element approximation of implicit surface PDEs based on the following
variational form of (1.3):

/V¢U-V¢D|V¢|+/ CUU|V¢|=/ folVO|,
Q Q Q

wherew is an arbitrary test function in a suitable function space. This was proposed and developed in
Burger(2008) where weighted Sobolev spaces were introduced. Then the existence and uniqueness of a
solution to the variational formulation was proved by the Lax—Milgram lemma. Standard finite-element
spaces can then be employed leading to a stable Galerkin algorithm.
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1.3 Issues, related works and contributions

The finite-difference approximation of fourth-order parabolic equations on stationary implicit surfaces
was considered iGreeret al. (2006). An interesting modification involving a different projection of the
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surface was proposed liyreer(2006) and can be used to remove the degeneracy of the elliptic operator.
Finite-difference methods for implicit equations on evolving surfaces were considefeldlsteinsson

& Sethian(2003) andXu & Zhao (2003). A finite-element method for evolutionary second- and fourth-
order implicit surface equations was formulatediniuk & Elliott (2008a). The evolving surface finite
element method approach to conservation laws on evolving surfaces was extended to evolving implicit
surfaces irbziuk & Elliott (2008b). Recently, eigenvalue problems for elliptic implicit surface operators
were considered iBrandman(2007).

With this implicit surface approach, the complexity associated with equations on manifolds em-
bedded in a higher-dimensional space is removed at the expense of solving an equation in one spac
dimension higher. However, it is clear that the stability, efficiency and accuracy of the numerical meth-
ods will depend on the following factors.

MeQ

1.3.1 The degeneracy of the implicit equation and the regularity of solutioki#e observe that the
anisotropic elliptic operator is degenerate in the sense that the diffusivity terisas a zero eigenvalue,

Pv = 0, and there is no diffusion in the normal direction. The solution on each surface only depends on
the values of the data on that surface. Elliptic regularity is restricted to each surface, see TBdorem
For example, the-Laplace equation

—Agu=0

hasthe general solution, constant on each level surfacg, of

u=g(®),

whereg : R —» R is smooth, but weak solutions of the above PDE can be definedgaliiving no
continuity properties.

Note that although the solution on a particular level set is independent of the solutions on any other
(except by the extensions of the data) this will not be the case for the solution of the finite-element
approximation where the discretization of the operator yields interdependence.

Another degeneracy for the equation is associated with critical points efhereV® = 0. If @
has an isolated critical point i€2, then generically this is associated with the self-intersection of a level
surface. It is easily observed that the finite-element approximation is still well defined but the analysis
in the neighbourhood of such points is still open.

1.3.2 ©Q and the boundary conditions ah2. For an arbitrary domai®2, the level sets ofp will
intersect the boundayQ. It is then necessary to formulate boundary conditions for equali@) in
order to define a well-posed boundary-value problem. It is easy to see that there is a unique solution to§
the variational form3.3) of the equation with the natural variational boundary condition
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0

Vau-vz0 =0.
Notethat, if 2 is a domain whose boundary is composed of level sets sétisfying the condition
Q= {xeR"a < d(x) < B, (1.4)

with —oo < a < f < oo, then this natural boundary condition is automatically satisfied.
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1.3.3 Well posedness and function spacesn order to formulate a well-posedness theory, we intro-
duce implicit surface function spaces, see Secii,cw;’p(g) (e.g.qu;p(Q) ={f e LP(Q)|Ve f €
LP(2)}). In particular, we prove a density result for smooth functiony\dj;’p(g). Under condition

(1.4), this density result allows us to establish the relation bet\wtkﬁ(!)) and the spaced/>P(1})
onther-level sets/; = {x € Q|®(X) = r} of @. This leads to establishing the surface elliptic regularity
result of Theoren3.1,

||u||W425’2(_Q) < C” f ||L2(Q)'

Regularity across level sets is then established in The@&by assuming smoothness of the normal
derivatives of the data.

1.3.4 The choice of the computational domaint is possible to triangulate the domaéx and de-

fine the finite-element approximation on this triangulated domain. However, here we wish to consider
the approximation of the PDE on just one surfdéenamely the zero level set @b. It is natural to
consider defining the computational domain to be a narrow annular region contaimmthe interior.

A possible choice is the domaiix € Q||@(x)| < d}. In principle, the finite-element approach has

the attraction of being able to discretize arbitrary domains accurately using a union of triangles to de-
fine an approximating domain. However, we wish to avoid fitting the triangulation to the level surfaces
of @ in the neighbourhood of . Our approach is based on thefitted finite-element methd8ar-

rett & Elliott, 1984,1987,1988), in which the domain on which we approximate the equation is not a
union of elements. In this paper, we propose a narrow band finite-element method based on an unfitted
mesh that ih-narrow in the sense that the domain of integratioDjs:= {X € Q||®n(X)| < yh},
where@y, is an interpolation ofp. The finite-difference approach has to deal with the nonalignment of
02 with the Cartesian grid and discretize the equation at grid points on the boundary of the compu-
tational domain. Previous works concerning finite-difference approximations have used Neumann and
Dirichlet boundary conditions (Adalsteinsson & Sethia@03;Xu & Zhao, 2003; Greer,2006; Greer

et al.,2006).

1.3.5 Order of accuracy of the numerical solutionCurrently works on finite-difference approxima-

tions of implicit surface equations have focused on practical issues and there is no error analysis. The
natural Galerkin error bound in a weighted energy norm was derivBdiiger(2008). However, this is

an error bound over all level surfaces containe@irSince the finite-element mesh does not respect the
surface it is not clear that the usual order of accuracy will hold on one level surface. The main theoretical
numerical analysis result of this paper is atherror bound in thed(77)-norm for our finite-element
method based on piecewise linear finite elements on an urffittetrow band.

