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Abstract

We present an abstract framework for treating the theory of well-posedness of solutions
to abstract parabolic partial differential equations on evolving Hilbert spaces. This theory is
applicable to variational formulations of PDEs on evolving spatial domains including moving
hypersurfaces. We formulate an appropriate time derivative on evolving spaces called the mate-
rial derivative and define a weak material derivative in analogy with the usual time derivative in
fixed domain problems; our setting is abstract and not restricted to evolving domains or surfaces.
Then we show well-posedness to a certain class of parabolic PDEs under some assumptions on
the parabolic operator and the data. We finish by applying this theory to a surface heat equa-
tion, a bulk equation, a novel coupled bulk-surface system and a dynamic boundary condition
problem for a moving domain.
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1 Introduction

Partial differential equations on evolving or moving domains are an emerging area of research [8,
13, 27, 28], partly because their study leads to some interesting analysis but also because models
describing applications such as biological phenomena can be better formulated on evolving domains
(including hypersurfaces) rather than on stationary domains.

One aspect of such equations to consider is how to formulate the space of functions that have do-
mains which evolve in time. Taking a disjoint union of the domains in time to form a non-cylindrical
set is customary: see [4, 36, 28] for example. Of particular interest is [22] where the problem of a
semilinear heat equation on a time-varying domain is considered; the set-up of the evolution of
the domains is comparable to ours and similar function space results are shown (in the setting of
Sobolev spaces). In [3], the authors define Bochner-type spaces by considering a continuous distri-
bution of domains {Γ(t)}t∈[0,T ] ⊂ Rn that are embedded in a larger domain Γ. The aim of our work
is to accommodate not only evolving domains but arbitrary evolving spaces. Our method, which
follows that of [34], is somewhat different to the aforementioned and contains an attachment to
standard Bochner spaces in a fundamental way.

A common procedure for showing well-posedness of equations on evolving domains involves a
transformation of the PDE onto a fixed reference domain to which abstract techniques from func-
tional analysis are applied [25, 29, 1, 34]. For example, in [34] the heat equation

u̇(t)−∆Γ(t)u(t) + u(t)∇Γ(t) ·w(t) = f(t) in H−1(Γ(t)) (1.1)

on an evolving surface {Γ(t)}t∈[0,T ] is considered, with w representing the velocity field. The equa-
tion is pulled back onto a reference domain Γ(s) and standard results on linear parabolic PDEs
are applied. A Faedo–Galerkin method (see [2] for a historical overview of the Faedo–Galerkin
method) is used in [29] (for a different PDE), where the evolving domain is represented by the evo-
lution of a perturbation of the reference domain and a priori estimates are derived for a linearised
problem. An adapted Galerkin method that uses the pushforward of eigenfunctions of the Laplace–
Beltrami operator on Γ(0) to form a countable dense subset of H1(Γ(t)) is employed in [11] for the
advection-diffusion equation (1.1). We abstract this approach for one of our results. Well-posedness
for the same class of equations is obtained in [27] by employing a variational formulation on space-
time surfaces and utilising a standard generalisation of the classical Lax–Milgram theorem used by
Lions for parabolic equations. We also employ this Lions–Lax–Milgram approach in our abstract
setting.

As we have seen, there is literature in which certain equations on evolving domains are studied,
however, to the best of our knowledge, there is no unifying theory or framework that treats parabolic
PDEs on abstract evolving spaces. The main aim of this paper is to provide this abstract framework.
More specifically, given a linear time-dependent operatorA(t) we study well-posedness of parabolic
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problems of the form

u̇(t) +A(t)u(t) = f(t) (1.2)

as an equality in V ∗(t), with V (t) a Hilbert space for each t ∈ [0, T ]. A main feature of our work
is the definition of an appropriate time derivative on evolving spaces in an abstract setting. When
the said spaces are simply Lp spaces on curved or flat surfaces in Rn that evolve in time, it is
commonplace to take the material derivative

u̇(t) = ut(t) +∇u(t) ·w(t)

from continuum mechanics as the natural time derivative. But when we have arbitrary spaces that
may have no relationship whatsoever with Rn it is not at all clear what the u̇(t) in (1.2) should
mean. We will deal with this issue and define a material derivative and a weak material derivative
for the abstract case. Our framework relies on the existence of a family of (pushforward) maps φt
for t ∈ [0, T ] that allow us to map the initial spaces V (0) and H(0) to the spaces V (t) and H(t). A
particular realisation of these maps φt in the case of, for example, the heat equation (1.1) takes into
account the evolution of the surfaces Γ(t) and hence φt will be a flow map defined by the velocity
field w.

We anticipate that our framework will benefit those working in numerical analysis since curved,
flat, and evolving surfaces can all be treated with the same abstract procedure.

1.1 Outline

In §2, we start by setting up the function spaces and definitions required for the analysis and indeed
the statement of equations of the form (1.2). We state our assumptions on the evolution of the
domain and define strong and weak material derivatives (in analogy with the usual derivative and
weak derivative utilised in fixed domain problems).

In §3 we precisely formulate the problem (1.2) that we consider and list the assumptions we
make on A. Statements of the main theorems of existence and uniqueness of solutions are given.
The proof of one of these theorems is presented in §4. There, we make use of the generalised Lax–
Milgram theorem. In §5 we formulate an adapted abstract Galerkin method similar to one described
in [11] and use it to prove a regularity result. Finally, §6 contains applications of the abstract theory;
firstly to a surface advection-diffusion equation, secondly to a bulk equation, then to a coupled
bulk-surface system and finally to a dynamic boundary problem involving an elliptic equation on an
evolving domain in Rn on the boundary of which resides a parabolic PDE.

1.2 Notation and conventions

Here and below we fix T ∈ (0,∞). When we write expressions such as φ(·)u(·), our intention
usually (but not always) is that both of the dots (·) denote the same argument; for example, φ(·)u(·)
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will come to mean the map
t 7→ φtu(t).

We may reuse the same constants in calculations multiple times if their exact value is not relevant.
Integrals will usually be written as

∫ T
0
f(t) instead of

∫ T
0
f(t) dt; the latter we use only when there

is ambiguity about which terms are being integrated and which are not. Finally, we shall make use
of standard notation for Bochner spaces; for example, see [18, §5.9].

2 Function spaces

As we mentioned above, in order to properly understand and express the equation (1.2), we need to
devise appropriate spaces of functions. First, we begin with recalling some standard results regard-
ing Sobolev spaces from parabolic theory for the reader’s convenience.

2.1 Standard Sobolev space theory

Let V and H be Hilbert spaces and let V ⊂ H ⊂ V∗ be a Hilbert triple (i.e., all embeddings
are continuous and dense and H is identified with its dual via the Riesz representation theorem).
Recall that u ∈ L2(0, T ;V) is said to have a weak derivative u′ ∈ L2(0, T ;V∗) if there exists
w ∈ L2(0, T ;V∗) such that∫ T

0

ζ ′(t)(u(t), v)H = −
∫ T

0

ζ(t)〈w, v〉V∗,V for all ζ ∈ D(0, T ) and v ∈ V . (2.1)

By D(0, T ) we refer to the space of infinitely differentiable functions with compact support in
(0, T ). We shall also make use of D([0, T ];V); this is the space of V-valued infinitely differentiable
functions compactly supported in the closed interval [0, T ]. A helpful characterisation of this space,
from Lemma 25.1 in [35, §IV.25, p. 393] is that D([0, T ];V) is the restriction D((−∞,∞);V)|[0,T ]

(the restriction to [0, T ] of infinitely differentiable V-valued functions with compact support).

Lemma 2.1. The space

W(V ,V∗) = {u ∈ L2(0, T ;V) | u′ ∈ L2(0, T ;V∗)}

with inner product

(u, v)W(V,V∗) =

∫ T

0

(u(t), v(t))V +

∫ T

0

(u′(t), v′(t))V∗

is a Hilbert space. Furthermore,

1. The embeddingW(V ,V∗) ⊂ C([0, T ];H) is continuous.

2. The embedding D([0, T ];V) ⊂ W(V ,V∗) is dense.
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3. For u, v ∈ W(V ,V∗), the map t 7→ (u(t), v(t))H is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉V∗,V + 〈u(t), v′(t)〉V,V∗

for almost every t ∈ [0, T ], hence the formula of partial integration

(u(T ), v(T ))H − (u(0), v(0))H =

∫ T

0

〈u′(t), v(t)〉V∗,V +

∫ T

0

〈u(t), v′(t)〉V,V∗

holds.

Proof. The density result is Theorem 2.1 in [24, §1.2, p. 14]. For the rest, consult Proposition 1.2
and Corollary 1.1 in [33, §III.1, p. 106].

We can characterise the weak derivative in terms of vector-valued test functions. This is useful
because it more closely resembles the weak material derivative that we shall define later on.

Theorem 2.2 (Alternative characterisation of the weak derivative). The weak derivative condition
(2.1) is equivalent to∫ T

0

(u(t), ψ′(t))H = −
∫ T

0

〈u′(t), ψ(t)〉V∗,V for all ψ ∈ D((0, T );V).

We finish this subsection with some words on measurability.

Definition 2.3 (Weak measurability). LetX be a Hilbert space. A function f : [0, T ]→ X is weakly
measurable if for every x ∈ X , the map

t 7→ (f(t), x)X

is measurable on [0, T ].

Strong measurability implies weak measurability. If the Hilbert space X turns out to be separa-
ble, then both notions of measurability are equivalent thanks to Pettis’ theorem (see Theorem 1.34
in [30, §1.5, p. 22]).

2.2 Evolving spaces

Now we shall define Bochner-type function spaces to treat evolving spaces. We start with some
notation and concepts on the evolution itself. We informally identify a family of Hilbert spaces
{X(t)}t∈[0,T ] with the symbol X , and given a family of maps φt : X0 → X(t) we say that the pair
(X, (φ(·))t∈[0,T ]) is compatible provided the following holds.
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Definition 2.4 (Compatibility). For each t ∈ [0, T ], let X(t) be a real separable Hilbert space with
X0 := X(0), and assume that there exist linear homeomorphisms

φt : X0 → X(t)

such that φ0 is the identity. We denote by φ−t : X(t) → X0 the inverse of φt. We call φt and φ−t
the pushforward and pullback maps respectively. Furthermore, we will assume that there exists a
constant CX independent of t ∈ [0, T ] such that

‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0

‖φ−tu‖X0
≤ CX ‖u‖X(t) ∀u ∈ X(t).

Finally, we assume that the map

t 7→ ‖φtu‖X(t) ∀u ∈ X0

is continuous. Under these conditions, we say that (X, (φ(·))t∈[0,T ]) is compatible. We often write
the pair as (X,φ(·)) for convenience.

In the following we will assume compatibility of (X,φ(·)). As a consequence of these assump-
tions, we have that the dual operator of φt, denoted φ∗t : X∗(t) → X∗0 , is itself a linear homeomor-
phism, as is its inverse φ∗−t : X

∗
0 → X∗(t), and they satisfy

‖φ∗tf‖X∗0 ≤ CX ‖f‖X∗(t) ∀f ∈ X∗(t)∥∥φ∗−tf∥∥X∗(t) ≤ CX ‖f‖X∗0 ∀f ∈ X∗0 .

By separability of X0, it also follows that the map

t 7→
∥∥φ∗−tf∥∥X∗(t) ∀f ∈ X∗0

is measurable.

Remark 2.5. Note that the above implies the equivalence of norms

C−1
X ‖u‖X0

≤ ‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0,

C−1
X ‖f‖X∗(t) ≤ ‖φ

∗
tf‖X∗0 ≤ CX ‖f‖X∗(t) ∀f ∈ X∗(t).

We now define appropriate time-dependent function spaces to handle functions defined on evolv-
ing spaces. Our spaces are generalisations of those defined in [34].

Definition 2.6 (Bochner-type spaces). Define the spaces

L2
X = {u : [0, T ]→

⋃
t∈[0,T ]

X(t)× {t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0, T ;X0)}

L2
X∗ = {f : [0, T ]→

⋃
t∈[0,T ]

X∗(t)× {t}, t 7→ (f̄(t), t) | φ∗(·)f̄(·) ∈ L2(0, T ;X∗0 )}.

More precisely, these spaces consist of equivalence classes of functions agreeing almost everywhere
in [0, T ], just like ordinary Bochner spaces.
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We first show that these spaces are inner product spaces, and later we prove that they are in fact
Hilbert spaces. For u ∈ L2

X , we will make an abuse of notation and identify u(t) = (ū(t), t) with
ū(t) (and likewise for f ∈ L2

X∗).

Theorem 2.7. The spaces L2
X and L2

X∗ are inner product spaces with the inner products

(u, v)L2
X

=

∫ T

0

(u(t), v(t))X(t) dt

(f, g)L2
X∗

=

∫ T

0

(f(t), g(t))X∗(t) dt.

(2.2)

Proof. We follow the proof of [34, Lemma 3.4]. It is easy to verify that the expressions in (2.2)
define inner products if the integrals on the right hand sides are well-defined, which we now check.

To show that the integrand (u(t), v(t))X(t) : [0, T ] → R is integrable for all u, v ∈ L2
X , by the

parallelogram law, it suffices to show that ‖u(t)‖2
X(t) is integrable for all u ∈ L2

X . Since u ∈ L2
X ,

φ−(·)u(·) ∈ L2(0, T ;X0), and therefore there exists a sequence of measurable simple functions

ũn(t) =
Mn∑
i=1

ui,n1Bi
(t)

where ui,n ∈ X0 and the Bi ⊂ [0, T ] are measurable, disjoint and partition [0, T ], such that ũn
converges to φ−(·)u(·) in L2(0, T ;X0). From this it follows that ‖ũn(t)− φ−tu(t)‖2

X0
→ 0 a.e. for

a subsequence which we labelled as ũn again. By the continuity of φt, we have φtũn(t) → u(t) in
X(t) pointwise a.e., hence

‖φtũn(t)‖X(t) → ‖u(t)‖X(t) .

We have

‖φtũn(t)‖2
X(t) =

∥∥∥∥∥φt
(

Mn∑
i=1

ui,n1Bi
(t)

)∥∥∥∥∥
2

X(t)

=
Mn∑
i=1

‖φtui,n‖2
X(t) 1

2
Bi

(2.3)

where the last equality follows by linearity and the fact that 1Bi
1Bj

= 0 for i 6= j (since the Bi are
disjoint).

By assumption, the ‖φtui,n‖X(t) are measurable functions with respect to t, so (2.3) is measurable
too. The pointwise limit of measurable functions is measurable, hence ‖u(t)‖X(t) is measurable.
Finally, since

‖u(t)‖X(t) ≤ CX ‖φ−tu(t)‖X0
,

‖u(t)‖X(t) is square-integrable.
This proves the theorem for L2

X . The process is the same for the case of L2
X∗ except we replace

φ−t and φt with the dual maps φ∗t and φ∗−t.
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Corollary 2.8. Let u ∈ L2
X and f ∈ L2

X∗ . Then there exist simple measurable functions un ∈
L2(0, T ;X0) and fn ∈ L2(0, T ;X∗0 ) such that for almost every t ∈ [0, T ],

φtun(t)→ u(t) in X(t)

φ∗−tfn(t)→ f(t) in X∗(t)

as n→∞.

The following result is required to show that the above spaces are complete.

Lemma 2.9 (Isomorphism with standard Bochner spaces). The maps

u 7→ φ(·)u(·) from L2(0, T ;X0) to L2
X

f 7→ φ∗−(·)f(·) from L2(0, T ;X∗0 ) to L2
X∗

are both isomorphisms between the respective spaces.

For the proof of the L2
X case, one makes an argument similar to that in the proof of Theorem 2.7

and shows that given an arbitrary u ∈ L2(0, T ;X0), the map t 7→ ‖φtu(t)‖2
X(t) is indeed measurable

(and then it follows that
∥∥φ(·)u(·)

∥∥
L2
X

is finite). That the spaces are isomorphic follows from the
above (which shows that there is a map from L2(0, T ;X0) to L2

X) and the definition of L2
X . The

isomorphism is T : L2(0, T ;X0)→ L2
X where

Tu = φ(·)u(·) and T−1v = φ−(·)v(·).

It is easy to check that T is linear and bijective. The proof for the L2
X∗ case uses the same readjust-

ments as before.
The next lemma, which is a consequence of the uniform bounds on φt and φ∗t , will be in constant

use throughout this work.

Lemma 2.10. The equivalence of norms

1

CX
‖u‖L2

X
≤
∥∥φ−(·)u(·)

∥∥
L2(0,T ;X0)

≤ CX ‖u‖L2
X

∀u ∈ L2
X

1

CX
‖f‖L2

X∗
≤
∥∥φ∗(·)f(·)

∥∥
L2(0,T ;X∗0 )

≤ CX ‖f‖L2
X∗

∀f ∈ L2
X∗

holds.

Corollary 2.11. The spaces L2
X and L2

X∗ are Hilbert spaces.

Proof. Since L2
X and L2(0, T ;X0) are isomorphic and the latter space is complete, so too is L2

X by
the equivalence of norms result in the previous lemma.

We now investigate the relationship between the dual space of L2
X and the space L2

X∗ . We in fact
prove that these spaces can be identified; this requires the following preliminary lemmas.
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Lemma 2.12. For f ∈ L2
X∗ and u ∈ L2

X , the map

t 7→ 〈f(t), u(t)〉X∗(t),X(t)

is integrable on [0, T ].

Proof. According to Corollary 2.8, there are simple measurable functions fn ∈ L2(0, T ;X∗0 ) and
un ∈ L2(0, T ;X0) that satisfy

φ∗−tfn(t)→ f(t) in X∗(t) for a.e. t ∈ [0, T ]

φtun(t)→ u(t) in X(t) for a.e. t ∈ [0, T ]

as n→∞. We have the convergence

|〈f(t), u(t)〉X∗(t),X(t) − 〈φ∗−tfn(t), φtun(t)〉X∗(t),X(t)| → 0

(by adding and subtracting 〈φ∗−tfn(t), u(t)〉X∗(t),X(t) on the left hand side) for almost every t ∈
[0, T ]. So, 〈f(t), u(t)〉X∗(t),X(t) being the pointwise a.e. limit of measurable functions is itself mea-
surable. That its integral is finite is trivial.

Lemma 2.13. Suppose that f(t) ∈ X∗(t) for almost every t ∈ [0, T ] with∫ T

0

‖f(t)‖2
X∗(t) <∞,

and that for every u ∈ L2
X , the map

t 7→ 〈f(t), u(t)〉X∗(t),X(t)

is measurable. Then f ∈ L2
X∗ .

Proof. We rewrite

〈f(t), u(t)〉X∗(t),X(t) = 〈φ∗−tφ∗tf(t), u(t)〉X∗(t),X(t) = 〈φ∗tf(t), φ−tu(t)〉X∗0 ,X0 .

Now, the left hand side is measurable, hence the map

t 7→ 〈φ∗tf(t), φ−tu(t)〉X∗0 ,X0

is measurable on [0, T ] for every u ∈ L2
X .

Given w ∈ X0, the element u(·) = φ(·)w ∈ L2
X , so we have (from Definition (2.3) or Footnote

80 in [31, §1.4, p. 36] for example) that φ∗(·)f(·) : [0, T ]→ X∗0 is weakly measurable.
Now, as remarked after Definition 2.3, we use Pettis’ theorem to conclude that φ∗(·)f(·) is indeed

strongly measurable. Hence we can compute∥∥φ∗(·)f(·)
∥∥2

L2(0,T ;X∗0 )
=

∫ T

0

‖φ∗tf(t)‖2
X∗0
≤ C2

X

∫ T

0

‖f(t)‖2
X∗(t) <∞,

so φ∗(·)f(·) ∈ L2(0, T ;X∗0 ), giving f ∈ L2
X∗ .
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Lemma 2.14 (Identification of (L2
X)∗ and L2

X∗). The spaces (L2
X)∗ and L2

X∗ are isometrically iso-
morphic. Hence, we identify (L2

X)∗ ≡ L2
X∗ , and the dual pairing of f ∈ L2

X∗ with u ∈ L2
X is

〈f, u〉L2
X∗ ,L

2
X

=

∫ T

0

〈f(t), u(t)〉X∗(t),X(t) dt.

Proof. Define the linear map J : L2
X∗ → (L2

X)∗ by

〈J f, ·〉(L2
X)∗,L2

X
=

∫ T

0

〈f(t), (·)(t)〉X∗(t),X(t) dt.

This is well-defined due to Lemma 2.12. We must check that J is an isometric isomorphism.
Suppose that F ∈ (L2

X)∗. We first need to show that there exists a unique f ∈ L2
X∗ such that

J f = F. To do this, we use the Riesz mapR : (L2
X)∗ → L2

X to write

〈F, u〉(L2
X)∗,L2

X
= (RF, u)L2

X
=

∫ T

0

(RF (t), u(t))X(t), (2.4)

and then with S−1
t : X(t)→ X∗(t) denoting the Riesz map on X(t), we get

(RF (t), u(t))X(t) = 〈S−1
t (RF (t)), u(t)〉X∗(t),X(t).

Now, from (2.4), the right hand side of this equality must be integrable. Hence

t 7→ 〈S−1
t (RF (t)), u(t)〉X∗(t),X(t)

is measurable for every u ∈ L2
X . Now, the question is whether S−1

(·) (RF (·)) ∈ L2
X∗ . We want to use

Lemma 2.13 so we need to check its hypotheses. Clearly S−1
t (RF (t)) ∈ X∗(t), and by the isometry

of the Riesz maps,∫ T

0

∥∥S−1
t (RF (t))

∥∥2

X∗(t)
=

∫ T

0

‖RF (t)‖2
X(t) = ‖RF‖2

L2
X

= ‖F‖2
(L2

X)∗ (2.5)

which is finite. Therefore, we obtain S−1
(·) (RF (·)) ∈ L2

X∗ by Lemma 2.13. So J (S−1
(·) RF (·)) = F .

For uniqueness, suppose that J f1 = J f2. Then

〈J f1 − J f2, u〉(L2
X)∗,L2

X
=

∫ T

0

〈f1(t)− f2(t), u(t)〉X∗(t),X(t)

=

∫ T

0

〈φ∗t (f1(t)− f2(t)), φ−tu(t)〉X∗0 ,X0

= 〈φ∗(·)(f1(·)− f2(·)), û〉L2(0,T ;X∗0 ),L2(0,T ;X0), (with û = φ−(·)u(·))

which holds for all û ∈ L2(0, T ;X0). This implies that f1 = f2.
To see that J is an isometry, we define J −1 : (L2

X)∗ → L2
X∗ by J −1F = S−1

(·) RF (·) and use
(2.5) to conclude.
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The next lemma is easy to prove using Lemma 2.10.

Lemma 2.15. The spaces L2
X and L2

X∗ are separable.

Although we have no notion of continuity in time for a function u ∈ L2
X , we can nevertheless

make the following definition.

Definition 2.16 (Spaces of pushed-forward continuously differentiable functions). Define

Ck
X = {ξ ∈ L2

X | φ−(·)ξ(·) ∈ Ck([0, T ];X0)} for k ∈ {0, 1, ...}
DX(0, T ) = {η ∈ L2

X | φ−(·)η(·) ∈ D((0, T );X0)}
DX [0, T ] = {η ∈ L2

X | φ−(·)η(·) ∈ D([0, T ];X0)}.

Since D((0, T );X0) ⊂ D([0, T ];X0), we have

DX(0, T ) ⊂ DX [0, T ] ⊂ Ck
X .

2.3 Evolving Hilbert space triple structure

In the preceding, we set up the Hilbert space L2
X and its dual L2

X∗ based on an arbitrary family of
separable Hilbert spaces {X(t)}t∈[0,T ] and a suitable family of maps {φt}t∈[0,T ]. In standard PDE
theory, often there is a notion of a Hilbert triple involved in the formulation of the problem. We now
lay the analogous groundwork for posing PDEs on evolving spaces. For each t ∈ [0, T ], let V (t)

and H(t) be (real) separable Hilbert spaces with V0 := V (0) and H0 := H(0). Let V (t) ⊂ H(t)

be continuously and densely embedded. Identifying H(t) with its dual space H∗(t) via the Riesz
representation theorem, it then follows that H(t) ⊂ V ∗(t) is also continuous and dense. In other
words,

V (t) ⊂ H(t) ⊂ V ∗(t)

is a Hilbert triple. We often make use of the identification

〈f, u〉V ∗(t),V (t) = (f, u)H(t) whenever f ∈ H(t) and u ∈ V (t).

Assumptions 2.17. We will assume compatibility in the sense of Definition 2.4 for the family
{H(t)}t∈[0,T ] and a family of linear homeomorphisms {φt}t∈[0,T ]; that is, we assume (H,φ(·)) is a
compatible pair. In addition, we also assume that (V, φ(·)|V0) is compatible. We will simply write φt
instead of φt|V0 , and we will denote the dual operator of φt : V0 → V (t) by φ∗t : V ∗(t) → V ∗0 ; we
are not interested in the dual of φt : H0 → H(t).

Let us summarise the meaning of these assumptions below for the convenience of the reader.

1. For each t ∈ [0, T ], there exists a linear homeomorphism

φt : H0 → H(t)

such that φ0 is the identity.
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2. The restriction φt|V0 (which we will denote by φt) is also a linear homeomorphism from V0 to
V (t).

3. There exist constants CH and CV independent of t ∈ [0, T ] such that

‖φtu‖H(t) ≤ CH ‖u‖H0
∀u ∈ H0,

‖φtu‖V (t) ≤ CV ‖u‖V0 ∀u ∈ V0.

4. We will only be interested in the dual of φt : V0 → V (t), denoted by φ∗t : V ∗(t)→ V ∗0 , which
satisfies

‖φ∗tf‖V ∗0 ≤ CV ‖f‖V ∗(t) ∀f ∈ V ∗(t).

5. The inverses of φt and φ∗t will be denoted by φ−t and φ∗−t respectively, and these are uniformly
bounded:

‖φ−tu‖H0
≤ C̃H ‖u‖H(t) ∀u ∈ H(t),

‖φ−tu‖V0 ≤ C̃V ‖u‖V (t) ∀u ∈ V (t),∥∥φ∗−tf∥∥V ∗(t) ≤ C̃V ‖f‖V ∗0 ∀f ∈ V ∗0 .

6. The maps

t 7→ ‖φtu‖H(t) ∀u ∈ H0

t 7→ ‖φtu‖V (t) ∀u ∈ V0

are continuous, and the map

t 7→
∥∥φ∗−tf∥∥V ∗(t) ∀f ∈ V ∗0

is measurable.

Our work in §2.2 tells us (amongst other things) that the spaces L2
H , L2

V , and L2
V ∗ are Hilbert spaces

with the inner product given by the formula (2.2).

Remark 2.18. These homeomorphisms φt are similar to Arbitrary Lagrangian Eulerian (ALE) maps
that are ubiquitous in applications on moving domains. See [1] for an account of the ALE framework
and a comparable set-up.

By the density of L2(0, T ;V0) in L2(0, T ;H0), we obtain the next result.

Lemma 2.19. The space L2
V is dense in L2

H .

The previous lemma tells us that L2
V embeds into L2

H densely, and it is obvious that the embed-
ding is continuous. Therefore, identifying L2

H with its dual via the Riesz map, the relationship

L2
V ⊂ L2

H ⊂ L2
V ∗

is a Hilbert triple.



14 A. Alphonse, C. Elliott and B. Stinner

2.4 Abstract strong and weak material derivatives

Suppose {Γ(t)}t∈[0,T ] is a family of (sufficiently smooth) hypersurfaces evolving with velocity field
w, and that for each t ∈ [0, T ], u(t) is a sufficiently smooth function defined on Γ(t). Then the
appropriate time derivative of u takes into account the movement of the spatial points too, and this
time derivative is known as the (strong) material derivative, which we can write informally as

u̇(t, x) =
d

dt
u(t, x(t)) = ut(t, x) +∇u(t, x) ·w(t, x). (2.6)

This is well-studied: see [6] or [7, §1.2, p. 6] for the flat case. Our aim is to generalise this ma-
terial derivative to arbitrary functions and arbitrary evolving spaces (and not just merely evolving
surfaces).

Definition 2.20 (Strong material derivative). For ξ ∈ C1
X define the strong material derivative

ξ̇ ∈ C0
X by

ξ̇(t) := φt

(
d

dt
(φ−tξ(t))

)
. (2.7)

This definition is generalised from [34]. So we see that the space C1
X is the space of functions

with a strong material derivative, justifying the notation. In the evolving surface case, we show in
§6.1 that this abstract formula agrees with (2.6). The following remark observes that the pushforward
of elements of X(0) into X(t) have zero material derivative.

Remark 2.21. Observe that given η ∈ X(0),

˙(φtη) = 0

and that for ξ ∈ C1
X

ξ̇ = 0 ⇐⇒ ∃ η ∈ X(0) such that ξ(t) = φtη.

It may be the case that solutions to the PDE (1.2)

u̇(t) +A(t)u(t) = f(t)

may not exist if we ask for u ∈ C1
V , that is, they may not possess strong material derivatives. We

can relax this and ask for u̇ to exist in a weaker sense, just like one does for the usual time derivative
in parabolic problems on fixed domains.

Heuristically, what should such a weak material derivative satisfy? Taking a clue from Lemma
2.1, we expect

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + extra term

where we envisage an extra term because the Hilbert space associated with the inner product de-
pends on t itself, and certainly we should require the integration by parts formula∫ T

0

d

dt
(u(t), η(t))H(t) = 0 ∀η ∈ DV (0, T ).
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The identification of this extra term and a definition of the weak material derivative is what the rest
of this section is devoted to.

Definition 2.22 (Relationship between the inner product on H(t) and the space H0). For all t ∈
[0, T ], define the bounded bilinear form b̂(t; ·, ·) : H0 ×H0 → R by

b̂(t;u0, v0) = (φtu0, φtv0)H(t) ∀u0, v0 ∈ H0.

This gives us a way of pulling back the inner product on H(t) onto a bilinear form on H0 by the
formula (u, v)H(t) = b̂(t;φ−tu, φ−tv). It is also clear that b̂(0; ·, ·) = (·, ·)H0 by definition. In fact,
one can see for each t ∈ [0, T ] that b̂(t; ·, ·) is an inner product on H0 (and it is norm-equivalent
with the norm on H0); thanks to the Riesz representation theorem, there exists for each t ∈ [0, T ] a
bounded linear operator Tt : H0 → H0 such that

b̂(t;u0, v0) = (Ttu0, v0)H0 = (u0, Ttv0)H0 . (2.8)

Remark 2.23. It is not difficult to see that Tt ≡ φAt φt, where φAt : H(t)→ H0 denotes the Hilbert-
adjoint of φt : H0 → H(t).

Assumptions 2.24. We shall assume the following for all u0, v0 ∈ H0:

θ(t, u0) :=
d

dt
‖φtu0‖2

H(t) exists classically (2.9)

u0 7→ θ(t, u0) is continuous (2.10)

|θ(t, u0 + v0)− θ(t, u0 − v0)| ≤ C ‖u0‖H0
‖v0‖H0

(2.11)

where the constant C is independent of t ∈ [0, T ].

We are now able to define ĉ(t; ·, ·) : H0 ×H0 → R by

ĉ(t;u0, v0) :=
d

dt
b̂(t;u0, v0) =

1

4
(θ(t, u0 + v0)− θ(t, u0 − v0)) . (2.12)

Denoting by Ĉ(t) the operator
〈Ĉ(t)u0, v0〉 := ĉ(t;u0, v0), (2.13)

it follows by (2.11) that Ĉ(t) : H0 → H∗0 .

Definition 2.25 (Definition of the bilinear form c(t; ·, ·)). For u, v ∈ H(t), define c(t; ·, ·) : H(t)×
H(t)→ R by

c(t;u, v) = ĉ(t;φ−tu, φ−tv).

Lemma 2.26. The map
t 7→ c(t;u(t), v(t)) ∀u, v ∈ L2

H

is measurable and c(t; ·, ·) : H(t)×H(t)→ R is bounded independently of t:

|c(t;u, v)| ≤ C ‖u‖H(t) ‖v‖H(t) .
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Proof. If u, v ∈ L2
H , then by (2.12),

c(t;u(t), v(t)) = ĉ(t;φ−tu(t), φ−tv(t))

=
1

4
(θ(t, φ−tu(t) + φ−tv(t))− θ(t, φ−tu(t)− φ−tv(t)))

and it follows that t 7→ c(t;u(t), v(t)) is measurable because t 7→ θ(t, φ−tw(t)) is measurable for
w ∈ L2

H . This in turn can be seen by noticing that θ : [0, T ]×H0 → R is a Carathéodory function:
the map t 7→ θ(t, x) is measurable and by assumption (2.10) the map x 7→ θ(t, x) is continuous; thus
by [16, Remark 3.4.2] the desired measurability is achieved. The bound on c(t; ·, ·) is a consequence
of the assumption (2.11).

Lemma 2.27. For σ1, σ2 ∈ C1([0, T ];H0), the map

t 7→ b̂(t;σ1(t), σ2(t))

is differentiable in the classical sense and

d

dt
b̂(t;σ1(t), σ2(t)) = b̂(t;σ′1(t), σ2(t)) + b̂(t;σ1(t), σ′2(t)) + ĉ(t;σ1(t), σ2(t)).

This follows simply by using the definition of the derivative as a limit.

Definition 2.28 (Weak material derivative). For u ∈ L2
V , if there exists a function g ∈ L2

V ∗ such
that ∫ T

0

〈g(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

c(t;u(t), η(t))

holds for all η ∈ DV (0, T ), then we say that g is the weak material derivative of u, and we write

u̇ = g or ∂•u = g.

This concept of a weak material derivative is indeed well-defined: if it exists, it is unique, and
every strong material derivative is also a weak material derivative. To prove these facts is a fairly
standard exercise: for uniqueness, assume there exist two material derivatives for the same function
and then linearity and the density of D((0, T );V0) (the space of test functions) in L2(0, T ;V0) gives
the result. To show that a strong material derivative is also a weak material derivative, one can use
Lemma 2.27 and the relations between b̂(t; ·, ·), b(t; ·, ·) and ĉ(t; ·, ·), c(t; ·, ·).

2.5 Solution space

We can now consider the spaces that solutions of our PDEs will lie in.

Definition 2.29 (The space W (V, V ∗)). Define the solution space

W (V, V ∗) = {u ∈ L2
V | u̇ ∈ L2

V ∗}
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and endow it with the inner product

(u, v)W (V,V ∗) =

∫ T

0

(u(t), v(t))V (t) +

∫ T

0

(u̇(t), v̇(t))V ∗(t).

We also shall require the subspaces

W0(V, V ∗) = {u ∈ W (V, V ∗) | u(0) = 0} and

W (V,H) = {u ∈ L2
V | u̇ ∈ L2

H}.

In order to prove existence theorems, we need some properties of the space W (V, V ∗) which
turns out to be deeply linked with the following standard Sobolev–Bochner space.

Definition 2.30 (The spaceW(V0, V
∗

0 )). Define

W(V0, V
∗

0 ) = {v ∈ L2(0, T ;V0) | v′ ∈ L2(0, T ;V ∗0 )}

to be the spaceW(V ,V∗) introduced in §2.1 with V = V0 andH = H0.

It is convenient to introduce the following notion of evolving space equivalence.

Assumption and Definition 2.31. We assume that there is an evolving space equivalence between
W (V, V ∗) andW(V0, V

∗
0 ). By this we mean that

v ∈ W (V, V ∗) if and only if φ−(·)v(·) ∈ W(V0, V
∗

0 ),

and the equivalence of norms

C1

∥∥φ−(·)v(·)
∥∥
W(V0,V ∗0 )

≤ ‖v‖W (V,V ∗) ≤ C2

∥∥φ−(·)v(·)
∥∥
W(V0,V ∗0 )

holds.

We now show under certain conditions that this assumption holds.

Theorem 2.32. Suppose that

u ∈ W(V0, V
∗

0 ) if and only if T(·)u(·) ∈ W(V0, V
∗

0 ) (T1)

and that there exist operators

Ŝ(t) : V ∗0 → V ∗0 and D̂(t) : V0 → V ∗0

such that for u ∈ W(V0, V
∗

0 ),

(Ttu(t))′ = Ŝ(t)u′(t) + Ĉ(t)u(t) + D̂(t)u(t) (T2)

and

Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ) and D̂(·)u(·) ∈ L2(0, T ;V ∗0 ).

Suppose also that Ŝ(t) and D̂(t) are bounded independently of t ∈ [0, T ], and that Ŝ(t) has an
inverse Ŝ(t)−1 : V ∗0 → V ∗0 which also is bounded independently of t ∈ [0, T ]. Then W (V, V ∗) is
equivalent toW(V0, V

∗
0 ) in the sense of Definition 2.31.
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Proof. First, suppose u ∈ W(V0, V
∗

0 ). Clearly φ(·)u(·) ∈ L2
V and we need only to show that

∂•(φ(·)u(·)) ∈ L2
V ∗ exists.