1.4 Outline of paper

The organization of the paper is as follows. In Sectome introduce the notion ab-implicit surface
derivatives andp-implicit surface function spaceN(';p(Q). In particular, we prove a density result for
smooth functions ier;p(Q) that allows us to establish the relation between the spate®(;) on
ther-level sets of® andWé;p(.Q). The existence, uniqueness and regularity theory fodikaliptic
equation is addressed in Secti®rThe finite-element approximation is described in Sedtiand error
bounds are proved. Finally, in Sectiérthe numerical implementation is discussed together with the
results of numerical experiments.
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2. Preliminaries

2.1 &-derivatives

In what follows we shall assume that the given hypersurfdde closed and can be described as the

zero level set of a smooth functiah : Q — R, i.e.
I'={xeQ|d(x)=0} and VP(x)#0, Vxe Q. (2.1)

HereQ is a bounded domain iR"*1 thatcontainsl™. We define

. Vox)
v(X) = 0k (2.2)
as well as
PX)=1—-vX)®v(x), XeQ. (2.3)

Note thatP is an orthogonal projection satisfyirg = P2 = PT, where we use the superscript T to
denote transpose. With a differentiable functibn Q — R, we associate it@-gradient

Vofi=Vf—(Vf.v)y=PVH.

Note that, restricting to amy-level set/; = {x € Q|®(x) =r}of @, (Vg T)|; isjust the usual surface
(tangential) gradient of |; (cf. Gilbarg & Trudinger, 1983, Section 16.1). It is also the case thi{
is the unit normal ta/; pointingin the direction of increasing. We define the mean curvatuke by

n+1

H = _Z”i,xi-

i=1

In what follows we shall sum from 1 to+ 1 over repeated indices. Note thdir; isthe mean curvature
of the level surfacd;. We shall write

Vo f(X) =(D1f(x),....Dp1f(X), xeQ

andhave the following implicit surface integration formul2Zjuk & Elliott, 2008a):

/V¢f|V¢|:—/ va|Vq5|+/ f Puao |V, (2.4)
Q Q 00

provided thatf andoQ are sufficiently smooth. Heng ¢ is the unit outer normal t6 Q.
LEMMA 2.1 Letg: @ — R bea differentiable vector field wity - v = 0 in Q. Then
Vo -g= LV -(g|Ve)) inQ.
Vol
Proof. Recalling (2.2), we have

¢Xj ®Xj X @Xixj

Vo@IVOD =G + 8o = G T O g

Vol
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Differentiating the identity - v = 0 with respect toj, we obtain

ijin
Vol

Gixg Vi = —Givix = —G 1<j<n+1,
whichimplies that
|V€D|V(glv¢|):g|axl _gi,vaiVj =Vq§-g,

proving the desired result. O

2.2 Implicit surface function spaces

Following Burger (2008), we introduce weak derivatives: for a functibne Llloc(.Q),i e {1,...,
n+ 1}, we say thag = D; f weaklyif g € Lt (2, R"™) and

| oicwer=- [ gvei- [ tehnivel veecg@. (2.5)
Q Q Q

It is not difficult to see that (2.5) is equivalent to

/Q fQiC=—/QQifC+/Q fo(hi — Hyp), V¢ eCo(Q), (2.6)
whereh; = vj x;vj (see(3.8) below). Let 1< p < oo. Then we define
Wl’p(.Q) ={felLP(@)ID;f eLP(@Q), i=1 n+ 1}
&b L = ) - P ] ’

which we equip with the norm

n+1 %
||f||Wq1),p:=(/Q(|f|P+Z|Qif|p)) , P <oo,
i=1

with the usual modification in the cage= co. In the same way, we can define the spaﬁé,sp(g) for
ke N,k > 2. Also, Ietwg’p(Q) = LP(Q). We note that the spacwg’z([)) are Hilbert spaces.

LEMMA 2.2 Let 1< p < oo. ThenC™(Q) N Wy P(Q) is dense inW P ().
Proof. Fore > 0, we set
)= [ pelx=ypucyy.
wherep, is a standard mollifier. Employing a partition of unity, it is sufficient to prove that

lue — u| -0, e >0 foreveryQ' cc Q.

1,
WP (@)
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Fix Q' cc ©Q andchooseQ” with Q' cc Q" cc Q.For0 < ¢ < dist(2',0Q2") andx € Q’, we
have

(D) (x) = /Q pex (X — Y)u(y)dy — /Q P (X = YOO GOU(y)dy

— /Q DYpe(x — yyu(y)dy — /Q Py (X = V(. Y)u(y)dy,
wherewe have abbreviated:
rik(X, ) = vk (Y)vi () — vk(X)vj (X).

Using(2.6), we obtain, for O< § < dist(2”, 6Q),

@iue)(X)=/pr(x—y)QiU(y)dy—/ng(x—y)U(y)(hi(y)— H(y)vi(y))dy

—/Q Pe,y (X = YIrik(X, y)us(y)dy — /Q Pey (X = Yrik(X, Y)(U(y) — us(y))dy.

Integrating by parts the third term and observing the relation

0 0
a—ykrik(X, y) = a_yk(vkvi)()’) = hi(y) = H(ywi(y),

we may continue as follows:

(Djue) () = (B W (X) + /Q Pe(X = Y)(Us(y) —u(y)(hi(y) — H(y)vi (y))dy

+ / pe(X = Y)Fik(%, Y) sy dy + / Py (X = YNik(X, Y)(Us(y) — u(y))dy.
Q Q

If we use standard arguments for convolutions and observigiiiat y)| < C|x—y| forx € Q’and|x—
y| < €, we finally conclude

IDjuc — DjullLrery < II(Dju)e — DiullLrory + IDjue — (DjWellLror)
€
< I(Bjw)e — DijullLrory + Cllus — UllLeory + CEHU”LP(.Q)
— 0,

aso — 0and§ — 0. O
In what follows we assume in addition t8.{) that® is of the form (.4), i.e.