Let η ∈ DV (0, T ). Consider∫ T

0

(φtu(t), η̇(t))H(t) =

∫ T

0

(Ttu(t), (φ−tη(t))′)H0

(rewriting the integrand using b̂(t; ·, ·) and by (2.8))

= −
∫ T

0

〈Ŝ(t)u′(t) + Ĉ(t)u(t) + D̂(t)u(t), φ−tη(t)〉V ∗0 ,V0
(by (T1) and (T2))

= −
∫ T

0

〈φ∗−t(Ŝ(t)u′(t) + D̂(t)u(t)), η(t)〉V ∗(t),V (t) −
∫ T

0

c(t;φtu(t), η(t)).

(2.14)

This shows that ∂•(φ(·)u(·)) exists.
Conversely, let u ∈ W (V, V ). We need to show the existence of φ−(·)u(·)′ in L2(0, T ;V ∗0 ). We

start with the weak material derivative condition:∫ T

0

〈u̇(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

c(t;u(t), η(t))

for test functions η ∈ DV (0, T ). Pulling back leads to∫ T

0

〈φ∗t u̇(t), φ−tη(t)〉V ∗0 ,V0 = −
∫ T

0

b̂(t;φ−tu(t), (φ−tη(t))′)−
∫ T

0

ĉ(t;φ−tu(t), φ−tη(t)).

Using (2.8) and (2.13) and rearranging:∫ T

0

(Ttφ−tu(t), (φ−tη(t))′) = −
∫ T

0

〈φ∗t u̇(t) + Ĉ(t)φ−tu(t), φ−tη(t)〉V ∗0 ,V0 . (2.15)

It follows that T(·)φ−(·)u(·) has a weak derivative, and hence by (T1) as does φ−(·)u(·). This proves
the bijection betweenW(V0, V

∗
0 ) and W (V, V ∗).

For the equivalence of norms, let u ∈ W (V, V ∗). From (2.14), we see that

u̇(t) = φ∗−t(Ŝ(t)(φ−tu(t))′ + D̂(t)φ−tu(t))

which we can bound thanks to the boundedness of Ŝ(t) and D̂(t):

‖u̇(t)‖V (t) ≤ C
(
‖(φ−tu(t))′‖V ∗0 + ‖φ−tu(t)‖V0

)
.

So we have achieved

‖u‖W (V,V ∗) ≤ C2

∥∥φ−(·)u(·)
∥∥
W(V0,V ∗0 )

.
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For the reverse inequality, we start with the weak derivative condition∫ T

0

(Ttφ−tu(t), ψ′(t))H0 = −
∫ T

0

〈Ŝ(t)(φ−tu(t))′ + D̂(t)φ−tu(t), ψ(t)〉V ∗0 ,V0

−
∫ T

0

〈Ĉ(t)φ−tu(t), ψ(t)〉V ∗0 ,V0 ,

where ψ ∈ D((0, T );V0). Using the formula (2.15), we find∫ T

0

〈Ŝ(t)(φ−tu(t))′, ψ(t)〉V ∗0 ,V0 =

∫ T

0

〈φ∗t u̇(t)− D̂(t)φ−tu(t), ψ(t)〉V ∗0 ,V0

which implies

(φ−tu(t))′ = Ŝ(t)−1(φ∗t u̇(t)− D̂(t)φ−tu(t)).

From this we obtain a bound of the form

‖(φ−tu(t))′‖V ∗0 ≤ C
(
‖u̇(t)‖V ∗(t) + ‖u(t)‖V (t)

)
which implies the result.

Corollary 2.33. The space W (V, V ∗) is a Hilbert space.

Proof. This follows from Assumption 2.31 and the completeness ofW(V0, V
∗

0 ).

We are also able to specify initial conditions of solutions to PDEs via the following lemma,
which is an easy consequence of the continuity of the embeddingW(V0, V

∗
0 ) ⊂ C0([0, T ];H0).

Lemma 2.34. The embeddingW (V, V ∗) ⊂ C0
H holds, hence for every u ∈ W (V, V ∗) the evaluation

t 7→ u(t) is well-defined for every t ∈ [0, T ]. Furthermore, we have the inequality

max
t∈[0,T ]

‖u(t)‖H(t) ≤ C ‖u‖W (V,V ∗) ∀u ∈ W (V, V ∗).

In order to obtain a regularity result, we need to make the following natural assumption, which
will also tell us that W (V,H) is a Hilbert space.

Assumption 2.35. We assume that there is an evolving space equivalence between W (V,H) and
W(V0, H0).

Let us note that this assumption follows if, for example, the maps Ŝ(t) and D̂(t) of Theorem
2.32 satisfy Ŝ(t) : H0 → H0 and D̂(t) : V0 → H0, with both maps and Ŝ(t)−1 being bounded
independently of t ∈ [0, T ], and if Ŝ(·)u′(·), D̂(·)u(·) ∈ L2(0, T ;H0) for u ∈ W(V0, H0).
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Some density results With the help of the density result in Lemma 2.1, it is easy to prove the
following lemma.

Lemma 2.36. The space DV [0, T ] in dense in W (V, V ∗).

The next few results are necessary to prove Lemma 3.5, which turns out to be vital for one of
our existence proofs.

Lemma 2.37. For every η ∈ DV (0, T ), there exists a sequence {ηn}n∈N ⊂ DV (0, T ) of the form

ηn(t) =
n∑
j=1

ζj(t)φtwj where ζj ∈ D(0, T ) and wj ∈ V0,

such that ηn → η in W (V, V ∗).

Proof. It suffices to show that for every ψ ∈ D((0, T );V0), there exists a sequence {ψn}n∈N ⊂
D((0, T );V0) of the form

ψn(t) =
n∑
j=1

ζj(t)wj where ζj ∈ D(0, T ) and wj ∈ V0,

such that ψn → ψ inW(V0, V
∗

0 ).
Let wj be an orthonormal basis for V0. Given ψ ∈ D((0, T );V0), define

ψn(t) =
n∑
j=1

(ψ(t), wj)V0wj,

i.e., ζj(t) = (ψ(t), wj)V0 . It is clear that ζj vanishes at the boundary (since ψ does), and ζ(m)
j (t) =

(ψ(m)(t), wj)V0 also implies that ζj ∈ D(0, T ).
It remains to be checked that ψn → ψ in W(V0, V

∗
0 ). We have the pointwise convergence

ψn(t) → ψ(t) in V0 because wj is a basis, and there is also the uniform bound ‖ψn(t)‖V0 ≤
‖ψ(t)‖V0 . So by the dominated convergence theorem,

ψn → ψ in L2(0, T ;V0).

The same reasoning applied to ψ′n allows us to conclude.

Transport theorem Like in part (3) of Lemma 2.1, we want to differentiate the inner product on
H(t). Writing Lemma 2.27 in different notation, we obtain for u, v ∈ C1

H the transport theorem for
C1
H functions:

d

dt
(u(t), v(t))H(t) = (u̇(t), v(t))H(t) + (u(t), v̇(t))H(t) + c(t;u(t), v(t)).

We can obtain a formula for general functions u, v ∈ W (V, V ∗) by means of a density argument.
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Theorem 2.38 (Transport theorem). For all u, v ∈ W (V, V ∗), the map

t 7→ (u(t), v(t))H(t)

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t))

for almost every t ∈ [0, T ].

Proof. Given u ∈ W (V, V ∗), by Lemma 2.36, there exists a sequence um ∈ DV [0, T ] converging
to u in W (V, V ∗). That is,

um → u in L2
V

u̇m → u̇ in L2
V ∗ .

By the transport theorem for C1
H functions, the um satisfy

d

dt
‖um(t)‖2

H(t) = 2〈u̇m(t), um(t)〉V ∗(t),V (t) + c(t;um(t), um(t)). (2.16)

(We rewrote the inner product on H(t) as a duality pairing since um(t) ∈ V (t) and u̇m(t) ∈ H(t)).
The statement (2.16) written in terms of weak derivatives is that for any ζ ∈ D(0, T ), it holds that

−
∫ T

0

‖um(t)‖2
H(t) ζ

′(t) =

∫ T

0

(
2〈u̇m(t), um(t)〉V ∗(t),V (t) + c(t;um(t), um(t))

)
ζ(t). (2.17)

Now we must pass to the limit in this equation. For the left hand side, because um → u in L2
H , we

have by the reverse triangle inequality∫ T

0

∣∣ ‖um(t)‖H(t) − ‖u(t)‖H(t)

∣∣2 ≤ ∫ T

0

‖um(t)− u(t)‖2
H(t) → 0,

i.e., ‖um(·)‖H(·) → ‖u(·)‖H(·) in L2(0, T ), which implies that

‖um(·)‖2
H(·) → ‖u(·)‖2

H(·) in L1(0, T ).

Clearly, the functional F : L1(0, T )→ R, defined

F (y) =

∫ T

0

y(t)ζ ′(t),

is an element of L1(0, T )∗ because ζ ′(t) is bounded. Therefore, we have convergence of the left
hand side of (2.17):

−
∫ T

0

‖um(t)‖2
H(t) ζ

′(t)→ −
∫ T

0

‖u(t)‖2
H(t) ζ

′(t).
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To deal with the terms on the right hand side of (2.17), we require the estimates

|〈u̇m(t), um(t)〉V ∗(t),V (t) − 〈u̇(t), u(t)〉V ∗(t),V (t)|
≤ ‖u̇m(t)‖V ∗(t) ‖um(t)− u(t)‖V (t) + ‖u̇m(t)− u̇(t)‖V ∗(t) ‖u(t)‖V (t)

and

|c(t;um(t), um(t))− c(t;u(t), u(t))|

≤ C1

(
‖um(t)‖H(t) ‖um(t)− u(t)‖H(t) + ‖um(t)− u(t)‖H(t) ‖u(t)‖H(t)

)
.

With these, it is easy to show that∣∣∣∣ ∫ T

0

(
2〈u̇m(t), um(t)〉V ∗(t),V (t) + c(t;um(t), um(t))

)
ζ(t)

−
∫ T

0

(
2〈u̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), u(t))

)
ζ(t)

∣∣∣∣→ 0.

In other words, as m→∞, the equation (2.17) becomes

−
∫ T

0

‖u(t)‖2
H(t) ζ

′(t) =

∫ T

0

(
2〈u̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), u(t))

)
ζ(t), (2.18)

which is precisely the statement

d

dt
‖u(t)‖2

H(t) = 2〈u̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), u(t))

in the sense of distributions. From this, it follows that

d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t)) (2.19)

holds in the weak sense. So we have shown the transport theorem in the weak sense. However,
because the right hand side of the above is in L1(0, T ) (since the right hand side of (2.18) holds
for every ζ ∈ D(0, T )) and because (u(t), v(t))H(t) ∈ L1(0, T ), it follows that (u(t), v(t))H(t) is
a.e. equal to an absolutely continuous function, with (classical) derivative a.e., and therefore (2.19)
exists in the classical sense.

We shall use the following corollary frequently without referencing in future sections.

Corollary 2.39 (Formula of partial integration). For all u, v ∈ W (V, V ∗), the formula of partial
integration

(u(T ), v(T ))H(T ) − (u(0), v(0))H0

=

∫ T

0

〈u̇(t), v(t)〉V ∗(t),V (t) + 〈v̇(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t)) dt

holds.
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3 Formulation of the problem and statement of results

3.1 Precise formulation of the PDE

Having built up the essential function spaces and results, we are now in a position to formulate
PDEs on evolving spaces. We continue with the framework and notation of §2; we reiterate in
particular Assumptions 2.17, 2.24, and 2.31 (which relate respectively to the compatibility of the
evolving Hilbert triple, a well-defined material derivative, and the evolving space equivalence). We
are interested in the existence and uniqueness of solutions to equations of the form

Lu̇+Au+ Cu = f in L2
V ∗

u(0) = u0

(P)

where we identify
(Lu̇)(t) = L(t)u̇(t)

(Au)(t) = A(t)u(t)

(Cu)(t) = C(t)u(t),

with L(t) and A(t) being linear operators that satisfy the minimal assumptions given below, and

C(t) : H(t)→ H∗(t) is defined by 〈C(t)v, w〉H∗(t),H(t) = c(t; v, w),

with c(t; ·, ·) the bilinear form in the definition of the weak material derivative (Definition 2.25).
Note that C(t) is symmetric in the sense that 〈C(t)v(t), w(t)〉H∗(t),H(t) = 〈C(t)w(t), v(t)〉H∗(t),H(t).

Assumptions 3.1 (Assumptions on L(t)). In the following, all constants Ci are positive and inde-
pendent of t ∈ [0, T ].

We shall assume that for all g ∈ L2
V ∗ ,

Lg ∈ L2
V ∗ and C1 ‖g‖L2

V ∗
≤ ‖Lg‖L2

V ∗
≤ C2 ‖g‖L2

V ∗
, (L1)

and we assume that the restrictions L(t)|H(t), L(t)|V (t) satisfy

L(t)|H(t) : H(t)→ H(t)

L(t)|V (t) : V (t)→ V (t),

and we simply write L(t) for these restrictions. Furthermore, for almost every t ∈ [0, T ], we assume

〈L(t)g, v〉V ∗(t),V (t) = 〈g,L(t)v〉V ∗(t),V (t) ∀g ∈ V ∗(t), ∀v ∈ V (t) (L2)

‖L(t)h‖H(t) ≤ C3 ‖h‖H(t) ∀h ∈ H(t) (L3)

(L(t)h, h)H(t) ≥ C4 ‖h‖2
H(t) ∀h ∈ H(t) (L4)

Lv ∈ L2
V ∀v ∈ L2

V (L5)

v ∈ W (V, V ∗) ⇐⇒ Lv ∈ W (V, V ∗), (L6)
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and we suppose the existence of a map L̇(t) : V (t) → V ∗(t) (and we identify (L̇v)(t) = L̇(t)v(t))
satisfying

∂•(Lv) = L̇v + Lv̇ ∈ L2
V ∗ ∀v ∈ W (V, V ∗) (L7)

‖L̇(t)v‖V ∗(t) ≤ C5 ‖v‖H(t) ∀v ∈ V (t). (L8)

Assumptions 3.2 (Assumptions on A(t)). Suppose that the map

t 7→ 〈A(t)v(t), w(t)〉V ∗(t),V (t) ∀v, w ∈ L2
V

is measurable, and that there exist positive constants C1, C2 and C3 independent of t such that the
following holds for almost every t ∈ [0, T ]:

〈A(t)v, v〉V ∗(t),V (t) ≥ C1 ‖v‖2
V (t) − C2 ‖v‖2

H(t) ∀v ∈ V (t) (A1)

|〈A(t)v, w〉V ∗(t),V (t)| ≤ C3 ‖v‖V (t) ‖w‖V (t) ∀v, w ∈ V (t). (A2)

Observe that we have generalised the PDE (1.2) by introducing the operator L. The standard
equation

u̇+Au+ Cu = f

is a special case of (P) when L = Id. Let us mention that our demands in Assumptions 3.1 are
(of course) automatically met in this case. Also, there is no loss of generality by considering the
equation (P) instead of the more natural equation

Lu̇+Au = f.

The results we state below still hold for this case. We include the operator C purely because it is
convenient for some of our applications in §6.

Implicit in (P) is the claim that Au and Cu are elements of L2
V ∗ . The fact Au ∈ L2

V ∗ follows
by the weak (and thus strong) measurability of t 7→ φ∗tA(t)u(t) and the boundedness of A(t), and
similarly one obtains the result Cu ∈ L2

V ∗ .

Remark 3.3. We showed in Lemma 2.34 that specifying the initial condition as in the equation (P)
is well-defined.

Let us mention an important consequence of the transport theorem (Theorem 2.38) and assump-
tions (L6) and (L7).

Lemma 3.4. For every v, w ∈ W (V, V ∗), the map t 7→ (L(t)v(t), w(t))H(t) is classically differen-
tiable almost everywhere with

d

dt
(L(t)v(t), w(t))H(t) = 〈L(t)v̇(t), w(t)〉V ∗(t),V (t) + 〈L(t)ẇ(t), v(t)〉V ∗(t),V (t)

+ 〈M(t)v(t), w(t)〉V ∗(t),V (t) (L9)
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whereM(t) : V (t)→ V ∗(t) is the operator

〈M(t)v, w〉V ∗(t),V (t) := 〈L̇(t)v, w〉V ∗(t),V (t) + 〈C(t)L(t)v, w〉V ∗(t),V (t)

which generates the bounded bilinear form m(t; ·, ·) : V (t)× V (t)→ R:

m(t; v, w) = 〈M(t)v, w〉V ∗(t),V (t).

To conclude this preliminary subsection we state and prove the following lemma which is used
in §5.3.

Lemma 3.5. Let u ∈ L2
V and g ∈ L2

V ∗ . Then

u̇ exists and Lu̇ = g

if and only if

d

dt
(L(t)u(t), φtv0)H(t) = 〈g(t) +M(t)u(t), φtv0〉V ∗(t),V (t) for all v0 ∈ V0 (3.1)

in the weak sense.

Proof of Lemma 3.5. Suppose first that Lu̇ = g, that is, ∂•(Lu) = L̇u+ g (note that this is sensible
because u ∈ W (V, V ∗), and so Lu ∈ W (V, V ∗) by (L6)). This means∫ T

0

(L(t)u(t), η̇(t))H(t) = −
∫ T

0

〈g(t) + L̇(t)u(t), η(t)〉V ∗(t),V (t) −
∫ T

0

c(t;L(t)u(t), η(t))

holds for all η ∈ DV . Picking η(t) = ζ(t)φtv0, where ζ ∈ D(0, T ) and v0 ∈ V0, we obtain∫ T

0

ζ ′(t)(L(t)u(t), φtv0)H(t) = −
∫ T

0

ζ(t)〈g(t) + L̇(t)u(t), φtv0〉V ∗(t),V (t)

−
∫ T

0

ζ(t)c(t;L(t)u(t), φtv0)

= −
∫ T

0

ζ(t)〈g(t) +M(t)u(t), φtv0〉V ∗(t),V (t),

which is exactly (3.1).
For the converse, first, we see from Lemma 2.37 that given any η ∈ DV (0, T ), there exist

functions ηn ∈ DV (0, T ) of the form

ηn(t) =
∑
j

ζj(t)φtwj

with ζj ∈ D(0, T ) and wj ∈ V0 such that ‖η − ηn‖W (V,V ∗) → 0. Now, (3.1) states that∫ T

0

(L(t)u(t), ζ ′(t)φtv0)H(t) = −
∫ T

0

〈g(t) +M(t)u(t), ζ(t)φtv0〉V ∗(t),V (t)
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holds for all ζ ∈ D(0, T ) and all v0 ∈ V0. In particular, we may pick ζ = ζj and v0 = wj and sum
up over j to obtain∫ T

0

(L(t)u(t), η̇n(t))H(t) = −
∫ T

0

〈g(t) +M(t)u(t), ηn(t)〉V ∗(t),V (t).