Q=xeR"ag <d(x) < f}, —o0<a<f <o

and recall that'; = {x € Q|®@(x) =r} is ther-level set of®. We suppose thaf, andy areclosed

hypersurfaces. The next result gives a characterization of functidné’i?(Q) in terms of the spaces

WZL-P(1}) (seeAubin, 1982for the corresponding definition).
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COROLLARY 2.1 Letl < p < oo andu € LP(Q). Then
ueW;P(Q) & ur e WHP(17) for aimost allr € (a, £), andr + [ullwwe(;, € LP(a, §).

Proof. Letu € W, "(2). In view of Lemma2.2, there exists a sequen@®)xey C C®(2)NWyP(Q)
such thaug — uin qu;p(Q). The coarea formula gives

B
/ (luk = ulP + | Vg (uk — u)|P)dAdr =/ (luk = ul? 4+ Vg (U = W[P)IVP| = 0, k— oo,
a Iy Q
so that there exists a subseque(gg) jcn With
/ (lug, —ulP? + Vg (U, —w|P)dA— 0, | — oo, foralmostallr € (a, f).
g

This implies thatu,r; € WZLP(1}) foralmostallr € (a, £), while the fact that — Ullwpcry belongs
to LP(a, B) is again a consequence of the coarea formula.

Assume now thati| ; € WP(I7) for almost allr € (e, £), andr Iullwrecry € LP(a, B). Fix
i € {1,...,n+ 1}. The coarea formula and integration by parts/enmply that, for; € C3°(Q),

B B B
/ uQi(|Vq5|=/ / ubD;¢c dAdr =—/ / (Vrw)i¢ dAdr —/ / uc Hvi dAdr.
Q o Iy o Iy a Iy

Sincer — lullwie(r belongsto L P(a, ), the linear functional

R O) :=/ ugic|w|+/ U HY V|
Q Q

satisfiesthe estimateF; (¢)| < C|i¢|l y for all ¢ € C(Q) (wherep'=! = 1 — p~1). Sincep’ < oo,
C3(Q) is dense inL P'(2) and hence there exists € LP(Q) satisfyingF; (() = — JovicIVe| for
all ¢ € C3°(£2). Thus @.5) holds and we infer that Wé’p(Q). O

3. Implicit surface elliptic equation

In this section we prove existence and regularity for solutions of the model equation (1.2).

3.1 o-elliptic equation
Let Q and® be as above and assume thiat L?(Q) andc € L>(Q) with

c>C a.e.inQ, (3.1)
wherec is a positive constant. We consider the implicit surface equation
—Agu+cu="f inQ.
Using Lemma2.1, we may rewrite this equation in the form

—V . (PVU|V®|) +culVe| = f|VD| in Q. (3.2)
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Multiplying by a test function, integrating ov&? and using integration by parts leads to the following
variational problem: findi € W(};Z(Q) such that

/V¢U-V¢1)|V<D|+/ cuo|V¢|=/ folV®|, VoeWr(Q). (3.3)
Q Q Q

Note that the boundary term vanishes because the unit outer nor@&! fwints in the direction of
V. It follows from Burger(2008) that (3.3) has a unique solutiore qu;Z(Q) and one can show that
ur; is the weak solution of

—Aru4+cu=f onlI;

for almost allr € (a, f). Sincef e L2(I}) for almost allr € (a, £), the regularity theory for elliptic
PDESs on manifolds implies thate W22(77;) for almost allr € (a, ) and

Hence

s 2 A 2 2
2o < C | I = | IV < 0o,

sothat Corollary2.1limplies thatu Wq%’z(Q) with ||u||W2,2(Q) < C fllL2(), and we have proved the
D
following theorem.

THEOREM 3.1 Let Q@ ¢ R"*! satisfy(1.4) with® e C?(Q) andV® # 0on Q. Then there exists a
unique solutioru W(f;z(Q) of equation 8.3) and

lullwz2cg) < Cll o). (3.4)

3.2 Raularity

The goal of this section is to investigate the regularity of the solutior3&)(n the normal direction.
For this purpose, we define, for a differentiable functign

DUf = fxil)i,

andsimilarly we sayz = D, f weaklyif

/vagz—/z(+/ fHe V¢ eCi(Q).
Q Q Q

The derivativedD, andD; do not commute, but we have the following rules for exchanging the order

of differentiation, which can be derived with the help of the symmetry reldlipny = D vi:
DiD;f —D;D; f =af{Dyf, i,j=1,....n+1, (3.5)

DD, f —D,D;f =hD, f + A<D, f, i=1,....n+1, (3.6)
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where
af = (Dygvj)vi — (Dyvi)vj, (3.7)
Di(IVe))
hi = vixvj = IIV—@ (3.8)
B = vibhk + Dy vk (3.9)

Let us in the following assume that € C3(Q). In order to examine the regularity of the solution
of (3.3), we consider the regularized equation

—€D2u‘ — D; DU +cu = o inQ, (3.10)
a €

= —o onoQ, (3.11)
o0veQ

in which f. andc, aremollifications of f andc with ¢, > Cin Q. We associate with (3.10) and (3.11)
the following weak form:

af(uf,v)z/ fool, VO|, Vo e HY(Q), (3.12)
Q
wherea, : HY(Q) x HY(Q) — R s given by
a(u,v) :=e/ DVuva|Vd5|+e/ bDVUD|V€D|+/ V¢u-V¢u|V<I>|+/ CcUn |V
Q Q Q Q

andb = (vj|V®|)x |V®|~2. Itis not difficult to verify that the above problem is uniformly elliptic and
that

€ c
ac(u,u) > —/ |Dvu|2|Vq>|+/ |Vq>u|2|V¢|+—/ |V (3.13)
2Jo Q 2Jo
for allu e H(Q) ande < €. In particular, 8.10) and 8.11) has a smooth solutiani thatsatisfies
g/ |Dvu‘|2|V<1§|+/ |v¢uf|2|Vq5|+/ U3V | <c/ 2V gc/ f2|Vop|. (3.14)
Q Q Q Q Q
Hencethere exists a sequent& )k suchthatex v 0,k — oo and

u —u inWi%(Q), k- oo, (3.15)

whereu is the solution of 8.3). We shall examine the regularitywfn the normal direction by deriving
bounds on the corresponding derivativesiothatare independent af.