Passing to the limit and using the convergence above, we find∫ T

0

(L(t)u(t), η̇(t))H(t) = −
∫ T

0

〈g(t) +M(t)u(t), η(t)〉V ∗(t),V (t)

= −
∫ T

0

〈g(t) + L̇(t)u(t) + C(t)L(t)u(t), η(t)〉V ∗(t),V (t)

for arbitrary η ∈ DV (0, T ), i.e., we have the existence of ∂•(Lu) = g + L̇u which, thanks to
assumptions (L6) and (L7), implies that Lu̇ = g.

3.2 Well-posedness and regularity

We begin with a well-posedness theorem which is proved in §4.

Theorem 3.6 (Well-posedness of (P)). Under the assumptions in Assumptions 3.1 and 3.2, for
f ∈ L2

V ∗ and u0 ∈ H0, there is a unique solution u ∈ W (V, V ∗) satisfying (P) such that

‖u‖W (V,V ∗) ≤ C
(
‖u0‖H0

+ ‖f‖L2
V ∗

)
.

A sketch of a second proof of the theorem will be presented in §5.3 where we utilise a Galerkin
method.

Now, suppose we now know that f ∈ L2
H and u0 ∈ V0. Can we expect the same regularity on the

solution u as holds in the case of stationary spaces? It turns out that we can obtain u̇ ∈ L2
H under

some additional assumptions on the differentiability of A(t).
Before we list these assumptions, let us just note that if we define bilinear forms l(t; ·, ·) : V ∗(t)×

V (t)→ R and a(t; ·, ·) : V (t)× V (t)→ R to satisfy

l(t; g, w) = 〈L(t)g, w〉V ∗(t),V (t)

a(t; v, w) = 〈A(t)v, w〉V ∗(t),V (t),

then the problem (P) is in fact equivalent to

l(t; u̇(t), v(t)) + a(t;u(t), v(t)) + c(t;u(t), v(t)) = 〈f(t), v(t)〉V ∗(t),V (t)

u(0) = u0

(P’)

for all v ∈ L2
V and for almost every t ∈ [0, T ]. It is this form of the problem that turns out to be

more convenient to work with to show regularity. To see one side of the equivalence, we can take
the duality pairing of (P) with v ∈ L2

V where v(t) = ζ(t)φtv0 and ζ ∈ D(0, T ) and v0 ∈ V0 to give
(P’). The reverse implication is trivial.
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Definition 3.7. We define the space

C̃1
V = {u ∈ C0

V | u̇(t) exists for almost every t ∈ [0, T ]}.

Assumptions 3.8 (Further assumptions on a(t; ·, ·)). Suppose that a(t; ·, ·) has the form

a(t; ·, ·) = as(t; ·, ·) + an(t; ·, ·)

where

as(t; ·, ·) : V (t)× V (t)→ R
an(t; ·, ·) : V (t)×H(t)→ R

are bilinear forms (we allow the possibility an ≡ 0). Suppose that there exist positive constants C1,
C2 and C3 independent of t such that for almost every t ∈ [0, T ],

|an(t; v, w)| ≤ C1 ‖v‖V (t) ‖w‖H(t) ∀v ∈ V (t), w ∈ H(t) (A3)

|as(t; v, w)| ≤ C2 ‖v‖V (t) ‖w‖V (t) ∀v, w ∈ V (t) (A4)

as(t; v, v) ≥ 0 ∀v ∈ V (t) (A5)
d

dt
as(t; y(t), y(t)) = 2as(t; y(t), ẏ(t)) + r(t; y(t)) ∀y ∈ C̃1

V , (A6)

where the d
dt

here is the classical derivative, and r(t; ·) : V (t)→ R satisfies

|r(t; v)| ≤ C3 ‖v‖2
V (t) ∀v ∈ V (t). (A7)

Remark 3.9. Note that we require only a part of the bilinear form a(t; ·, ·) to be differentiable;
however, any potentially non-differentiable terms require the stronger boundedness condition (A3).

As alluded to above, it is permissible to take an ≡ 0 so that a ≡ as. In this case, we are in the
same situation as in Assumptions 3.2 except with the addition of (A6) and (A7).

We have the following regularity result proved in §4 under appropriate assumptions on the data.

Theorem 3.10 (Regularity of the solution to (P)). Under the assumptions in Assumptions 3.1, 3.2
and 3.8, for f ∈ L2

H and u0 ∈ V0, there is a unique solution u ∈ W (V,H) satisfying (P) such that

‖u‖W (V,H) ≤ C
(
‖u0‖V0 + ‖f‖L2

H

)
.

4 Proof of well-posedness

We use a generalisation of the Lax–Milgram theorem sometimes called the Banach–Nečas–Babuška
theorem to establish existence. See [17, §2.1.3] for its proof.
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Theorem 4.1 (Banach–Nečas–Babuška). Let X be a Banach space and let Y be a reflexive Banach
space. Suppose d(·, ·) : X × Y → R is a bounded bilinear form and f ∈ Y ∗. Then there is a unique
solution x ∈ X to the problem

d(x, y) = 〈f, y〉Y ∗,Y for all y ∈ Y

satisfying
‖x‖X ≤ C ‖f‖Y ∗ (4.1)

if and only if

1. There exists α > 0 such that

inf
x∈X

sup
y∈Y

d(x, y)

‖x‖X ‖y‖Y
≥ α. (“inf-sup condition”)

2. For arbitrary y ∈ Y , if
d(x, y) = 0 holds for all x ∈ X,

then y = 0.

Moreover, the estimate (4.1) holds with the constant C = 1
α
.

Consider the equation (P):

Lu̇+Au+ Cu = f in L2
V ∗

u(0) = u0

where f ∈ L2
V ∗ and u0 ∈ H0. By considering a suitable initial value problem on a fixed domain we

know that there is a function y ∈ W(V0, V
∗

0 ) with y(0) = u0 and

‖y‖W (V0,V ∗0 ) ≤ C ‖u0‖H0
.

Then the function ỹ(·) = φ(·)y(·) is such that ỹ ∈ W (V, V ∗) with ỹ(0) = u0. So then we can
transform (P) into a PDE with zero initial condition if we set w = u− ỹ:

Lẇ +Aw + Cw = f̃

w(0) = 0
(P0)

where f̃ := f − L∂•ỹ − Aỹ − Cỹ ∈ L2
V ∗ . It is clear that well-posedness of (P0) translates into

well-posedness of (P). The idea is to apply the Banach–Nečas–Babuška theorem to the problem
(P0) with X = W0(V, V ∗), Y = L2

V , and the bilinear form

d(u, v) = 〈Lu̇, v〉L2
V ∗ ,L

2
V

+ 〈Au, v〉L2
V ∗ ,L

2
V

+ 〈Cu, v〉L2
V ∗ ,L

2
V
.
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Remark 4.2. The space W0(V, V ∗) is indeed a Hilbert space because by Lemma 2.34, it is a closed
linear subspace of W (V, V ∗).

The arguments in the next two lemmas follow §4 in [27]. See also [17, §6.1.2].

Lemma 4.3. For all w ∈ W0(V, V ∗), there exists a function vw ∈ L2
V such that

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Cw, vw〉L2
V ∗ ,L

2
V
≥ C ‖w‖W (V,V ∗) ‖vw‖L2

V
.

Proof. This proof requires two estimates.

First estimate Let w ∈ W0(V, V ∗) and set wγ(t) = e−γtw(t). Note that wγ ∈ W0(V, V ∗) too with
ẇγ(t) = e−γtẇ(t)− γwγ(t), so

〈L(t)ẇγ(t), w(t)〉V ∗(t),V (t) = 〈L(t)ẇ(t)− γL(t)w(t), wγ(t)〉V ∗(t),V (t).

Rearranging, integrating, and then using (L9):

〈Lẇ, wγ〉L2
V ∗ ,L

2
V

=
1

2

(
〈Lẇ, wγ〉L2

V ∗ ,L
2
V

+ 〈Lẇγ, w〉L2
V ∗ ,L

2
V

)
+

1

2
γ(Lw,wγ)L2

H
(4.2)

=
1

2

∫ T

0

d

dt
(L(t)w(t), wγ(t))H(t) −

1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

≥ −1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

as (L(T )w(T ), wγ(T ))H(T ) = e−γT (L(T )w(T ), w(T ))H(T ) ≥ 0 by (L4). Hence

〈Lẇ, wγ〉L2
V ∗ ,L

2
V

+ 〈Aw,wγ〉L2
V ∗ ,L

2
V

+ 〈Cw,wγ〉L2
V ∗ ,L

2
V

≥ 〈Aw,wγ〉L2
V ∗ ,L

2
V

+ 〈Cw,wγ〉L2
V ∗ ,L

2
V
− 1

2
〈Mw,wγ〉L2

V ∗ ,L
2
V

+
1

2
γ(Lw,wγ)L2

H

≥
∫ T

0

e−γt
(
C1 ‖w(t)‖2

V (t) − C2 ‖w(t)‖2
H(t)

)
− 1

2

∫ T

0

C3e
−γt ‖w(t)‖2

H(t)

+
γC4

2

∫ T

0

e−γt ‖w(t)‖2
H(t)

(by the coercivity of A(t) and L(t) and the boundedness of C(t) andM(t))

= C1

∫ T

0

e−γt ‖w(t)‖2
V (t) +

γC4 − C3 − 2C2

2

∫ T

0

e−γt ‖w(t)‖2
H(t)

≥ e−γTC1 ‖w‖2
L2
V

(E1)

with the final inequality holding if we choose γ such that γC4 > C3 + 2C2.
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Second estimate Now, by the Riesz representation theorem, there exists z ∈ L2
V such that

〈Lẇ, v〉L2
V ∗ ,L

2
V

= (z, v)L2
V

for all v ∈ L2
V (4.3)

with ‖z‖L2
V

= ‖Lẇ‖L2
V ∗

. We have

〈Lẇ, z〉L2
V ∗ ,L

2
V

+ 〈Aw, z〉L2
V ∗ ,L

2
V

+ 〈Cw, z〉L2
V ∗ ,L

2
V
≥ ‖z‖2

L2
V
−
∫ T

0

C5 ‖w(t)‖V (t) ‖z(t)‖V (t)

(by (4.3) and the bounds on a(t; ·, ·) and c(t; ·, ·))

≥ C6 ‖z‖2
L2
V
− C7 ‖w‖2

L2
V

(using Young’s inequality with ε > 0 chosen small enough)

= C6‖Lẇ‖2
L2
V ∗
− C7 ‖w‖2

L2
V
. (E2)

Combining the estimates Estimate (E2) gives us control of Lẇ at the expense of w, but the latter
is controlled by estimate (E1). So let us put vw := z + µwγ where µ > 0 is a constant to be
determined and consider:

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Cw, vw〉L2
V ∗ ,L

2
V

≥ C6 ‖Lẇ‖2
L2
V ∗
− C7 ‖w‖2

L2
V

+ µe−γTC1 ‖w‖2
L2
V

≥ C6 ‖Lẇ‖2
L2
V ∗

+ C8 ‖w‖2
L2
V

(if µ is large enough)

≥ C9 ‖w‖2
W (V,V ∗)

thanks to (L1). Finally, because

‖vw‖L2
V
≤ ‖z‖L2

V
+ µ ‖wγ‖L2

V

= ‖Lẇ‖L2
V ∗

+ µ

(∫ T

0

|e−γt|2 ‖w(t)‖2
V (t)

) 1
2

≤ ‖Lẇ‖L2
V ∗

+ µ ‖w‖L2
V

≤ C10 ‖w‖W (V,V ∗) (by (L1))

we end up with

〈Lẇ, vw〉L2
V ∗ ,L

2
V

+ 〈Aw, vw〉L2
V ∗ ,L

2
V

+ 〈Cw, vw〉L2
V ∗ ,L

2
V
≥ C ‖w‖W (V,V ∗) ‖vw‖L2

V
.

Lemma 4.4. If given arbitrary v ∈ L2
V , the equality

〈Lẇ, v〉L2
V ∗ ,L

2
V

+ 〈Aw, v〉L2
V ∗ ,L

2
V

+ 〈Cw, v〉L2
V ∗ ,L

2
V

= 0 (4.4)

holds for all w ∈ W0(V, V ∗), then necessarily v = 0.
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Proof. Define the operator Ã(t) : V (t)→ V ∗(t) by

〈Ã(t)v(t), η(t)〉V ∗(t),V (t) := 〈A(t)η(t), v(t)〉V ∗(t),V (t)

and identify (Ãv)(t) = Ã(t)v(t). Take w = η ∈ DV in (4.4) and rearrange to give

(Lη̇, v)L2
H

= (Lv, η̇)L2
H

= −〈Ãv, η〉L2
V ∗ ,L

2
V
− 〈Cv, η〉L2

V ∗ ,L
2
V

= −〈Ãv − CLv + Cv, η〉L2
V ∗ ,L

2
V
− 〈CLv, η〉L2

V ∗ ,L
2
V

where we used (L2), the symmetric property of L(t). (We could not simply have used A in place Ã
above because a(t; ·, ·) may not be symmetric.) This tells us that ∂•(Lv) = Ãv−CLv+ Cv ∈ L2

V ∗ ,
and so Lv ∈ W (V, V ∗) (we already have Lv ∈ L2

V from (L5)). So

〈∂•(Lv), η〉L2
V ∗ ,L

2
V

= 〈(Ã − CL+ C)v, η〉L2
V ∗ ,L

2
V

∀η ∈ DV .

By the density of D((0, T );V0) ⊂ L2(0, T ;V0), we have the density of DV ⊂ L2
V , which implies

〈∂•(Lv), w〉L2
V ∗ ,L

2
V

= 〈(Ã − CL+ C)v, w〉L2
V ∗ ,L

2
V

∀w ∈ L2
V . (4.5)

If in particular w ∈ W0(V, V ∗), then we can use (4.4) on the right hand side of (4.5) to give

〈Lẇ, v〉L2
V ∗ ,L

2
V

+ 〈∂•(Lv), w〉L2
V ∗ ,L

2
V

+ 〈Cw,Lv〉L2
V ∗ ,L

2
V

= 0 ∀w ∈ W0(V, V ∗). (4.6)

Using (L2), (L(t)w(t), v(t))H(t) = (L(t)v(t), w(t))H(t), and so

d

dt
(L(t)w(t), v(t))H(t) = 〈∂•(L(t)v(t)), w(t)〉V ∗(t),V (t) + 〈ẇ(t),L(t)v(t)〉V ∗(t),V (t)

+ 〈C(t)w(t),L(t)v(t)〉H∗(t),H(t)

to which another application of (L2) shows us that (4.6) is exactly∫ T

0

d

dt
(L(t)w(t), v(t))H(t) = (L(T )w(T ), v(T ))H(T ) = 0

for all w ∈ W0(V, V ∗). Thus we have shown that v(T ) = 0.
Let 0 > γ ∈ R and set w(t) = vγ(t) = e−γtv(t) in (4.5) to obtain

0 = 〈∂•(Lv), vγ〉L2
V ∗ ,L

2
V
− 〈(Ã − CL+ C)v, vγ〉L2

V ∗ ,L
2
V
. (4.7)

We showed that Lv ∈ W (V, V ∗) earlier; by (L6), v ∈ W (V, V ∗) too, and so we can apply (L7) to
the first term on the right hand side of (4.7):

〈∂•(Lv), vγ〉L2
V ∗ ,L

2
V

= 〈L̇v, vγ〉L2
V ∗ ,L

2
V

+ 〈Lv̇, vγ〉L2
V ∗ ,L

2
V

= 〈L̇v, vγ〉L2
V ∗ ,L

2
V

+
1

2

(
〈Lv̇, vγ〉L2

V ∗ ,L
2
V

+ 〈Lv̇γ, v〉L2
V ∗ ,L

2
V

)
+

1

2
γ(Lv, vγ)L2

H

(follows like the equation (4.2))

≤ 1

2
〈L̇v, vγ〉L2

V ∗ ,L
2
V
− 1

2
〈Cvγ,Lv〉L2

V ∗ ,L
2
V

+
1

2
γ(Lv, vγ)L2

H
.

(since v(T ) = 0 and by coercivity of L(0))
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Note that (L8) together with Young’s inequality implies

〈L̇(t)v(t), v(t)〉V ∗(t),V (t) ≤ ‖L̇(t)v(t)‖V ∗(t)‖v(t)‖V (t) ≤ C5‖v(t)‖H(t)‖v(t)‖V (t)

≤ Cε‖v(t)‖2
H(t) + ε‖v(t)‖2

V (t).

Therefore, (4.7) becomes

0 ≤ 1

2
〈L̇v, vγ〉L2

V ∗ ,L
2
V

+
1

2
〈Cvγ,Lv〉L2

V ∗ ,L
2
V

+
1

2
γ(Lv, vγ)L2

H
− 〈(Ã+ C)v, vγ〉L2

V ∗ ,L
2
V

=
1

2

∫ T

0

e−γt〈L̇(t)v(t), v(t)〉V ∗(t),V (t) +
1

2

∫ T

0

e−γtc(t;L(t)v(t), v(t))

+
1

2

∫ T

0

γe−γt(L(t)v(t), v(t))H(t) −
∫ T

0

e−γt〈Ã(t)v(t) + C(t)v(t), v(t)〉V ∗(t),V (t)

≤ (C1 + γC2)

∫ T

0

e−γt ‖v(t)‖2
H(t) − Ca

∫ T

0

e−γt ‖v(t)‖2
V (t)

using the assumptions (L3) and (L8) (boundedness) and (L4) and (A1) (coercivity). If we pick
γ = −C1

C2
, it follows that v = 0 in L2

V .

Proof of Theorem 3.6. The inf-sup condition (which is an easy consequence of Lemma 4.3) in com-
bination with Lemma 4.4 furnishes the requirements of the Banach–Nečas–Babuška theorem (The-
orem 4.1) thus yielding the existence and uniqueness of a solution w ∈ W0(V, V ∗) to

Lẇ +Aw + Cw = f̃

w(0) = 0

where f̃ ∈ L2
V ∗ is arbitrary. Hence, we have well-posedness of (P0) with the estimate

‖w‖W (V,V ∗) ≤ C‖f̃‖L2
V ∗
.

From this well-posedness result, we also obtain unique solvability of (P) by setting u = w+ ỹ (note
that w depends on ỹ), with the solution u ∈ W (V, V ∗) satisfying

‖u‖W (V,V ∗) ≤ C
(
‖f‖L2

V ∗
+ ‖u0‖H0

)
.