LEMMA 3.1 Let @ c R™1 satisfy(1.4) with® € C2(2) andV® # 0 on Q. Suppose thab,c €
L®(Q) andD, f € L2(Q). ThenD,u € W32(Q") for all @' cc @ ando := 4 D,u is a weak

= Vol
solution of the equation
—Agv+cCo=g inQ’, (3.16)
forall Q' cc @, where
1 1 1 K K | pi K
g= W v — WUDUC - W(Qiﬂi Dyu + (B + Bi) D Dyu — hi "Dy u). (3.17)
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Proof. Choosea'; <t1 <ty <rpand®” cc Q suchthat

Q c{xelti <P(X) <t))Cc{xelr1 <DP(X) <ry}c Q’

andlety € C3°(rq, r2) with n = Lon [ty, to]. Definef (x) := (@ (x)). Similarly to the proof of Lemma

2.2, it can be shown that
f.,D,fe > f,D,f inL%Q") (3.18)
¢, D,cc = ¢, D,c aein Q” and |D,c = <C. (3.19)
Applying D, to (3.10) and multiplying byV® |~ yields

1 1 1 1 .
Vo D3u¢ — WDinQi ué +CEWDVU‘ = WDU fo — u‘Dycc in Q. (3.20)

—€

Let us introduce® = ﬁ D, uc. A straightforward calculation shows that

Woﬁue = D%° + 1D, 0¢ + y20°, (3.21)

where

1 1
71=255:D.(V2) and V2=WD§(IV¢I)-

Next, we deduce with the help 08(6) that
D, D; Dju¢ = D; D, D;u‘ — hi D, D;u — ¥D, D; uf
= D; (D; D, u¢ —h; D,u¢ — KD u)—h; D; Dyu¢ + hihi D, u¢ + hj gD, u¢ — AD, D; u€
=D;D;D, uc — D;(hiD, uc) — b; ﬂikaUE - ,Biin QkUE —hiD;D, u¢ + hjh; D, u¢
+hi DU — D DU, (3.22)

Onthe other hand 38) yields

1 1
2,010 = (-t D + g0

1

= Vo[ (=D, (hi D, u¢) + hih; D,u¢ + D; D, D,u¢ — h; D; D, u),
which combined with (3.22) implies that

1 .
DiDiv = 155 (DuDiDiu + DA DU + (B + AODi D — hi S Dyu). (3.23)

Inserting(3.21) and 8.23) into 3.20), we find thab€ is a solution of the equation

—€eDZ0¢ — D; Djv° + Coo€ = g, (3.24)

0TO0Z ‘v AInC uo yoimiepn Jo Ausianiun e Bio'sjeusnolploxo-eulewi;/:dny woly papeojumoq


http://imajna.oxfordjournals.org

362 K. DECKELNICK ET AL.

where
1 € € €
geZWDV fe — |V¢|U Duce +€y1Dyo€ +e€y20
|V¢I(_'ﬂ' DU + (B + ) Di Dt = hi S Diu).

Multiplying (3.24) by2v¢|V®|, recalling that” = 5(®(x)) and integrating ove2, we obtain, in
view of (2.5), the regularity ofp andD; @ = 0, that

—e/ gszufuf|v¢|+/ (2|V¢v‘|2|V¢'I+/ Cfg”zlv‘lle@l:/ g0 |Vel.  (3.25)
Q Q Q Q
Integration by parts yields

—e/ C2D% | V| = —e/ C2(Dyv€) 06 | VD]
Q Q
:e/ §2|DUU‘|2|V<I>|+6/ 2D 00 i |V, +2e/ DL Dy vE | VD
Q Q Q

25/¢2|Dvof|2|va>|—6e/ e ?|V . (3.26)

Let us next examine the terms on the right-hand side. Firstly,

1 1
Y (WDU fe — Wu D,Ce + €y1D,0€ + €20 ){Zz)flvqﬁl’

c €
\Z/ ¢2|vf|2|w|+z/ 52|Duu‘|2|Vcb|+C/ D, ff|2+C||Dvcf||Em(Q~)/ u|?
Q Q" Q

provided that O< ¢ < ¢g. Next

’/ (D; KD UE — hi KD U 20¢| <
0

c

—/ czlvf|2|w|+c/ CPVau PV ).
4)a Q

Integration by parts gives

| O+ BB D19

2 € €
—/Qc D, (W@(ﬁ. +/>’k>) DU v |V - / |V<p|w' + AE DU Do |V |

andhence

1 )
‘/Q Vao| B+ ﬁL)QiQkU€(205|V¢|‘

c 1
<—/ 52|u‘|2|V¢|+—/ 52|V¢v‘|2|V<p|+c/ IVoué 2|V aO|.
4 /0 2 /)0 Q
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Insertingthe above estimates into (3.25) and recalliBd.¢) as well as3.18) and 8.19), we conclude
that

e/ 52|Duvf|2|vas|+/ 52|v¢of|2|w|+/ o2V el
Q Q Q

< C/ D, fel? + C/ (U)? + |Vou‘ )| V| < C.
Q" Q
Since¢ = 1 on Q’, we infer that(v)o<e<¢, IS bounded inW(};Z(Q’). Thus there exists a sequence
(ex)keN, €k N Osuch that8.15) holds and

v — v e Wr2(Q". (3.27)

It is not difficult to show that this implies th&, u exists and satisfieD,u = |[V®|v € W;L;Z(Q’).
Letus finally derive the equation that is satisfiedibyror this purpose, we return t8.24) and multiply
this equation by |V @| for an arbitraryc e C3°(2’). Thus

—Ek/ va‘kg|V¢|+/ infkgiglvq§|+/ Cekvekg|Vq§|:/ O S|V P
Q' Q' Q Q'

Combiningthe relationex D, v — 01in L2(Q") with (3.15) and 8.27) and the fact that e Wf;z(Q),
one can pass to the limit in the above relation to obtain

/v¢u~v@g|w|+/ cUg|va5|=/ 9c |V,
Q Q/ Q'

whereg is given in 3.17). d
Observing thay € L2(Q’), we have proved the following regularity theorem.