5 Galerkin approximation

In this section we abstract the pushed-forward Galerkin method used in [11] for the advection-
diffusion equation on an evolving hypersurface.
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5.1 Finite-dimensional spaces

We start by supposing that {χ0
j}j∈N is a basis of V0 and H0. We can turn this into a basis of V (t)

and H(t) with the help of the continuous map φt.

Lemma 5.1. With χtj := φt(χ
0
j) for each j ∈ N, the set {χtj}j∈N is a countable basis of H(t) and

V (t).

The next result is an extremely useful property of the basis functions following from Remark
2.21 (see [11] for the finite element analogue).

Lemma 5.2 (Transport property of basis functions). The basis {χtj}j∈N satisfies the transport prop-
erty

χ̇tj = 0.

We now construct the approximation spaces in which the discrete solutions lie.

Definition 5.3 (Approximation spaces). For each N ∈ N and each t ∈ [0, T ], define

VN(t) = span{χt1, ..., χtN} ⊂ V (t).

Clearly VN(t) ⊂ VN+1(t) and
⋃
j∈N Vj(t) is dense in V (t). Define

L2
VN

= {u ∈ L2
V | u(t) =

N∑
j=1

αj(t)χ
t
j where αj : [0, T ]→ R}.

Similarly, L2
VN
⊂ L2

VN+1
, and we shall state a density result below.

Lemma 5.4. The space
⋃
j∈N L

2
Vj

is dense in L2
V .

The proof of this lemma follows from the density of the embedding
⋃
j∈N L

2(0, T ;Vj(0)) ⊂
L2(0, T ;V0) and from the fact that L2(0, T ;Vj(0)) ⊂ L2(0, T ;Vj+1(0)).

Remark 5.5. If u ∈ L2
VN

with u(t) =
∑N

j=1 αj(t)χ
t
j has coefficients αj ∈ C1([0, T ]), then u ∈ C1

V

with strong material derivative u̇(t) =
∑N

j=1 α
′
j(t)χ

t
j, and u̇ ∈ L2

VN
.Our Galerkin ansatz (see below)

has coefficients in a slightly less convenient space.

Galerkin ansatz. Later on, we construct finite-dimensional solutions which have the form

uN(t) =
N∑
j=1

uNj (t)χtj ∈ VN(t)

where the uNj : [0, T ] → R turn out to be absolutely continuous coefficient functions with u̇Nj ∈
L2(0, T ). It holds that uN ∈ L2

V and by definition, uN ∈ L2
VN
.
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Lemma 5.6. The material derivative of uN ∈ L2
VN

is u̇N ∈ L2
VN

with u̇N(t) =
∑N

j=1 u̇
N
j (t)χtj.

We skip the proof which is straightforward: just use the definition of the weak material derivative
and perform some manipulations.

Remark 5.7. In the previous lemma, we could not have calculated the strong material derivative of
uN via the formula (2.7) because the pullback

φ−(·)uN(t) =
n∑
j=1

uNj (·)χ0
j

is not necessarily in C1([0, T ];V0) since the uNj are merely differentiable.

Definition 5.8 (Projection operators). For each t ∈ [0, T ], define a projection operator P t
N : H(t)→

VN(t) by the formula
(P t

Nu− u, vN)H(t) = 0 for all vN ∈ VN(t).

It follows that (P t
N)2 = P t

N , ∥∥P t
Nu
∥∥
H(t)
≤ ‖u‖H(t) , (5.1)

and

P t
Nu→ u in H(t) (5.2)

for all u ∈ H(t). Lastly, we assume that∥∥P 0
Nv
∥∥
V0
≤ C ‖v‖V0 for all v ∈ V0. (5.3)

Remark 5.9. We could have relaxed the definition of the spaces Vj(t) and instead have asked for a
family of finite-dimensional spaces {Vj(0)}j∈N such that for all j ∈ N,

(i) Vj(0) ⊂ V0

(ii) dim(Vj) = j

(iii)
⋃
i∈N Vi(0) is dense in V0

(iv) For every v ∈ V0, there exists a sequence {vj}j∈N with vj ∈ Vj(0) such that ‖vj − v‖V0 → 0.

Furthermore, we can define the spaces Vj(t) := φt(Vj(0)). The continuity of the map φt implies that
these spaces share the same properties (with respect to V (t)) as the Vj(0) given above; in particular
the density result ⋃

j∈N

Vj(t) is dense in V (t)

is true. Note that the basis of Vj(t) does not necessarily have to be a subset of the basis of Vj+1(t);
this is the situation in finite element analysis, for example, so this relaxation can be useful for the
purposes of numerical analysis. See [11, 12].
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5.2 Galerkin approximation of (P)

Let u0 ∈ H0 and f ∈ L2
V ∗ . The finite-dimensional approximation is to find a unique uN ∈ L2

VN
with

u̇N ∈ L2
VN

satisfying

l(t; u̇N(t), χtj) + a(t;uN(t), χtj) + c(t;uN(t), χtj) = 〈f(t), χtj〉V ∗(t),V (t)

uN(0) = P 0
N(u0)

(5.4)

for all j ∈ {1, ..., N} and for almost every t ∈ [0, T ].

Theorem 5.10 (Existence and uniqueness of solutions to the finite-dimensional problem). There
exists a unique uN ∈ L2

VN
with u̇N ∈ L2

VN
satisfying the finite-dimensional problem (5.4). With

uN(t) =
∑N

i=1 u
N
i (t)χti, the coefficient functions satisfy

uNi ∈ C([0, T ])

u̇Ni ∈ L2(0, T ).

for all i ∈ {1, ..., N}.

Proof. Substitute uN(t) =
∑N

i=1 u
N
i (t)χti into (5.4) to yield

N∑
i=1

u̇Ni (t)lij(t) + uNi (t)(aij(t) + cij(t)) = fj(t) (5.5)

with lij(t) = l(t;χti, χ
t
j), aij(t) = a(t;χti, χ

t
j), cij(t) = c(t;χti, χ

t
j) and fj(t) = 〈f(t), χtj〉V ∗(t),V (t).

Defining the vectors (uN(t))i = uNi (t) and (F(t))i = fi(t), and matrices (L(t))ij = lji(t),

(A(t))ij = aji(t), (C(t))ij = cji(t) , we can write (5.5) in matrix-vector form as

L(t)u̇N(t) + (A(t) + C(t))uN(t) = F(t).

Elementary considerations show that L(t) is invertible and L(·)−1 ∈ L∞(0, T ;RN×N) so we can
rearrange the system to

u̇N(t) + L(t)−1(A(t) + C(t))uN(t) = L(t)−1F(t). (5.6)

Note that F(·) ∈ L2(0, T ;RN) and A(·) + C(·) ∈ L∞(0, T ;RN×N). So the coefficients of (5.6)
are all measurable in time, and we can apply standard theory that guarantees the existence and
uniqueness of uNj ∈ C([0, T ]) (which are in fact absolutely continuous) with u̇Nj ∈ L2(0, T ), and
thus the existence and uniqueness of uN . The function uN is a solution in the sense that the derivative
u̇N exists almost everywhere (and the ODE is satisfied almost everywhere), hence uN ∈ C̃1

V .

The Galerkin approximation is equivalent to the discrete equation

l(t; u̇N(t), vN(t)) + a(t;uN(t), vN(t)) + c(t;uN(t), vN(t)) = (f(t), vN(t))V ∗(t),V (t) (Pd)

for all vN ∈ L2
VN

. We look for a priori estimates on uN and u̇N in appropriate norms.
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Lemma 5.11 (A priori estimate on uN ). The following estimate holds:

‖uN‖L2
V
≤ C

(
‖u0‖H0

+ ‖f‖L2
V ∗

)
.

For convenience, we shall sometimes omit the argument (t) in expressions like uN(t). It should
be clear from the context the instances in which we are referring to an element of H(t) as opposed
to an element of L2

H .

Proof. Picking vN = uN in (5.7) gives

l(t; u̇N , uN) + a(t;uN , uN) + c(t;uN , uN) = 〈f, uN〉V ∗(t),V (t),

to which we apply the transport identity (L9) to yield

1

2

d

dt
l(t;uN , uN) + a(t;uN , uN) + c(t;uN , uN)− 1

2
m(t;uN , uN) = 〈f, uN〉V ∗(t),V (t).

Integrating in time and using the coercivity (L4) and boundedness (L3) of l(t; ·, ·) leads to

Cc
2
‖uN(T )‖2

H(T ) +

∫ T

0

a(t;uN , uN) +

∫ T

0

c(t;uN , uN)− 1

2

∫ T

0

m(t;uN , uN)

≤
∫ T

0

〈f, uN〉V ∗(t),V (t) +
Cb
2
‖uN(0)‖2

H0
,

to which we use (A1) (the coercivity of a(t; ·, ·)), the boundedness of c(t; ·, ·) and m(t; ·, ·), and
Young’s inequality with ε > 0:

Cc
2
‖uN(T )‖2

H(T ) +
C1

2
‖uN‖2

L2
V
≤ C2

2
‖uN‖2

L2
H

+
1

2ε
‖f‖2

L2
V ∗

+
ε

2
‖uN‖2

L2
V

+
Cb
2
‖uN(0)‖2

H0
.

That is,

Cc ‖uN(T )‖2
H(T ) + (C1 − ε) ‖uN‖2

L2
V
≤ 1

ε
‖f‖2

L2
V ∗

+ C2 ‖uN‖2
L2
H

+ Cb ‖uN(0)‖2
H0

(5.7)

and if ε is small enough, we can rearrange and manipulate this to get

‖uN(T )‖2
H(T ) ≤ C3

(
‖f‖2

L2
V ∗

+ ‖uN(0)‖2
H0

+

∫ T

0

‖uN(t)‖2
H(t)

)
.

Applying the integral form of Gronwall’s inequality tells us that

‖uN(t)‖2
H(t) ≤ C4

(
‖f‖2

L2
V ∗

+ ‖uN(0)‖2
H0

)
.

Using this on (5.7), throwing away the first term on the left hand side and utilising (5.1), we get

‖uN‖L2
V
≤ C

(
‖u0‖H0

+ ‖f‖L2
V ∗

)
.
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Lemma 5.12 (A priori estimate on u̇N ). If u0 ∈ V0 and f ∈ L2
H then the following estimate holds:

‖u̇N‖L2
H
≤ C

(
‖u0‖V0 + ‖f‖L2

H

)
.

As before, we sometimes will not write the argument (t) in expressions like uN(t).

Proof. In (5.7), pick vN = u̇N and use (L4) to get

C1 ‖u̇N‖2
H(t) + as(t;uN , u̇N) + an(t;uN , u̇N) + c(t;uN , u̇N) ≤ (f, u̇N)H(t). (5.8)

Then using assumption (A6), (5.8) is

C1 ‖u̇N‖2
H(t) +

1

2

d

dt
as(t;uN , uN) ≤ (f, u̇N)H(t) +

1

2
r(t;uN)− an(t;uN , u̇N)− c(t;uN , u̇N).

Integrating this yields

C1

∫ T

0

‖u̇N‖2
H(t) +

1

2
as(T ;uN(T ), uN(T ))

≤
∫ T

0

(f, u̇N)H(t) +
1

2

∫ T

0

r(t;uN)−
∫ T

0

an(t;uN , u̇N)−
∫ T

0

c(t;uN , u̇N)

+
1

2
as(0;uN(0), uN(0)).

With (A5) (positivity of as(t; ·, ·)), the bound (A4) on as(0; ·, ·), the bound (A7) on r(t; ·), the bound
(A3) on an(t; ·, ·), the bound on c(t; ·, ·) and Young’s inequality with ε > 0 and δ > 0, we get

C1 ‖u̇N‖2
L2
H
≤ 1

2δ
‖f‖2

L2
H

+

(
C2 +

C3

2ε

)
‖uN‖2

L2
V

+
(δ + C3ε)

2
‖u̇N‖2

L2
H

+ C4 ‖uN(0)‖2
V0

≤ 1

2δ
‖f‖2

L2
H

+ C5

(
C2 +

C3

2ε

)
(‖uN(0)‖2

H0
+ ‖f‖2

L2
H

) +
(δ + C3ε)

2
‖u̇N‖2

L2
H

+ C4 ‖uN(0)‖2
V0

(by the first a priori bound)

=

(
1

2δ
+ C5

(
C2 +

C3

2ε

))
‖f‖2

L2
H

+ C5

(
C2 +

C3

2ε

)
‖uN(0)‖2

H0

+
(δ + C3ε)

2
‖u̇N‖2

L2
H

+ C4 ‖uN(0)‖2
V0
.

So if ε and δ are small enough,

‖u̇N‖2
L2
H
≤ C7

(
‖f‖2

L2
H

+ ‖u0‖2
V0

)
,

where we used the bound (5.3) on uN(0).
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5.3 Second proof of existence for (P)

Sketch proof of Theorem 3.6. The uniform bound

‖uN‖L2
V
≤ C

(
‖u0‖H0

+ ‖f‖L2
V ∗

)
implies that

uN ⇀ u in L2
V (5.9)

for some u ∈ L2
V .

Picking in (Pd) vN = χtj , where j ∈ {0, ..., N}, and multiplying by ζ ∈ C1[0, T ] with ζ(T ) = 0,
we get

l(t; u̇N(t), ζ(t)χtj) + a(t;uN(t), ζ(t)χtj) + c(t;uN(t), ζ(t)χtj) = 〈f(t), ζ(t)χtj〉V ∗(t),V (t),

and then using the transport formula (L9), integrating, and passing to the limit with the help of (5.9)
and (5.2):

−
∫ T

0

l(t;u(t), ζ ′(t)χtj) +

∫ T

0

a(t;u(t), ζ(t)χtj) +

∫ T

0

c(t;u(t), ζ(t)χtj)−
∫ T

0

m(t;u(t), ζ(t)χtj)

=

∫ T

0

〈f(t), ζ(t)χtj〉V ∗(t),V (t) + l(0;u0, ζ(0)χ0
j). (5.10)

Now, because {χ0
j}j∈N is a basis for V0, we can write an arbitrary element of V0 as v =

∑∞
i=1 αjχ

0
j .

By definition, the sequence vn =
∑n

i=1 αjχ
0
j converges to v in V0. It follows that

φtvn =
n∑
j=1

αjχ
t
j → φtv in V (t).

Letting ζ(0) = 0 and multiplying (5.10) by αj and summing over j gives us∫ T

0

ζ ′(t)l(t;u(t), φtvn) = −
∫ T

0

ζ(t)〈f(t)−A(t)u(t)− C(t)u(t) +M(t)u(t), φtvn〉V ∗(t),V (t).

(5.11)

It is not difficult to see that the dominated convergence theorem applies and we can pass to the limit
in (5.11) to obtain∫ T

0

ζ ′(t)l(t;u(t), φtv) = −
∫ T

0

ζ(t)〈f(t)−A(t)u(t)− C(t)u(t) +M(t)u(t), φtv〉V ∗(t),V (t).

If we further let ζ ∈ D(0, T ), this is precisely the statement

d

dt
l(t;u(t), φtv) = 〈f(t)−A(t)u(t)− C(t)u(t) +M(t)u(t), φtv〉V ∗(t),V (t)
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in the weak sense. This is true for every v ∈ V0, and because f −Au− Cu ∈ L2
V ∗ , by Lemma 3.5,

Lu̇+Au+ Cu = f

holds as an equality in L2
V ∗ with u ∈ W (V, V ∗).

Let us now check the initial condition. Let w ∈ V0, take ζ ∈ C1[0, T ] with ζ(T ) = 0, and set
v(t) = ζ(t)φtw. We see that v ∈ L2

V . Sincew ∈ V0, there exist coefficients αj withw =
∑∞

j=1 αjχ
0
j .

So

v(t) = ζ(t)
∞∑
j=1

αjχ
t
j. (5.12)

The sequence {vN}N∈N defined by

vN(t) = ζ(t)
N∑
j=1

αjχ
t
j (5.13)

is such that vN ∈ L2
VN

and satisfies ‖vN − v‖L2
V
→ 0 because

‖vN − v‖2
L2
V

=

∫ T

0

‖ζ(t)

( N∑
j=1

αjχ
t
j − φtw

)
‖2
V (t) ≤ C‖

N∑
j=1

αjχ
0
j − w‖2

V0

which converges to zero by definition of w as an infinite sum. Similarly, we can show that v̇N → v̇

in L2
V .

Using the identity (L9) with v chosen as in (5.12), we see that (P’) is alternatively

d

dt
l(t;u(t), v(t)) + a(t;u(t), v(t)) + c(t;u(t), v(t))

= 〈f(t), v(t)〉V ∗(t),V (t) + l(t; v̇(t), u(t)) +m(t;u(t), v(t)),

which we integrate to get∫ T

0

a(t;u(t), v(t)) + c(t;u(t), v(t)) dt

=

∫ T

0

〈f(t), v(t)〉V ∗(t),V (t) + l(t;u(t), v̇(t)) +m(t;u(t), v(t)) dt+ l(0;u(0), v(0)). (5.14)

Similarly, with vN chosen as in (5.13) in the Galerkin equation (5.7), to which we again apply (L9)
and integrate to obtain∫ T

0

a(t;uN(t), vN(t)) + c(t;uN(t), vN(t)) dt

=

∫ T

0

〈f(t), vN(t)〉V ∗(t),V (t) + l(t;uN(t), v̇N(t)) +m(t;uN(t), vN(t)) dt+ l(0;uN(0), vN(0)).
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Using uN ⇀ u, vN → v, and v̇N → v̇, we may pass to the limit in this equation and a comparison
of the result to (5.14) will tell us that

l(0;u0 − u(0), ζ(0)w) = 0.

The arbitrariness of w ∈ V0, and the density of V0 in H0 yield the result.
That the solution is unique follows by a straightforward adaptation of the standard technique for

linear parabolic PDEs.

5.4 Proof of regularity

If u0 ∈ V0 and f ∈ L2
H then we may use the estimates of Lemma 5.12 and obtain the convergence

uN ⇀ u in L2
V

u̇N ⇀ w in L2
H

(5.15)

for some u ∈ L2
V and w ∈ L2

V ∗ and for a subsequence which we have relabelled. Now we show that
in fact, w = u̇.

Lemma 5.13. In the context of the above convergence results, w = u̇.

Proof. By definition∫ T

0

〈u̇N(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(uN(t), η̇(t))H(t) −
∫ T

0

c(t;uN(t), η(t)) (5.16)

holds for all η ∈ DV (0, T ). Note that

〈·, η〉L2
V ∗ ,L

2
V
, (·, η̇)L2

H
, 〈C(·), η〉L2

V ∗ ,L
2
V

are all elements of L2
V ∗ . Using (5.15), we can then pass to the limit in (5.16) to obtain∫ T

0

〈w(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

(u(t), η̇(t))H(t) −
∫ T

0

c(t;u(t), η(t)),

i.e., w = u̇.