THEOREM 3.2 In addition to the assumptions of Theor@, suppose thab € C3(Q) and that the
coefficients satisfyD,c € L*(2) andD, f € L2(Q2). ThenD,u e Wdz;z(.Q/) forall Q" cc Q and

IDvully22(gn < CUITliLege) + 11Dy fllL2(e))- (3.28)

TheconstanC depends o2, Q’, @, € andc.
REMARK 3.1 SinceVf = Vg f 4+ D, fv, Theorems3.1 and3.2 imply thatu € W12(Q’) for all

Q' cc Q. Higher regularity ofu can now be obtained by iterating the above arguments under appro-
priately strengthened hypotheses on the data of the problem. For example, estimating the second norm

derivative would require deriving an equation for= |V®|~2D2u.

4. Numerical scheme and error analysis
4.1 Finite-element approximation

Let Qp be an open polyhedral domain such thB§(I") ¢ Qo cc Q for somed > 0, where
Bs(I") = {x € Q|dist(x, I') < J}. Let T, be a triangulation ofQy with maximum mesh sizé =

maxr <7, diam(T). We suppose that the triangulation is quasi-uniform in the sense that there exists a

constantc > 0 (independent oh) such that eac e 7y is contained in a ball of radius~*h and
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containsa ball of radiusch. We denote by, ..., an thenodes of the triangulation and py, . . ., wn
the corresponding linear basis functions, iyg.e C%(Q¢) and wiit € Pu(T) forall T e 7Ty satisfying
yi(aj) =¢gj foralli, j =1,...,N.

Let us definedy, := Ih® = ZiN=1 @ (g )y asthe usual Lagrange interpolation &f In view of the
smoothness op, we have

I& — PnlL(og) + hlI VD — V@hllLe(o) < Ch?, (4.1)

from which we infer in particular thatv | > cp in Qg for 0 < h < hg. Hence we can define
V&p
|V@n|
Ouraim is to estimate the error betwegnandthe exact solutiom. Since the equation faris given in

Ph=I1 —vh®vh, wherevy=

terms of the level set ap rather than that oy, it turns out to be useful to work with the transformation

Fp, definedin Lemma4.1.

LEMMA 4.1 Forh sufficiently small, there exists a bilipschitz mappifg: 20 — QI = Fn(Qo) such
that® o Fy = &y, and

llid — FhllLoe(2o) + hlll = DFallL(oq < Ch?. (4.2)
Proof. We try to find F, in the form
_ 1h(X)
Fn(X) =X+ quj(xﬂv(x), X € Qo,
whereny @ Qo — R hasto be determined. A Taylor expansion yields
1h(X)
D(Fh(X) =D (X) + VO (X) - v(X
(Fn00) =200 + V00 - 5 7o ()
1h(X)? /1 2 ( 11h(X) )
+—"— 1-t)DD [ X +t———v(X) ) dtv(X) - v(X
Vo (x)|? Jo ( ) VO (x)] ® ®)-v%)

_ mx)? 1 2 7h(X)
=D (X) + nh(X) + W/o 1-t)D“o® (x +t|Vq§(x)|v(X)) dtv(X) - v(X)

in view of (2.2). Henced (Fn(x)) = @n(x) if and only if

2
n(X) = Dr(x) — B(X) - lv”?p(())lz/ (1-1)D%0 (x+t|v’7;(( ))|v<x)) dtw () - v(x), X E(f(;)

This equation can be solved by applying Banach’s fixed point theorem to the op&atoB —
WL (Qo):

2
(Sy)(X) i= Pph(X) —DP(X)— |VWQ§())|2/ (1-t)D?® (x +t|VW<I§())|V(X)) dtv(x)-v(x), X e Qo.

HereB is the closed subset a1 (Q0) given by
B := {y € W-®(Qo)|llyllL(2) + hlIIDy [l (2 < Kh?),
whereK is chosen sufficiently large artdis sufficiently small. We omit the details. O
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4.2 Finite-element scheme

Let us next describe the numerical scheme. The computational domain is taken as a narrow band of the

form
Dn 1= {X € Qo[|®n(X)| < yh}.

Let.7 ﬁ = {T € 9 n|T N Dy # @} denote the computational elements and consider the nodes
of all simplicesT belonging to.7 ﬁ After relabelling we may assume that these nodes are given by

ai,...,am. Let S, :=span{s, ..., ym}. The discrete problem now reads: fingl € S, suchthat

PnVup - Vop|V@q| +/

Dn

Cunon|V ®&n| :/ fon|V®n|, Vonhe S. (4.4)
Dn Dn

Ourerror analysis requires the conditions

rc |J 7cbn 0<h<hy, (4.5)
I'NT#0

and
|Dp| < Ch. (4.6)

Condition (4.5) can be satisfied by choosing
y = max|Vao(x)|.
XeQ
To see this, note that¥ € ' N T andy € T we have, becaussy, is linear, that, for a vertea of T,
|[Ph(Y)| < [2n(@)] = [P@)] = |P(@) — P(X)| < hm{_leIV(PI =yh.

REMARK 4.1 In the case tha® is a signed distance function then we can choose 1.

The bound on the measure bf,, (4.6), follows from the observation that, forsufficiently small,
|®| < 2yh on Dy and,since|V®| > cg > 00n Qg, using the coarea formula we have

2yh 1 4y|T,
|Dh|</ /—< AL
—2yhJr VD Cop

where| ;| is a bound for the measure of the level setsboh Q.

4.3 Error analysis

THEOREM 4.1 Assume that the solutiom of (3.3) belongs tdV2°(Qg) andthatc, f € W12 (Qy).
Let up bethe solution of the finite-element scheme defined as in Sedtsatisfying (4.5). Then

”U - uh”Hl(F) < Ch

Proof. We use the transformatidf, definedin Lemmad4.1. In order to derive the corresponding error

relation, we take an arbitrany € §,, multiply (3.2) byop o Fh_1 andintegrate oveD" := F,(Dp) =
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{x € Qo||®(x)| < yh}. Since the unit outer normal @D" pointsin the direction ofV &, integration
by parts yields

/ PVu-V(ono Fyh|Ve| +/ cuvp o F |Vl =/ fono FrlIVD|, Yone S (4.7)
Dh Dh Dh

From® o F = &y, it follows that

Vo = (DFp) " "Vay,

whichyields
Vo
P(DFy) TP, =P ((DFh)—T _ Vol wg) =P(DFy)~".
|V |
Hencewe have
PV(oho F;t) = P(DFR) T (PhVon) o Fyt. (4.8)

Usingthe transformation rule4(8) and the fact tha®? = P, we obtain

/ PVu-V(oho FyHIVa
Dh
=/ (PVU) o Fn- (PV(oh o Frh) o Fal(V®) o Fn||detD Fy|
Dh

= (PVu)o Fh~(DFh)_TPthh|(Vq§)oFh||delDFh|
Dn

_ PhVu-th|V®h|+/ Rh - PhVon,
Dn Dn

where
|Ral = [(DFn)"*(PVu) o Fn|(V®) o Fn||detD Fy| — Py VulV®y||
< I[(DF)~*|detDFn| — 11(PVu) o Fn| (V@) o Fa|l
+|(PVU) o Fh|(V®) o Fn| — PVU|V®D|| + |PVU|V®| — P,VU|V&y||
S CUIDFh = HiLeo(ag) + 1V(P = Ph) L) I VUllL= Q)
+ CUIVUllwioo(ag) + IV P llwroo () IIFh — idl L () -
Hence

/ PVU~V(vhth_l)|VcD|= PhVUu - Vop| V| + Rﬁ(oh),
Dh Dh
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while (4.1) and 4.2) imply that

1 3
< ChIDhIZ 1Py Vonll 2o,y < Ch2 P Vonllzp,),  (49)

IR on)] < ‘/ Rn - PhVon
Dn

wherewe have used the bound ¢Bp|, (4.6). Sincec, f € W1 (Qg), one shows in a similar way that

/ cuvnh o F Vo) =/ cUvh|V@n| + R2(vp),
Dh Dn
/ fono V@ = [ fon|VOn| + R (vn),
Dh Dn
where
|Rh(0h)| Ch2||l)h|||_2(Dh), j=23. (4.10)

Letus introducee : Dp — R, € := U — up; in view of the above calculations,satisfies the relation

PhVe: VonlVnl + | cennlVeonl = Ron) = Ri(on) — Riwn) (411)

Dn Dn

for all vh € &. As usual, we splie as follows:

ez(u —Zu(a)Wi)+(Zu(ai)Wi —Uh)Eph+6’h,

i=1 i=1

wherepy is the interpolation error angh, € S,. SinceuTeTth C Bch(I), we have

||ph||H1(D) Ch m?—_)é ”ph”wloo('r) Ch? m7a_)é ID? U|||_<>0(T) Ch®|D? U|||_0<>(QO), (4.12)

lphllacry < Cllpnllwess(ry < ChIIDUllLs(2g). (4.13)

Next, insertingon = 6 into (4.11) and recalling4.9) and 4.10) as well as4.12), we obtain

N
/D<|th0h|2+|6h|2)<cnph||H1(Dh) (/D (|theh|2+|0h|2)) +C D IRM(Gh)]
h h j=1

Ch? (/ (IPhV O + |9h|2))

(IPhV6h|? + 10n%) < Ch®. (4.14)
Dn

andhence
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Letus now turn to the error estimate éh Using inverse estimates together with (4.#)5§ and 4.14),
we infer

16h12s ey = /F (6nI2 + [PV 6h12)

< D AT NIty + [(PhV6R)TI? + Ch% [ VonT )
TNI#£0

<C > T P02, + 1PV T
TNT#0

<c Y h;l/T(|eh|2+ |PhVoh[2)

TN #0

<ch™? . (16n1% + |PhV6R|?)
h

< Ch?
Combiningthis estimate with (4.13), we then obtain
Iu—=unllpiry < lppllpery + 100 llaery < Ch

and the theorem is proved. O

5. Numerical results

In this section we present the results of some numerical tests and experiments. In particular, they confirm
the ordeth convergence in thél 1(1")-norm and suggest higher-order convergence irL.thg")-norm.
A detailed description of the finite-element space was given in Seétibn

5.1 Implementing the unfitted finite-element method

As described in Sectiod.2, we replace the smooth level set functibrby its piecewise linear inter-
polant®y, = Iy® andwork onDp, = {X € Qol||®n(X)| < y h}, yielding the finite-element scheme (4.4).
The setDy, thenconsists of simplice3 and sub-element§ that are ‘cut-off’ simplices. In practice, it
is not necessary to keep the mesh data structures for a uniformly refined triangulafipasélements
not intersectinddn, playno part in the computation. So, in the implementation reported here, the domain
Qg istriangulated coarsely and then the grid is refined in a strip that includes the computational domain
Dp.

For example, a typical situation for a curve in two space dimensions is shown it.Fipe curve
I intersects the two-dimensional grid quite arbitrarily, giving rise to sub-elenfetttst are triangles
or quadrilaterals of arbitrary size and regularity. The method then yields a standard linear system
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FiG. 1. The curvel” (red in the electronic version of the article) intersects the cartesian grid in an uncontrolled way (left). The
unfitted finite-element method is applied to the white strip around the curve (right).

with stiffness matrixS, mass matriXV and right-hand sidb given by
Sj :/ Pth//i-Vl//j|V¢h|, Mij :/ Cyiyj|VPh|, b :/ fwilVon|, 1,j=1,...,m,
Dn Dh Dy

wherem denotes the number of vertices of the triangles belongiﬂgctol\lote that this includes vertices
lying outsideDy,.