Proof of Theorem 3.10. So we have the convergence

uN ⇀ u in L2
V

u̇N ⇀ u̇ in L2
H .

Given v ∈ L2
V , by density, there is a sequence {vM}M with vM ∈ L2

VM
for each M such that

vM(t) =
M∑
j=1

αMj (t)χtj and ‖vM − v‖L2
V
→ 0.
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For j = 1, ..., N , consider the equation (5.4):

l(t; u̇N(t), χtj) + a(t;uN(t), χtj) + c(t;uN(t), χtj) = (f(t), χtj)H(t).

If M ≤ N , then vM ∈ L2
VN

and we multiply the above by αMj (t) and sum up to get

l(t; u̇N(t), vM(t)) + a(t;uN(t), vM(t)) + c(t;uN(t), vM(t)) = (f(t), vM(t))H(t).

Multiplying this equation by ζ ∈ D(0, T ) and integrating:∫ T

0

ζ(t)
(
l(t; u̇N(t), vM(t)) + a(t;uN(t),vM(t)) + c(t;uN(t), vM(t))

)
=

∫ T

0

ζ(t)(f(t), vM(t))H(t).

By the bounds on the respective bilinear forms, we see that

〈L(·), ζvM〉L2
V ∗ ,L

2
V
∈ L2

H∗

〈A(·), ζvM〉L2
V ∗ ,L

2
V
∈ L2

V ∗

〈C(·), ζvM〉L2
V ∗ ,L

2
V
∈ L2

H∗ ,

so we obtain in the limit as N →∞ the equation∫ T

0

ζ(t)
(
l(t; u̇(t), vM(t)) + a(t;u(t),vM(t)) + c(t;u(t), vM(t))

)
=

∫ T

0

ζ(t)(f(t), vM(t))H(t).

Now note that as a function of vM , each term in the above equation is an element of L2
V ∗ again

because of the bounds on l(t; ·, ·), a(t; ·, ·) and c(t; ·, ·). So we send M → ∞, bearing in mind that
vM strongly converges to v in L2

V :∫ T

0

ζ(t)
(
l(t; u̇(t), v(t)) + a(t;u(t), v(t)) + c(t;u(t), v(t))

)
=

∫ T

0

ζ(t)(f(t), v(t))H(t).

Therefore, we have

l(t; u̇(t), v(t)) + a(t;u(t), v(t)) + c(t;u(t), v(t)) = (f(t), v(t))H(t)

for every v ∈ L2
V for almost every t ∈ [0, T ]. Hence u ∈ W (V,H) is a solution. The stability

estimate follows directly from the estimates in Lemmas 5.11 and 5.12.

6 Applications to evolving hypersurfaces

Our applications rely on Sobolev spaces defined on hypersurfaces. For reasons of space we shall
only briefly discuss the theory here and refer the reader to [13, 9, 35, 19, 32] for more details on
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analysis on surfaces. We emphasise the text [32] which contains a detailed overview of the essential
facts of Sobolev spaces on hypersurfaces.

Suppose that Γ is an n-dimensional Ck hypersurface in Rn+1 with k ≥ 2 and smooth boundary
∂Γ. Throughout we assume that Γ is orientable with unit normal ν. We can define L2(Γ) in the
natural way: it consists of the set of measurable functions f : Γ→ R such that

‖f‖L2(Γ) :=

(∫
Γ

|f(x)|2 dσ(x)

) 1
2

<∞,

where dσ is the surface measure on Γ (which we often omit writing). We will use the notation∇Γ =

(D1, ..., Dn+1) to stand for the surface gradient on a hypersurface Γ, and ∆Γ := ∇Γ ·∇Γ will denote
the Laplace–Beltrami operator. The integration by parts formula for functions f ∈ C1(Γ;Rn+1) is∫

Γ

∇Γ · f =

∫
Γ

f ·Hν +

∫
∂Γ

f · µ

where µ is the unit conormal vector which is normal to ∂Γ and tangential to Γ. Now if ψ ∈ C1
c (Γ),

then this formula implies ∫
Γ

fDiψ = −
∫

Γ

ψDif +

∫
Γ

fψHνi,

with the boundary term disappearing due to the compact support. This relation is the basis for
defining weak derivatives. We say f ∈ L2(Γ) has weak derivative gi =: Dif ∈ L2(Γ) if for every
ψ ∈ C1

c (Γ), ∫
Γ

fDiψ = −
∫

Γ

ψgi +

∫
Γ

fψHνi

holds. Then we can define the Sobolev space

H1(Γ) = {f ∈ L2(Γ) | Dif ∈ L2(Γ), i = 1, ..., n+ 1}

with the norm
‖f‖H1(Γ) =

√
‖f‖2

L2(Γ) + ‖∇Γf‖2
L2(Γ).

We shall also need a fractional-order Sobolev space. Let Ω ⊂ Rn be a bounded Lipschitz domain.
Define the space

H
1
2 (∂Ω) = {u ∈ L2(∂Ω) |

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|n
dσ(x)dσ(y) <∞}.

This is a Hilbert space with the inner product

(u, v)
H

1
2 (∂Ω)

=

∫
∂Ω

u(x)v(x) dσ(x)

+

∫
∂Ω

∫
∂Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|n
dσ(x)dσ(y).
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See [32, §2.4] and [10, §3.2] for details. The notation

|u|
H

1
2 (Γ0)

=

(∫
∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|n
dσ(x)dσ(y)

) 1
2

for the seminorm is convenient.

Now, recall Green’s formula:

−
∫

Ω

∆vw =

∫
Ω

∇v∇w −
∫
∂Ω

∇v · νw.

This allows us to define a normal derivative of functions in the space

{v ∈ H1(Ω) | ∆v ∈ H−1(Ω)}

as the element ∂u
∂ν
∈ H− 1

2 (∂Ω) determined by〈
∂v

∂ν
, w

〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

:=

∫
Ω

∇v∇E(w) + 〈∆v,E(w)〉H−1(Ω),H1(Ω) (6.1)

where E(w) ∈ H1(Ω) is an extension of w ∈ H
1
2 (∂Ω). The functional ∂v

∂ν
is independent of the

extension used for w.

6.1 Evolving spatial domains

We want to showcase the following four examples that demonstrate the applicability of our theory
in different situations:

1. A surface heat equation on an evolving compact hypersurface without boundary,

and the following on an evolving flat hypersurface with boundary:

2. A bulk equation

3. A coupled bulk-surface system

4. A problem with dynamic boundary conditions

We first discuss evolving compact hypersurfaces and evolving flat hypersurfaces with boundary
in the context of §2.
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6.1.1 Evolving compact hypersurfaces

For each t ∈ [0, T ], let Γ(t) ⊂ Rn+1 be a compact (i.e., no boundary) n-dimensional hypersurface
of class C2, and assume the existence of a flow Φ: [0, T ]×Rn+1 → Rn+1 such that for all t ∈ [0, T ],
with Γ0 := Γ(0), the map Φ0

t (·) := Φ(t, ·) : Γ0 → Γ(t) is a C2-diffeomorphism that satisfies

d

dt
Φ0
t (·) = w(t,Φ0

t (·))

Φ0
0(·) = Id(·).

(6.2)

We think of the map w : [0, T ]× Rn+1 → Rn+1 as a velocity field, and we assume that it is C2 and
satisfies the uniform bound

|∇Γ(t) ·w(t)| ≤ C for all t ∈ [0, T ].

A normal vector field on the hypersurfaces is denoted by ν : [0, T ]× Rn+1 → Rn+1.
Let V (t) = H1(Γ(t)) and H(t) = L2(Γ(t)). It is known that the embeddings V (t) ⊂ H(t) ⊂

V ∗(t) form a separable Hilbert triple. We define the pullback operator by

φ−tv = v ◦ Φ0
t .

By [34, Lemma 3.2], the map φ−t is such that

φ−t : L
2(Γ(t))→ L2(Γ0) and φ−t : H

1(Γ(t))→ H1(Γ0)

are linear homeomorphisms with the constants of continuity not dependent on t. We denote by
φ∗−t : H

−1(Γ0)→ H−1(Γ(t)) the dual operator. The maps t 7→ ‖φtu‖X(t) (for X = L2 and H1) are
continuous [34, Lemma 3.3], thus we have compatibility of the pairs (H,φ(·)) and (V, φ(·)|V ), and
the spaces L2

L2 , L2
H1 and L2

H−1 are well-defined.
Let us now work out a formula for the strong material derivative. Note that, by the smoothness

of Γ(t), any function u : Γ(t) → R can be extended to a neighbourhood of the space time surface
∪t∈[0,T ]Γ(t) × {t} in Rn+2 in which ∇u and ut for the extension are well-defined. Suppose that
u ∈ C1

V . The derivative of its pullback is

d

dt
φ−tu(t) =

d

dt
u(t,Φ0

t (y)) = ut(t,Φ
0
t (y)) +∇u|(t,Φ0

t (y)) ·w(t,Φ0
t (y))

= φ−tut(t, y) + φ−t(∇u(t, y)) · φ−t(w(t, y)), y ∈ Γ0

giving
u̇(t, x) = ut(t, x) +∇u(t, x) ·w(t, x), x ∈ Γ(t). (6.3)

The expression on the right hand side is independent of the extension.
It is clear that our definition of the strong material derivative coincides with the well-established

definition (see §2.4). Moreover, as we mentioned in the introduction, we can see from (6.3) that the
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material derivative depends on the evolution of the hypersurface, which in turn depends on the map
Φ0
t .

We denote by J0
t the change of area element when transforming from Γ0 to Γ(t), i.e., for any

integrable function ζ : Γ(t)→ R∫
Γ(t)

ζ =

∫
Γ0

(ζ ◦ Φ0
t )J

0
t =

∫
Γ0

φ−tζJ
0
t .

Using the transport identity

d

dt

∫
G(t)

ζ(t)
∣∣∣
t

=

∫
G(t)

ζ̇(t) + ζ(t)∇G(t) ·w(t)

on any portion G ⊂ Γ with points that move with the velocity field w (for instance, see ([11]) one
can easily show that

d

dt
J0
t = φ−t(∇Γ(t) ·w(t))J0

t . (6.4)

The field J0
t is uniformly bounded by positive constants

1

CJ
≤ J0

t (z) ≤ CJ for all z ∈ Γ0 and for all t ∈ [0, T ].

The L2(Γ(t)) inner product is

(u, v)L2(Γ(t)) =

∫
Γ(t)

u(x)v(x) =

∫
Γ0

(u ◦ Φ0
t (z))(v ◦ Φ0

t (z))J0
t (z)

=

∫
Γ0

φ−tuφ−tvJ
0
t ,

where we made the substitution x = Φ0
t (z). The bilinear form b̂(t; ·, ·) : H0 × H0 → R (which

satisfies (u, v)H(t) = b̂(φ−tv, φ−tv) by definition) is

b̂(t;u0, v0) =

∫
Γ0

u0v0J
0
t ,

so the action of the operator Tt : H0 → H0 (see Definition 2.22 and Theorem 2.32) is just pointwise
multiplication:

Ttu0 = J0
t u0.

With this, we see that the function θ from Assumptions 2.24 is

θ(t, u0) :=
d

dt
‖φtu0‖2

L2(Γ(t)) =
d

dt

∫
Γ0

u2
0J

0
t =

∫
Γ0

u2
0φ−t(∇Γ(t) ·w(t))J0

t

=

∫
Γ(t)

(φtu0)2∇Γ ·w(t)
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where the cancellation of the Jacobian terms in the last equality is thanks to the inverse function
theorem. Now, v 7→ θ(t, v) is continuous because if vn → v in L2(Γ0), then v2

n → v2 in L1(Γ0) and
so

|θ(t, vn)− θ(t, v)| ≤
∫

Γ0

|v2
n − v2||φ−t(∇Γ(t) ·w(t))J0

t |

≤ C
∥∥v2

n − v2
∥∥
L1(Γ0)

→ 0.

Finally,

|θ(t, u0 + v0)− θ(t, u0 − v0)| = 4

∫
Γ(t)

φtu0φtv0∇Γ(t) ·w(t)

≤ C ‖u0‖L2(Γ0) ‖v0‖L2(Γ0) .

So we have checked Assumptions 2.24. Now if u0, v0 ∈ L2(Γ0),

ĉ(t;u0, v0) =
∂

∂t
b̂(t;u0, v0) =

∫
Γ0

u0v0φ−t(∇Γ(t) ·w)J0
t ,

thus the bilinear form c(t; ·, ·) of Definition 2.25 is

c(t;u, v) =

∫
Γ0

φ−tuφ−tvφ−t(∇Γ(t) ·w)J0
t =

∫
Γ(t)

uv∇Γ(t) ·w,

which, as claimed in Lemma 2.26, is measurable in t and bounded on H(t)×H(t). So then u ∈ L2
V

has a weak material derivative u̇ ∈ L2
V ∗ if and only if∫ T

0

〈u̇(t), η(t)〉V ∗(t),V (t) = −
∫ T

0

∫
Γ(t)

u(t)η̇(t)−
∫ T

0

∫
Γ(t)

u(t)η(t)∇Γ(t) ·w(t)

holds for all η ∈ DV (0, T ) (cf. [34, 27]).
Finally, [34, Lemma 3.6] proves that T(·)u(·) ∈ W(V0, V

∗
0 ) if and only if u(·) ∈ W(V0, V

∗
0 ), due

to the fact that both J0
(·) and its reciprocal 1/J0

(·) are in C1([0, T ] × Γ0). To see that the evolving
space equivalence (Assumption 2.31) holds, take u ∈ W(V0, V

∗
0 ) and obtain by the product rule and

(6.4) the identity
(J0
t u(t))′ = J0

t u
′(t) + φ−t(∇Γ(t) ·w)J0

t u(t).

Therefore, the maps Ŝ(t) and D̂(t) (from Theorem 2.32) are Ŝ(t)u′(t) = J0
t u
′(t) and D̂(t) ≡ 0. It

follows by the uniform bound on J0
t that Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ). By Theorem 2.32, we have that

the space W (V, V ∗) = {u ∈ L2
H1 | u̇ ∈ L2

H−1} is indeed isomorphic toW(V0, V
∗

0 ) and there is an
equivalence of norms between

‖u‖W (V,V ∗) and
∥∥φ−(·)u(·)

∥∥
W(V0,V ∗0 )

.

It is easy to see that W (V,H) andW(V0, H0) are also equivalent.
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Remark 6.1 (Velocity fields). It is useful to note that there are different notions of velocities for an
evolving hypersurface.

• A hypersurface defined by a level set function, Γ(t) := {x | Ψ(x, t) = 0}, has a normal
velocity

wν = − Ψt

|∇Ψ|
· ∇Ψ

|∇Ψ|
.

The normal velocity is sufficient to define the evolution of the hypersurface from Γ(0).

• In applications there may be a physical velocity

wν + wτ

where wν is the normal component and wτ is the tangential component. The tangential ve-
locity may be associated with the motion of material points and may be relevant to the math-
ematical models of processes on the surface; for example yielding an advective flux.

• The velocity field (6.2) defined earlier defines the path of points on the initial surface. This
velocity arising from parametrising the surface

wν + wa

has wa as an arbitrary tangential velocity that may or may not coincide with the physical
tangential velocity wτ . In finite element analysis, it may be necessary to choose the tangential
velocity wa in an ALE approach so as to yield a shape-regular or adequately refined mesh.
See [15] and [13, §5.7] for more details on this.

• Now suppose that w is purely tangential (so w · ν = 0). In this case, material points on the
initial surface get transported across the surface as time increases but the surface remains the
same. One can see this for a sufficiently smooth initial surface Γ0 by supposing that Γ0 is the
zero-level set of a function Ψ: Rn+1 → R:

Γ0 = {x ∈ Rn+1 | Ψ(x) = 0}.

Let P be a material point on Γ0 and γ(t) denote the position of P at time t, with γ(t) ∈ Γ(t).
Then a purely tangential velocity means that∇Ψ(γ(t)) · γ′(t) = 0, but this is precisely

d

dt
Ψ(γ(t)) = 0,

so the point persists in being a zero of the level set. Since P was arbitrary, we conclude that
Γ(t) coincides with Γ0 for all t ∈ [0, T ], i.e.,

Γ(t) = {x ∈ Rn+1 | Ψ(x) = 0}.
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• In certain situations, it can be useful to consider on an evolving surface a boundary velocity
wb which we can extend (arbitrarily) to the interior. In the case of flat hypersurfaces, wν ≡ 0

since there is movement in the conormal direction and no movement in the normal direction.
The conormal component of the arbitrary velocity must agree with the conormal component
of the boundary velocity wb, otherwise the velocities map to two different surfaces.

Remark 6.2 (Normal time derivative). Suppose that the velocity field associated to the evolving
hypersurface {Γ(t)} is w = wν + wτ where wν is a normal velocity field and wτ is a tangential
velocity field. In this case, the formula

∂◦u = ut +∇u ·wν

defines the normal time derivative ∂◦u.

6.1.2 Evolving flat hypersurfaces with boundary

Three of our applications are on evolving domains in Rn. We discuss here what is common to the
examples and leave the specifics and peculiarities to be detailed on a case-by-case basis as required.

For each t ∈ [0, T ], let Ω(t) ⊂ Rn be a bounded open and connected domain of class C2 with
boundary {Γ(t)}t∈[0,T ]. We may view Ω(t) as an evolving flat hypersurface in Rn+1 and Γ(t) as an
evolving compact (n− 1)-dimensional hypersurface in Rn. We denote Ω0 := Ω(0) and Γ0 := Γ(0).
For each t ∈ [0, T ], we assume the existence of a map Φ0

t : Ω0 → Ω(t) such that Φ0
t (Ω0) = Ω(t) and

Φ0
t (Γ0) = Γ(t) (i.e., interiors are mapped to interiors and boundaries are mapped to boundaries).

We assume that

Φ0
t : Ω0 → Ω(t) is a C2-diffeomorphism,

Φ0
t : Γ0 → Γ(t) is a C2-diffeomorphism,

Φ0
(·) ∈ C2([0, T ]× Ω0),

and that Ω(t) and Γ(t) evolve with velocity w as in (6.2).

Definition 6.3. For functions u : Ω0 → R and v : Γ0 → R, define the maps

φΩ,tu = u ◦ Φt
0|Ω0

φΓ,tv = v ◦ Φt
0|Γ0 .