In the usual way, one assembles the matrices element by element. In the case of elements th
intersectDy, one has to calculate the sub-element mass mitfixand the element stiffness mati$ :

MJ:/fcwiijqushL s}:/f PaVy - Vy[ IV, i,j=1,...,m.

Here y/iT denotes théth local basis function o > T. The quantityV &y, is constant orf . For the

computation of the integrals we splitinto simplices and use standard integration formulas on these.
Note that, since the sub-elemefit®f the cut-off triangulation can be arbitrarily small, it is possible
that the resulting equations for verticeﬂﬁ that lie outside oDy, may have arbitrarily small elements.
Thus, in this form, the resulting equations can have an arbitrarily large condition number. However, in
our case of piecewise linear finite elements, by diagonal preconditioning the degenerate conditioning isa
removed. For higher-order finite elements this simple resolution of the ill-conditioning problem is not o
possible and for deeper insight into the stabilization of higher-order unfitted finite elements we refer to <
Heine(2008).

3oIMIe A Jo AlsIaniun 1e ﬁJO'S|Bu.ﬁ%0[pJOJXO'P,U[EU,I!//ZdllL{ woJy papeojumod

5.2 Two space dimensions

0T0Z ‘vz AIn

We begin with a test computation for a problem with a known solution so that we are able to calculate
the error between the continuous and discrete solutions.

ExaMPLE 5.1 We are going to solve the PDE
—Aru+u=f (5.1)
on the curve
I ={x e R?||x| = 1}.
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FIG. 2. Upper right partin, 2) x (0, 2) of the triangulation for Exampl&.1. We show the triangulation levels 1 with 217 nodes,
3 with 997 nodes and 10 with 140677 nodes.

The level set function is chosen @gx) = |x| — 1. We choose2g = (-2, 2)?, which is triangulated
as shown in Fig2. As the right-hand side fob(1) we take

f(x) = 26(x — 103x2 + 5x1%3), x € I,

and extend it constantly in the normal direction as
26
f(x) = W(xf — 1033 + 5x1%3) = 26cos(5¢), X € Q2 \ {0}.

The function

1 26|X|2 5 3.2 4 2&2 .
T XB X2+ 251 — 10 +5x) = 5 cos(5¢) (X = (r cosp, r sing))

ue) 125

is then obviously the solution of the PDE.{) on the curvd”, and a short calculation also shows that
u, is a solution of

—Agu+u=f, xeR?\{0}. (5.2)

Figure 3 shows this solution and in Table 1 we give the errors and experimental orders of conver-
gence (EOC) for this test problem. We calculated the errors on theByirip {X € Qo||Ph(X)| < y h}:

E(Lé(Dh))z(/ (u—uh>2|V¢h|)2/|Dh|1/2,
Dn

1
2
E(Hg(Dn)) = (/D Ve, (U — uh)|2|va5h|) /IDn|*2,
h
and on the curvé}, = {X € Qg|Pnr(X) = 0}:

E(L?(T1) = lu = Unllizgry,  E(HMTR) = [V, (U — Un)ll2ry)-
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FiG. 3. Upper right part if(0, 2) x (0, 2) of the solution for Exampl&.1. We show the levels 1, 3 and 4. The values of the solution
are coloured linearly betweenl (blue) and 1 (red). The solution is shown in the sripe (0, 2)2|(|x| — 1| < h} only.

TABLE 1 Errors and orders of convergence for Examplé for the choicey =1

h E(L2(Dn)) EOC E(HA(Dn) EOC E(L4(Ih) EOC E(H(/h)) EOC

0.5 0.1939 — 1426 —  0.5744 — 4382 —

0.25 0.05545 1.81 07293  0.97 0.1321 212 2.124 1.05
0.125 0.0191 154 03611  1.01 0.0424 1.64 1.089 0.96
0.0625 0.007185 1.41 01765  1.03 0.01339 1.66 04877  1.16
0.03125  0.002562 1.49 0.08708 1.02 0.004748 150 0.2548  0.94
0.01562  0.0008775 155 0.04319 1.01 0.001439 1.72 0.1234  1.05

0.007812  0.0003267 143 0.02153 1.00 0.0004022 1.84 0.06124 1.01
0.003906  0.0001366 1.26 0.01073 1.00 0.0001096 1.88 0.03013 1.02

0.001953 6186x 10™° 1.14 0.005367 1.00 968x 10> 1.88 0.01515 0.99
0.0009766 229x 10> 1.08 0.002681 1.00 816x 10 1.87 0.00747 1.02
0.0004883 M16x 10° 1.05 0.00134 1.00 251x10® 1.85 0.003705 1.01

For errorsE(hy) and E(hy) for the grid sizesh; and hy, the experimental order of convergence is

defined as
. E(hy (, h\7"
EOC1, hp) = log Eh) (Iog h_z) .

We also include a table for the choige= 5. The results in Tables and?2 for the choicesy = 1 and
y =5 confirm the theoretical results from Theordr for the H1(/")-norm.

Our analysis does not provide a higher-order convergence i 20g)-norm. However, the nu-
merical results indicate the possibility of quadratic convergence fot#&)-norm in two space di-
mensions. However, this quadratic convergence may hdede sufficiently small. Note that for the
larger values o the behaviour of thé.2(7")-norm in Table2 is erratic, and for smaller values bfthe
L2(I")-error is larger than that in the narrower band. We do not have an explanation for this. We observe
that using the coarea formula as in the derivation of the bodr®) {mplies tha D,,| > ch, so that
the estimate (4.14) suggests that the error in the weighted Ecéh‘lrj;(Dh)) is of O(h). The numerical
experiments agree with this.