We find that

φΩ,t : H
1(Ω0)→ H1(Ω(t)) and φΩ,t : L

2(Ω0)→ L2(Ω(t))

are linear homeomorphisms with the constants of continuity not depending on t (we can either
adapt the proofs in [34] or use Problem 1.3.1 in [26]). Furthermore, since the boundary Γ(t) is a C2

hypersurface, it satisfies the assumptions in §6.1.1 and so it follows that the maps

φΓ,t : H
1(Γ0)→ H1(Γ(t)) and φΓ,t : L

2(Γ0)→ L2(Γ(t))
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are also linear homeomorphisms with the constants of continuity not depending on t.
One of the most important terms in the solution space regime is the Jacobian J0

Ω,(·) := detDΦ0
(·) ∈

C1([0, T ] × Ω0); one can show that it satisfies much of the same properties (see [5] for this) as the
Jacobian term did in §6.1.1 for the case of compact hypersurfaces. Hence it is straightforward to
adapt the proofs for the case of a domain with boundary to yield the fulfilment of the evolving space
equivalence Assumption 2.35 betweenW(H1(Ω0), L2(Ω0)) and W (H1

Ω, L
2
Ω).

6.2 Application 1: the surface advection-diffusion equation

Suppose that we have an evolving hypersurface Γ(t) that evolves with normal velocity wν . Given a
surface flux q, we consider the conservation law

d

dt

∫
M(t)

u = −
∫
∂M(t)

q · µ

on an arbitrary portion M(t) ⊂ Γ(t), where µ denotes the conormal on ∂M(t). Without loss of
generality we can assume that q is tangential. This conversation law implies the pointwise equation

ut +∇u ·wν + u∇Γ ·wν +∇Γ · q = 0.

Assuming that the flux is a combination of a diffusive flux and an advective flux

q = −∇Γu+ ubτ

where bτ is an advective tangential velocity field, we obtain

u̇−∆Γu+ u∇Γ ·w +∇Γu · (bτ −wτ ) = 0.

We supplement this equation with the initial condition u(0) = u0 ∈ L2(Γ0). Now, if w = 0, then
clearly there is no evolution of the surface and Γ0 ≡ Γ(t). Let us assume for simplicity that b = w;
that is, the physical velocity agrees with the velocity of the parameterisation. Let us suppose that
Γ(t) possesses the properties in §6.1.1.

Availing ourselves of the framework in §6.1.1, the weak formulation asks to find u ∈ W (V, V ∗)

such that

〈u̇(t), v(t)〉H−1(Γ(t)),H1(Γ(t)) +

∫
Γ(t)

∇Γu(t) · ∇Γv(t) +

∫
Γ(t)

u(t)v(t)∇Γ ·w(t) = 0

holds for all v ∈ L2
V and for almost every t ∈ [0, T ]. Here,

a(t;u, v) =

∫
Γ(t)

∇Γu · ∇Γv

which clearly satisfy the assumptions listed in Assumptions 3.2. Applying Theorem 3.6, we obtain
a unique solution u ∈ W (V, V ∗).
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If instead we ask for u̇ ∈ L2
H , in addition to requiring u0 ∈ H1(Γ0), we need to check Assump-

tions 3.8. We take as ≡ a as defined above and set an ≡ 0. Most of the assumptions are easy to
check. For (A6), we see from [11, Lemma 2.2] that for η ∈ C̃1

V ,

d

dt

∫
Γ(t)

|∇Γη(t)|2 =

∫
Γ(t)

(2∇Γη(t) · ∇Γη̇(t)− 2∇Γη(t)(DΓw(t))∇Γη(t) + |∇Γη(t)|2∇Γ ·w(t))

where (DΓw(t))ij = Djw
i(t). So

r(t; η) =

∫
Γ(t)

(−2∇Γη(DΓw(t))∇Γη + |∇Γη|2∇Γ ·w(t))

which satisfies (A7). Finally, an application of Theorem 3.10 allows us to conclude well-posedness
with a unique solution u ∈ W (V,H).

Remark 6.4. We mentioned in Remark 6.2 that if w is purely tangential, the surface does not evolve.
However, even in this situation, it can still be useful to think of spaces of functions on Γ(t) ≡ Γ0 as
H(t) and V (t) (i.e., still parametrised by t ∈ [0, T ].) Consider the surface heat equation

u̇−∆Γu+ u∇Γ ·w = 0 on Γ(t).

If w(t, ·) is a tangential velocity field, then this equation corresponds to

ut −∆Γu+ u∇Γ ·w + w · ∇Γu = f on Γ(t),

which could be advection-dominated (if w is sufficiently large) and potentially problematic for
numerical computations. The first formulation, in which we make use of H(t) and V (t) for each
t ∈ [0, T ], avoids this issue.

6.3 Application 2: bulk equation

Let V (t) = H1
0 (Ω(t)) and H(t) = L2(Ω(t)). With φt referring to the map φΩ,t from Definition

6.3, it follows from §6.1.2 that (H,φ(·)) and (V, φ(·)|V ) are compatible and that there is an evolving
space equivalence betweenW(V0, V

∗
0 ) and W (V, V ∗).

We consider the following boundary value problem

u̇(t) + (b(t)−w(t)) · ∇u(t) + u(t)∇ · b(t)−D∆u(t) = f(t) on Ω(t)

u(t, ·) = 0 on Γ(t)

u(0, ·) = u0(·) on Ω0

where D > 0 is a constant and the physical material velocity b(t) : Ω(t) → Rn is such that b and
∇·b are uniformly bounded above in time and space. We refer the reader to [8] for a formulation of
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balance equations on moving time-dependent bulk domains. Our weak formulation is: with f ∈ L2
H

and u0 ∈ V0, find u ∈ W (V,H) such that

(u̇, v)H(t) +

∫
Ω(t)

(b−w) · ∇uv + (∇ · b)uv +D∇u · ∇v dx =

∫
Ω(t)

fv

u(0) = u0

holds for all v ∈ L2
V and for almost every t ∈ [0, T ]. For convenience, set p := b−w. So we have

a(t;u, v) =

∫
Ω(t)

p · ∇uv + (∇ · b)uv +D∇u · ∇v

with the symmetric and non-symmetric parts

as(t;u, v) =

∫
Ω(t)

D∇u · ∇v and an(t;u, v) =

∫
Ω(t)

((∇ · b)u+ p · ∇u)v

respectively. We need to check Assumptions 3.2 and 3.8.
Boundedness of a(t; ·, ·) is easy, while coercivity can be shown by the use of Young’s equality

with ε:

a(t; v, v) ≥ D ‖∇v‖2
L2(Ω(t)) −

∫
Ω(t)

|vp · ∇v| dx− ‖∇ · b‖L∞(Ω(t)) ‖v‖
2
L2(Ω(t))

≥ D ‖∇v‖2
L2(Ω(t)) −

C

2D

∥∥p2
∥∥
L∞(Ω(t))

‖v‖2
L2(Ω(t)) −

D

2
‖∇v‖2

L2(Ω(t))

− ‖∇ · b‖L∞(Ω(t)) ‖v‖
2
L2(Ω(t))

= −
(
C

2D

∥∥p2
∥∥
L∞(Ω(t))

+ ‖∇ · b‖L∞(Ω(t))

)
‖v‖2

L2(Ω(t)) +
D

2
‖∇v‖2

L2(Ω(t)) .

Coming to the term as(t; ·, ·); firstly, positivity and boundedness are obvious, and differentiability
is the same as for the bilinear form a(t; ·, ·) in the previous example:

d

dt
as(t; η(t), η(t)) = 2as(t; η̇(t), η(t)) + r(t; η(t))

for η ∈ C̃1
V , where

r(t; η(t)) = D

∫
Ω(t)

(−2∇η(t)(DΩw(t))∇η(t) + |∇η(t)|2∇ ·w(t))

which is obviously bounded. Finally, the uniform bound on an(t; ·, ·) : V (t)×H(t)→ R is easy to
see.

With all the assumptions checked, we apply Theorem 3.10 and find a unique solution u ∈
W (V,H).
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6.4 Application 3: coupled bulk-surface system

In [14], the authors consider well-posedness of an elliptic coupled bulk-surface system on a static
domain; we now extend this to the parabolic case on an evolving domain. We want to find solutions
u(t) : Ω(t)→ R and v(t) : Γ(t)→ R of the coupled bulk-surface PDE system

u̇−∆Ωu+ u∇Ω ·w = f on Ω(t) (6.5)

v̇ −∆Γv + v∇Γ ·w +∇Ωu · ν = g on Γ(t) (6.6)

∇Ωu · ν = βv − αu on Γ(t) (6.7)

u(0) = u0 on Ω0 (6.8)

v(0) = v0 on Γ0 (6.9)

where α, β > 0 are constants. Note that (6.7) is a Robin boundary condition for Ω(t) and that we
reused the notation u for denoting the trace of u. Note that we assume there is just the one velocity
field w.)

6.4.1 Function spaces

Define the product Hilbert spaces

V (t) = H1(Ω(t))×H1(Γ(t)) and H(t) = L2(Ω(t))× L2(Γ(t))

which we equip with the inner products

((ω1, γ1), (ω2, γ2))H(t) = (ω1, ω2)L2(Ω(t)) + (γ1, γ2)L2(Γ(t))

((ω1, γ1), (ω2, γ2))V (t) = (ω1, ω2)H1(Ω(t)) + (γ1, γ2)H1(Γ(t)).

Clearly V (t) ⊂ H(t) is continuous and dense and both spaces are separable. The dual space of V (t)

is
V ∗(t) = H−1(Ω(t))×H−1(Γ(t))

and the duality pairing is

〈(fω, fγ), (uω, uγ)〉V ∗(t),V (t) = 〈fω, uω〉H−1(Ω(t)),H1(Ω(t)) + 〈fγ, uγ〉H−1(Γ(t)),H1(Γ(t)).

Define the map
φt : H0 → H(t)

by
φt((ω, γ)) = (φΩ,t(ω), φΓ,t(γ))

where φΩ,t and φΓ,t are as defined previously. From §6.1.1 and §6.1.2, we find that (H,φ(·)) and
(V, φ(·)|V ) are compatible, and we have the evolving space equivalence between W(V0, V

∗
0 ) and

W (V, V ∗).
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To define the weak material derivative, note that because the inner product on H(t) is a sum of
the L2 inner products on Ω(t) and Γ(t), it follows that the bilinear form c(t; ·, ·) is

c(t; (ω1, γ1), (ω2, γ2)) = cΩ(t;ω1, ω2) + cΓ(t; γ1, γ2)

with

cΩ(t;ω1, ω2) =

∫
Ω(t)

ω1ω2∇Ω ·w(t) and cΓ(t; γ1, γ2) =

∫
Γ(t)

γ1γ2∇Γ ·w(t)

being the bilinear forms (which we called c(t; ·, ·)) associated with the material derivatives of the
constituent spaces of the product space.

6.4.2 Weak formulation and well-posedness

To obtain the weak form, we let (ω, γ) ∈ L2
V and take the inner product of (6.5) with ω and the

inner product of (6.6) with γ:∫
Ω(t)

u̇ω +

∫
Ω(t)

∇Ωu · ∇Ωω −
∫

Γ(t)

ω∇Ωu · ν +

∫
Ω(t)

uω∇Ω ·w =

∫
Ω(t)

fω (6.10)∫
Γ(t)

v̇γ +

∫
Γ(t)

∇Γv · ∇Γγ +

∫
Γ(t)

vγ∇Γ ·w +

∫
Γ(t)

γ∇Ωu · ν =

∫
Γ(t)

gγ. (6.11)

Multiplying (6.10) by α and (6.11) by β, taking the sum and substituting the boundary condition
(6.7), we end up with

α

∫
Ω(t)

u̇ω + β

∫
Γ(t)

v̇γ + α

∫
Ω(t)

∇Ωu · ∇Ωω + β

∫
Γ(t)

∇Γv · ∇Γγ + α

∫
Ω(t)

uω∇Ω ·w

+ β

∫
Γ(t)

vγ∇Γ ·w +

∫
Γ(t)

(βv − αu)(βγ − αω) = α

∫
Ω(t)

fω + β

∫
Γ(t)

gγ.

Defining the bilinear forms

l(t; (u̇, v̇), (ω, γ)) = α〈u̇, ω〉H−1(Ω(t)),H1(Ω(t) + β〈v̇, γ〉H−1(Γ(t)),H1(Γ(t))

a(t; (u, v), (ω, γ)) = α

∫
Ω(t)

∇Ωu · ∇Ωω + β

∫
Γ(t)

∇Γv · ∇Γγ +

∫
Γ(t)

(βv − αu)(βγ − αω),

our weak formulation reads: given (f, g) ∈ L2
H and (u0, v0) ∈ V0, find (u, v) ∈ W (V, V ∗) such that

l(t; (u̇, v̇), (ω, γ)) + a(t; (u, v), (ω, γ)) + c(t; (u, v), (ω, γ)) = ((αf, αg), (ω, γ))H(t)

(u(0), v(0)) = (u0, v0)
(Pbs)

for all (ω, γ) ∈ L2
V and for almost every t ∈ [0, T ].

Let us now check Assumptions 3.1.
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Assumptions (L1)–(L8) We can write

l(t; (u̇, v̇), (ω, γ)) = 〈L(t)(u̇, v̇), (ω, γ)〉V ∗(t),V (t) = 〈(αu̇, βv̇), (ω, γ)〉V ∗(t),V (t),

i.e., L(t)(u̇, v̇) is the functional 〈(αu̇, βv̇), ·〉V ∗(t),V (t), which obviously satisfies (L1). When (u̇, v̇) ∈
H(t),

〈L(t)(u̇, v̇), (ω, γ)〉 = ((αu̇, βv̇), (ω, γ))H(t),

so indeed L(t)|H(t) has range in H(t) and L(t)|V (t) has range in V (t). Assumptions (L2)–(L5) are
immediate, and (L6) also follows easily. For (L7) and (L8), note that the map L̇ ≡ 0.

We also need to check Assumptions 3.2 and 3.8 on the bilinear form a(t; ·, ·). We shall use the
trace inequality [35, §I.8, Theorem 8.7, p. 126]:

‖τtu‖L2(Γ(t)) ≤ CT ‖u‖H1(Ω(t)) for all u ∈ H1(Ω(t)),

and we assume that the constant is independent of t ∈ [0, T ]. Set vi = (ωi, γi) for i = 1, 2.

Coercivity of a(t; ·, ·) (assumption (A1)) is achieved with no great difficulty (one uses the L∞ bound
on w · µ, the trace inequality and Young’s inequality with ε).

Assumption (A2) For boundedness of a(t; ·, ·), we start with

|a(t;v1,v2)| ≤ C ‖v1‖V (t) ‖v2‖V (t) +

∫
Γ(t)

|βγ1γ2 + αω1ω2 − αω1γ2 − βγ1ω2|. (6.12)

The trace inequality allows us to estimate the last term of (6.12) as follows:∫
Γ(t)

|βγ1γ2 + αω1ω2 − αω1γ2 − βγ1ω2|

≤ β ‖γ1‖L2(Γ(t)) ‖γ2‖L2(Γ(t)) + αC2
T ‖ω1‖H1(Ω(t)) ‖ω2‖H1(Ω(t))

+ αCT ‖ω1‖H1(Ω(t)) ‖γ2‖L2(Γ(t)) + βCT ‖γ1‖L2(Γ(t)) ‖ω2‖H1(Ω(t))

≤ C ‖(ω1, γ1)‖V (t) ‖(ω2, γ2)‖V (t) = C ‖v1‖V (t) ‖v2‖V (t) .

Assumptions (A6) and (A7) We do not require the splitting of a(t; ·, ·) into a differentiable and
non-differentiable part, since a(t; ·, ·) is differentiable as shown below. In view of this and Remark
3.9, we need only to check (A6) and (A7). Let us define

aΩ(t;ω1, ω2) = α

∫
Ω(t)

∇Ωω1 · ∇Ωω2

aΓ(t; γ1, γ2) = β

∫
Γ(t)

∇Γγ1 · ∇Γγ2

so that

a(t; (ω1, γ1), (ω2, γ2)) = aΩ(t;ω1, ω2) + aΓ(t; γ1, γ2) +

∫
Γ(t)

(βγ1 − αω1)(βγ2 − αω2)
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Taking v1 ∈ C̃1
V , we differentiate:

d

dt
a(t;v1,v1) = 2aΩ(t; ω̇1, ω1) + rΩ(t;ω1) + 2aΓ(t; γ̇1, γ1) + rΓ(t; γ1)

+ 2(βγ̇1 − αω̇1, βγ1 − αω1)L2(Γ(t)) + cΓ(t; βγ1 − αω1, βγ1 − αω1)

= 2a(t; (ω̇1, γ̇1), (ω1, γ1)) + r(t; (ω1, γ1))

= 2a(t; v̇1,v1) + r(t;v1).

Here, we defined

r(t; (ω1, γ1)) = rΩ(t;ω1) + rΓ(t; γ1) + cΓ(t; βγ1 − αω1, βγ1 − αω1)

where rΩ is the form r from §6.2 with domain Ω and rΓ is (also) the form r from §6.2 with domain
Γ. By the bounds on rΩ, rΓ and c, we have

|r(t;v1)| ≤ C1(‖ω1‖2
H1(Ω(t)) + ‖γ1‖2

H1(Γ(t)) + ‖βγ1 − αω1‖2
L2(Γ(t)))

≤ C2(‖ω1‖2
H1(Ω(t)) + ‖γ1‖2

H1(Γ(t)) + ‖γ1‖2
L2(Γ(t)) + ‖ω1‖2

L2(Γ(t)))

≤ C2((1 + C2
T ) ‖ω1‖2

H1(Ω(t)) + 2 ‖γ1‖2
H1(Γ(t)))

≤ C3 ‖v1‖2
V (t) ,

i.e. r(t; ·) is bounded in V (t).
With all the assumptions satisfied, we find from Theorem 3.10 that there is a unique solution

(u, v) ∈ W (V,H) to the problem (Pbs).

6.5 Application 4: dynamic boundary condition for elliptic equation on mov-
ing domain

Given f ∈ L2

H−
1
2

and w0 ∈ L2(Γ0), we consider the problem of finding a function w(t) : Ω(t)→ R
such that

∆w(t) = 0 on Ω(t)

ẇ(t) +
∂w(t)

∂ν
+ w(t) = f(t) on Γ(t)

w(0) = w0 on Γ0

(6.13)

is satisfied in a weak sense. This is a natural extension to evolving domains of the problem consid-
ered in §1.11.1 of [23].

6.5.1 Function spaces

We assume some stronger regularity on the map Φ0
t here, namely

Φ0
t : Γ0 → Γ(t) is a C3-diffeomorphism, and

Φ0
(·) ∈ C3([0, T ]× Γ0).
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In this case, we use the pivot space H(t) = L2(Γ(t)) but now require V (t) = H
1
2 (Γ(t)). Below, we

shall mainly make use of φΓ,t and to save space we shall write it simply as φt. We only revert to the
full notation when ambiguity forces us to.

We use the notation and the established results of §6.1.1, from which we already know that
φ−t : L

2(Γ(t)) → L2(Γ0) is a well-defined linear homeomorphism. Now we show that the map
φ−t : H

1
2 (Γ(t)) → H

1
2 (Γ0) is also a linear homeomorphism. Let u ∈ H

1
2 (Γ(t)). It suffices to

estimate only the seminorm |φ−tu|H 1
2 (Γ0)

. We have∫
Γ0

∫
Γ0

|φ−tu(x)− φ−tu(y)|2

|x− y|n
=

∫
Γ(t)

∫
Γ(t)

|u(xt)− u(yt)|2

|Φt
0(xt)− Φt

0(yt)|n
J t0(xt)J

t
0(yt) (6.14)

where we made the substitutions xt = Φ0
t (x) ∈ Γ(t) and yt = Φ0

t (y) ∈ Γ(t). Since Φ0
t is a C1-

diffeomorphism between compact spaces, it is bi-Lipschitz with Lipschitz constant CL independent
of t (because the spatial derivatives of Φ0

t are uniformly bounded). This implies

|xt − yt| ≤ CL|Φt
0(xt)− Φt

0(yt)|

so that (6.14) becomes

|φ−tu|2
H

1
2 (Γ0)

≤ Cn
LC

2
J

∫
Γ(t)

∫
Γ(t)

|u(xt)− u(yt)|2

|xt − yt|n
= Cn

LC
2
J |u|2H 1

2 (Γ(t))
,

where we used the uniform bound on J t0. So we have the uniform bound

‖φ−tu‖H 1
2 (Γ0)

≤ C ‖u‖
H

1
2 (Γ(t))

.

A similar bound holds for the operator φt by the same arguments as above since Φt
0 = (Φt

0)−1 also
satisfies the same properties as above.

It follows by the smoothness on Φ0
(·) that J0

(·) ∈ C2([0, T ] × Γ0). This implies that J0
t : Γ0 → R

is (globally) Lipschitz (see the paragraph after the proof of Proposition 2.4 in [21, p. 23]).
The map

t 7→ |φtu|2
H

1
2 (Γ(t))

=

∫
Γ(t)

∫
Γ(t)

|φtu(x)− φtu(y)|2

|x− y|n

=

∫
Γ0

∫
Γ0

|u(x0)− u(y0)|2

|Φ0
t (x0)− Φ0

t (y0)|n
J0
t (x0)J0

t (y0)

is continuous. To see this, define the integrand

g(x0, y0, t) =
|u(x0)− u(y0)|2

|Φ0
t (x0)− Φ0

t (y0)|n
J0
t (x0)J0

t (y0).

Now, t 7→ g(x0, y0, t) is continuous for almost all (x0, y0) (it only fails when the denominator is
zero, where x0 = y0, and the set of such points has zero measure), and we have the domination
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g(x0, y0, t) ≤ h(x0, y0) for all t and almost all (x0, y0) by an integrable function h; this follows due
to the smoothness assumptions on Φ0

(·) and J0
(·). Therefore, t 7→

∫
Γ0

∫
Γ0
g(x0, y0, t) is continuous.

This enables to conclude that (H,φ(·)) and (V, φ(·)|V ) are compatible.
There is some effort needed in order to show the evolving space equivalence. We start with the

following two results which are used continually.

Lemma 6.5. For y ∈ Γ0, we have ∫
Γ0

1

|x− y|n−2
dσ(x) < C

where C does not depend on y.

This lemma can be proved by first setting y = 0 (without loss of generality) and then splitting the
domain of integration into two terms, one of which is a ball centred at the the origin. The integral
over the ball can be tackled with the assumption of the domain being Lipschitz and switching to
polar coordinates, while the integral over the complement of the ball is obviously finite.

Lemma 6.6. If ρ ∈ C1(Γ0) and u ∈ H 1
2 (Γ0) then ρu ∈ H 1

2 (Γ0) and

‖ρu‖
H

1
2 (Γ0)

≤ C ‖ρ‖C1(Γ0) ‖u‖H 1
2 (Γ0)

(6.15)

where C does not depend on ρ or u.

Proof. Note that ρ and ∇ρ are bounded from above and ρ is Lispchitz. We begin with

‖ρu‖2

H
1
2 (Γ0)

≤ ‖ρ‖2
C0(Γ0) ‖u‖

2
L2(Γ0) +

∫
Γ0

∫
Γ0

|ρ(x)u(x)− ρ(y)u(y)|2

|x− y|n
dxdy.

The last term is∫
Γ0

∫
Γ0

|ρ(x)u(x)− ρ(y)u(y)|2

|x− y|n

≤ 2

∫
Γ0

∫
Γ0

|ρ(x)|2|u(x)− u(y)|2

|x− y|n
+ 2

∫
Γ0

∫
Γ0

|u(y)|2|ρ(x)− ρ(y)|2

|x− y|n

≤ 2 ‖ρ‖2
C0(Γ0) |u|

2

H
1
2 (Γ0)

+ 2 ‖∇ρ‖2
C0(Γ0)

∫
Γ0

∫
Γ0

|u(y)|2

|x− y|n−2
.

From the previous lemma, the integral in the second term is∫
Γ0

∫
Γ0

|u(y)|2

|x− y|n−2
=

∫
Γ0

|u(y)|2
∫

Γ0

|x− y|2−n ≤ C1 ‖u‖2
L2(Γ0) .

Putting it all together, we achieve (6.15).

In the following lemmas, let J ∈ C2([0, T ]× Γ0).
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Lemma 6.7. If ψ ∈ D((0, T );H
1
2 (Γ0)), then ψJ ∈ W (V0, V

∗
0 ) and (ψJ)′ = ψ′J + ψJ ′.

Proof. Let us note that

ψ ∈ C0([0, T ];H
1
2 (Γ0))

J ∈ C0([0, T ];H
1
2 (Γ0)).

The second inclusion holds because J ∈ C0([0, T ];H1(Γ0)) by [34, Lemma 3.6], and because
H1(Γ0) ⊂ H

1
2 (Γ0) is continuous [32, Theorem 2.5.1 and Theorem 2.5.5].

Now, note that ψ(t)J(t) ∈ H 1
2 (Γ0) for all t by Lemma 6.6. To see that ψJ ∈ C0([0, T ];H

1
2 (Γ)),

let tn → t and consider

‖ψ(t)J(t)− ψ(tn)J(tn)‖
H

1
2 (Γ0)

≤ ‖ψ(t)(J(t)− J(tn))‖
H

1
2 (Γ0)

+ ‖J(tn)(ψ(t)− ψ(tn))‖
H

1
2 (Γ0)

≤ C‖J(t)− J(tn)‖C1(Γ0) ‖ψ(t)‖
H

1
2 (Γ0)

+ ‖J(tn)‖C1(Γ0) ‖ψ(t)− ψ(tn)‖
H

1
2 (Γ0)

.

The first of these terms tends to zero as tn → t because J ∈ C0([0, T ];C1(Γ0)) [34, Lemma 3.6],
and the second because ψ ∈ C1([0, T ];H

1
2 (Γ0)).

Now we show that in fact ψJ ∈ C1([0, T ];H
1
2 (Γ0)) and that (ψJ)′ = ψ′J + ψJ ′. Observe

that ψ′(t)J(t) + ψ(t)J ′(t) ∈ H
1
2 (Γ0) by Lemma 6.6. Define the difference quotients DhJ(t) =

(J(t+ h)− J(t))/h and Dhψ(t) similarly and note that∥∥∥∥ψ(t+ h)J(t+ h)− ψ(t)J(t)

h
− ψ′(t)J(t)− ψ(t)J ′(t)

∥∥∥∥
H

1
2 (Γ0)

≤
∥∥ψ(t+ h)DhJ(t)− ψ(t)J ′(t)

∥∥
H

1
2 (Γ0)

+
∥∥Dhψ(t)J(t)− ψ′(t)J(t)

∥∥
H

1
2 (Γ0)

≤ C
∥∥DhJ(t)− J ′(t)

∥∥
C1(Γ0)

‖ψ(t+ h)‖
H

1
2 (Γ0)

+ C ‖J ′(t)‖C1(Γ0) ‖ψ(t+ h)− ψ(t)‖
H

1
2 (Γ0)

+ ‖J(t)‖C1(Γ0)

∥∥Dhψ(t)− ψ′(t)
∥∥
H

1
2 (Γ0)

because both J,∇J ∈ C1([0, T ];C0(Γ0)) [34, Lemma 3.6] (which we can use because J ∈
C2([0, T ]× Γ0)). Note that here we used∥∥ψ(t+ h)DhJ(t)− ψ(t)J ′(t)

∥∥
H

1
2 (Γ0)

≤
∥∥ψ(t+ h)

(
DhJ(t)− J ′(t)

)∥∥
H

1
2 (Γ0)

+ ‖(ψ(t+ h)− ψ(t))J ′(t)‖
H

1
2 (Γ0)

.

Thus, we find

lim
h→0

∥∥∥∥ψ(t+ h)J(t+ h)− ψ(t)J(t)

h
− ψ′(t)J(t)− ψ(t)J ′(t)

∥∥∥∥
H

1
2 (Γ0)

= 0.

Theorem 6.8. For every u ∈ W(V0, V
∗

0 ), Ju ∈ W(V0, V
∗

0 ).
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Proof. Let ψ ∈ D((0, T );H
1
2 (Γ0)) and for u ∈ W (V0, V

∗
0 ), consider∫ T

0

〈u′(t), J(t)ψ(t)〉
H−

1
2 (Γ0),H

1
2 (Γ0)

= −
∫ T

0

(J ′(t)ψ(t) + J(t)ψ′(t), u(t))L2(Γ0)

(by the formula of partial integration and the last lemma)

= −
∫ T

0

(ψ(t), J ′(t)u(t))L2(Γ0) −
∫ T

0

(ψ′(t), J(t)u(t))L2(Γ0).

Rearranging yields∫ T

0

(J(t)u(t), ψ′(t))L2(Γ0) = −
∫ T

0

〈J ′(t)u(t) + J(t)u′(t), ψ(t)〉
H−

1
2 (Γ0),H

1
2 (Γ0)

.

This shows that Ju has a weak derivative, and (Ju)′ ∈ L2(0, T ;H−
1
2 (Γ0)) since we have J ′u ∈

L2(0, T ;H
1
2 (Γ0)) and Ju′ ∈ L2(0, T ;H−

1
2 (Γ0)).

Theorem 6.9. We have the evolving space equivalence betweenW(V0, V
∗

0 ) and W (V, V ∗).

Proof. The last result shows that if u ∈ W(V0, V
∗

0 ) then J0
t u ∈ W(V0, V

∗
0 ). Because 1/J0

t ∈
C2([0, T ]× Γ0), the converse also holds (using J = 1/J0

t ). Since

(J0
t u(t))′ = J0

t u
′(t) + Ĉ(t)u(t),

we have Ŝ(t) = Tt = J0
t and D̂(t) ≡ 0, and it follows that Ŝ(·)u′(·) ∈ L2(0, T ;H−

1
2 (Γ0)). Thus

the equivalence of norms is also true due to Theorem 2.32.

6.5.2 Well-posedness

We first need the following auxiliary result.

Lemma 6.10. Given u ∈ H 1
2 (Γ(t)), there exists a unique weak solution w̃ ∈ H1(Ω(t)) to

∆w̃ = 0 on Ω(t)

w̃ = ũ on Γ(t).
(6.16)

that satisfies
‖w̃‖H1(Ω(t)) ≤ C ‖ũ‖

H
1
2 (Γ(t))

where the constant C does not depend on t ∈ [0, T ].

The existence and uniqueness of the solution to (6.16) is well-studied but the continuous depen-
dence with the constant independent of t ∈ [0, T ] requires a proof. For that, we need the following
results which show that certain standard results are in a sense uniform in t ∈ [0, T ].

Lemma 6.11. Let τt : H1(Ω(t))→ H
1
2 (Γ(t)) denote the trace map. The equality in H

1
2 (Γ(t))

τt(φΩ,tw) = φΓ,t(τ0w) for all w ∈ H1(Ω0).

holds.



60 A. Alphonse, C. Elliott and B. Stinner

Proof. This is because
τt(φΩ,twn) = φΓ,t(τ0wn)

for all wn ∈ C1(Ω0) (one can see this identity by using the facts that the same formula defines φΩ,t

and φΓ,t and that Φt
0 maps boundary to boundary), in particular, it holds for wn ∈ C1(Ω0)∩H1(Ω0)

such that wn → w in H1(Ω0). Then by continuity of the various maps, we can pass to the limit and
obtain the identity.

Lemma 6.12. For each t ∈ [0, T ], we have

‖v‖H1(Ω(t)) ≤ C1 ‖∇v‖L2(Ω(t)) ∀v ∈ H1
0 (Ω(t)) (6.17)

‖∇v‖2
L2(Ω(t)) + ‖v‖2

L2(Γ(t)) ≥ C2 ‖v‖2
H1(Ω(t)) ∀v ∈ H1(Ω(t)) (6.18)

inf
v∈H1(Ω(t))
τtv=u

‖v‖H1(Ω(t)) ≤ C3 ‖u‖H 1
2 (Γ(t))

∀u ∈ H
1
2 (Γ(t)) (6.19)

where C1, C2, and C3 do not depend on t.

The strategy is to start with each respective inequality at t = 0; (6.17) is the Poincaré inequality
on Ω0, (6.18) follows by a compactness argument and (6.19) is an equivalence of norms. Then for
(6.17), use the chain rule ∇(φ−tv) = ∇(v(Φ0

t )) = φ−t(∇v)DΦ0
t and the uniform boundedness of

DΦ0
t . The inequality (6.18) is obtained with the identity ∇v = ∇(φ−tφtv) = φ−t(∇φtv)DΦ0

t and
Lemma 6.11. The lemma is also the key ingredient to show (6.19).

Proof of Lemma 6.10. First, we use the trace map τt : H1(Ω(t)) → H
1
2 (Γ(t)) to see that there is a

function w̃ũ ∈ H1(Ω(t)) such that τtw̃ũ = ũ. Set d := w̃ − w̃ũ. Then d solves

∆d = −∆w̃ũ on Ω(t)

d = 0 on Γ(t).
(6.20)

Define bt(·, ·) : H1(Ω(t))×H1(Ω(t))→ R and lt(·) : H1(Ω(t))→ R by

bt(d, ϕ) =

∫
Ω(t)

∇d∇ϕ and lt(ϕ) =

∫
Ω(t)

∇w̃ũ∇ϕ.

Clearly lt and bt are bounded and the Poincaré inequality (6.17) implies that bt is coercive with
coercivity constant CP independent of t. By Lax–Milgram, there is a unique solution d ∈ H1

0 (Ω(t))

to (6.20) satisfying

‖d‖H1(Ω(t)) ≤ CP ‖w̃ũ‖H1(Ω(t)) .

Because this inequality holds for all lifts w̃ũ of ũ we must have

‖d‖H1(Ω(t)) ≤ CP inf
v∈H1(Ω(t)),τtv=ũ

‖v‖H1(Ω(t))

≤ C1 ‖ũ‖H 1
2 (Γ(t))
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where the second inequality is thanks to (6.19). Since w̃ = d + w̃ũ, we see that (6.16) has a unique
solution w̃ ∈ H1(Ω(t)) with

‖w̃‖H1(Ω(t)) ≤ C2 ‖ũ‖H 1
2 (Γ(t))

.

We write the solution of (6.16) asw = D(t)uwhere D(t) : H
1
2 (Γ(t))→ H1(Ω(t)) is the solution

map which we proved is uniformly bounded

‖D(t)u‖H1(Ω(t)) ≤ C ‖u‖
H

1
2 (Γ(t))

. (6.21)

Back to the equation (6.13), let us note that w(t) has a normal derivative (see [20, Theorem
1.5.1.2], and we can define the Dirichlet-to-Neumann map A(t) : H

1
2 (Γ(t))→ H−

1
2 (Γ(t)) (which

is also bounded) by

A(t)u(t) =
∂w(t)

∂ν
.

So by a solution of the PDE (6.13), we seek a functionw(t) = D(t)u(t) ∈ H1(Ω(t)) (so ∆tw(t) = 0

and w(t)|Γ(t) = u(t)) where u(t) ∈ H 1
2 (Ω(t)) satisfies

u̇(t) + A(t)u(t) + u(t) = f(t) on Γ(t)

u(0) = w0 on Γ0.
(6.22)

Let V (t) = H
1
2 (Γ(t)) and H(t) = L2(Γ(t)). With v ∈ L2

V and using (6.1),

〈A(t)u(t), v(t)〉
H−

1
2 (Γ(t)),H

1
2 (Γ(t))

=

∫
Ω

∇(D(t)u(t))∇(E(t)v(t)).

So the bilinear form a(t; ·, ·) : H
1
2 (Γ(t))×H 1

2 (Γ(t))→ R is

a(t;u, v) :=

∫
Ω(t)

∇(D(t)u)∇(E(t)v) +

∫
Γ(t)

uv.

We take E = D, and we obtain by the uniform bound (6.21) the boundedness of a(t; ·, ·):

|a(t;u, v)| ≤ ‖D(t)u‖H1(Ω(t)) ‖D(t)v‖H1(Ω(t)) + ‖u‖L2(Γ(t)) ‖v‖L2(Γ(t))

≤ C2
D ‖u‖H 1

2 (Γ(t))
‖v‖

H
1
2 (Γ(t))

+ ‖u‖L2(Γ(t)) ‖v‖L2(Γ(t))

≤ (C2
D + 1) ‖u‖

H
1
2 (Γ(t))

‖v‖
H

1
2 (Γ(t))

.

For coercivity,

a(t;u, u) =

∫
Ω(t)

|∇(D(t)u)|2 + ‖u‖2
L2(Γ(t)) (again with E = D)

= ‖∇w‖2
L2(Ω(t)) + ‖u‖2

L2(Γ(t))

≥ C1 ‖w‖2
H1(Ω(t)) (using (6.18))

≥ C2 ‖u‖2

H
1
2 (Γ(t))

by the trace theorem. Therefore, we have a unique solution u ∈ W (H
1
2 , H−

1
2 ) to (6.22), and with

w(t) := D(t)u(t) and the uniform bound (6.21), we find w ∈ L2
H1 (where H1 = {H1(Ω(t))}t∈[0,T ])

satisfies the original PDE (6.13).
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