We add a computation on an asymptotically larger strip. For this, we have chosen
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TABLE 2 Errors and orders of convergence for Examplé for the choicey =5

h E(LZ(Dn)) EOC E(Hai(Dp)) EOC  E(L?(/h) EOC E(H(1})) EOC
0.125 0.01419 0.3679 — 0.03491 —  1.096 —
0.0625 0.00514 1.47 0.1855 0.99 0.008297 2.07 0.5249 1.06
0.03125 0.00245 1.07 0.09261 1.00 0.002219 1.90 0.2685 0.97
0.01562 0.0014 0.81 0.04605 1.01 0.001778 0.32 0.131 1.04
0.007812  0.0008785 0.67 0.02279 1.01 0.001899 -0.10 0.06599 0.99
0.003906  0.0004603 0.93 0.01121 1.02 0.001171 0.70 0.03174 1.06
0.001953  0.0001785 1.37 0.005517 1.02 0.0004752 1.30 0.01544 1.04
0.0009766 $H98x 10> 1.65 0.002731 1.01 0.0001539 1.63 0.007531 1.04

0.0004883 1645x 10° 1.79 0.00136 1.01 405x 10°° 1.80 0.003714 1.02

TABLE 3 Resultdor Examples.1 for a computation on the larger strifs.3)

h E(L%Z(Dn)) EOC E(Hi(Dn) EOC E(L%Ih) EOC E(H(1h) EOC
0.125 0.014 0.3665 — 0.03483 —  1.096 —
0.0625 0.004774 1.55 0.1852 0.99 0.008195 2.09 0.5251 1.06
0.03125 0.001929 1.31 0.09314 0.99 0.002028 2.01 0.2678 0.97

0.01562 0.0008406 1.20 0.04668 1.00 0.0004825 2.07 0.1299 1.04
0.007812  0.0003966 1.08 0.02337 1.00 0.0001211 1.99 0.06588  0.98
0.003906  0.0001933 1.04 0.01169 1.00 975x 107> 2.02 0.03267 1.01
0.001953 ®H58x 107> 1.02 0.005848 1.00 B43x 10 2.02 0.01619 1.01
0.0009766 441x 10> 1.01 0.002925 1.00 B38x 106 2.00 0.008052 1.01
0.0004883 B63x 107> 1.00 0.001463 1.00 Z47x 107 1.95 0.004004 1.01

Theresults for this case are shown in TaBleApparently, the_2(1")-norm converges quadratically. The
numerical analysis of for larger strips remains an open question.

5.3 Three space dimensions

In three space dimensions we are solving PDEs on surfaces. The numerical method is principally the
same as in two dimensions. But now we have to calculate mass and stiffness matrices on cut-off tetra-
hedra. As a test for the asymptotic errors we use a similar example to the previous two-dimensional

example.

EXAMPLE 5.2 We choose” = S? and Qg = (-2, 2)° togethewith & (x) = |x| — 1. For any constant
a, the function

|x|?
u(x) = am(?axfxz -x3), xeQ)\{0)

is a solution of §.2) for the right-hand side

f(x) =a@éx —x3), xe Q) {0).

For the computations, we have choser: —%3, / 3;5 In Table4 we show the errors and experimental

orders of convergence for this example. They confirm our theoretical results and again indicate higher-

order convergence ih2(I").
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TABLE 4 Three-dimensional results for Exam@e for the choicey = 1

h E(L2(Dn)) EOC E(HX(Dn) EOC E(L?(/h)) EOC E(H(/h)) EOC
0.866 0.0391 — 0.2598 — 0.2041 — 1.268 —
0.433 0.01339 155 0.1354 0.94  0.04091 2.32 0.5131 1.30
0.2165 0.004791 1.48 0.06889 0.97 0.01199 1.77 0.2677 0.94
0.1083 0.002024 1.24  0.03459 0.99  0.00409 155 0.1362 0.97
0.05413 0.0008095 1.32 0.01714 1.01  0.00157 1.38 0.06595 1.05

0.02706  0.0003299 1.30 0.008548 1.00 0.000484 1.70  0.03307 1.00
0.01353  0.0001471 1.16 0.004262 1.00 0.0001353 1.84 0.0163801

FiG. 4. Slice through the grid that was used for the computations from Exarthle

ExampPLE 5.3 We end with a three-dimensional example. We solve the linear BDEgn a compli-
cated two-dimensional surfadé = {x € Qp|®(x) = 0}. The surface is given as the zero level set of
the function

D(X) = G+X5 =42+ (X =1+ (G +X5 =42+ (X =12+ (G +x2 — 42+ (x2 — 1) —3. (5.4)

The computational grid for this problem is shown in Hig.As a right-hand side we have chosen the
function
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4
f(x) = 1002 exp(—Ix — x(jy %), (5.5)
i—1

with
X1 = (—1.0,1.0,2.04), Xp) = (1.0,2.04,1.0),
X@3)=(2.04,0.0,1.0), Xx@ =(-05,-1.0,-2.04).
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FiG. 5. Solution of the PDEH.1) on the surface given by the zero level set of the functiof) for the right-hand sid&(5). The
values of the solution are coloured according to the displayed scheme between the mind80® and the maximum 491.

FIG. 6. Solution of the PDEX.6) for the right-hand side5(7). The surface is the same as in FBgColouring ranges from the
minimum —96.24 to the maximum 825 of the solution.

The pointsx j) are close to the surfade. The triangulated domain €0 = (-3, 3)3 c R3. We used a
three-dimensional grid witm = 159880 active nodes, i.e. nodes of the triangulafin The diameters
of the simplices varied between0®01373291 and 03515625. In Fig5 we show the solution of this
problem.

Figure6 shows the solution of the PDE

—Aru+4cu=f, (5.6)
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with ¢ = 100and the right-hand side
f (x) = 10000 sin5(X1 + X2 + X3) + 2.5). (5.7)

Thecomputational data are the same as for big.
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