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Abstract. We study vesicles formed by lipid bilayers that are governed by an elastic bending
energy and on which the lipids laterally separate forming two different phases. The energy laden phase
interfaces may be modeled as curves on the hyper-surface representing the membrane (sharp interface
model). The phase field methodology is another powerful tool to model such phase separation
phenomena where thin layers describe the interfaces (diffuse interface model). For both approaches
we characterize equilibrium shapes in terms of the Euler-Lagrange equations of the total membrane
energy subject to constraints on the area of the two phases and the volume. We further show
by matching appropriate formal asymptotic expansions that the sharp interface model is obtained
from the diffuse interface model as the thickness of the phase interface tends to zero. The essential
challenge lies in the fact that also the geometry of the membrane is unknown and depends on a small
parameter representing the interface thickness.
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1. Introduction. Biomembranes are bilayers of lipid molecules and a basic com-
ponent of the boundaries of cells and cell organelles [27]. Observations of vesicles
formed by biomembranes exhibit an interesting variety of shapes and shape transitions
[29]. Established models treat biomembranes as deformable inextensible fluid surfaces
of infinitesimal thickness, unable to sustain shear stress, and governed by bending en-
ergy functionals with the membrane strain energy depending on the curvature of the
surface. A classical model for the elastic bending energy is the Canham-Helfrich-Evans
energy functional [8, 16, 20]

FCEH(Γ) =

∫

Γ

kκ
2

(κ− κs)
2 +

∫

Γ

kgg (1.1)

where the membrane is modeled as a closed hyper-surface Γ in R
3 enclosing a bounded

domain Ω. The mean curvature of the membrane is denoted by κ and the Gaussian
curvature by g. Note that κ is the sum of the principle curvatures rather than the
arithmetic mean and hence differs from the common definition by a factor 2. The
positive real numbers kκ (bending rigidity) and kg (Gaussian bending rigidity) are
material dependent elasticity parameters whilst κs is called spontaneous curvature.

Shape transition phenomena such as bud formation, pearling and vesicle fission
have recently been observed in two-component giant unilamellar vesicles involving a
separation into two phases [6, 5]. Line tension is observed at the phase interface, and
in [23, 24] an energy functional of the form

FSI(Γ) = FB + FL =

2
∑

i=1

(

∫

Γi

k
(i)
κ

2
(κ− κ(i)

s )2 +

∫

Γi

k(i)
g g

)

+

∫

γ

σ̄ (1.2)

has been proposed for the two-phase membrane which is composed of two smooth
surfaces Γi with a common boundary γ. Then σ̄ denotes the (constant) energy density

∗This work was supported by the UK Engineering and Physical Sciences Research Council, grant
EP/G010404.

†Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

1



2 C.M. Elliott and B. Stinner

of the excess free energy of the phase transition located on γ. It is assumed that the
lipid bilayer structure of the membrane remains intact across the phase interface so
that the whole surface Γ = Γ1 ∪ γ ∪ Γ2 is of the class C1 across γ and fulfills some
more regularity properties that will be specified in Section 3. We emphasize that
these assumptions are consistent with the assumptions that usually are made for
axisymmetric shapes, see [11] for instance.

In this paper, we investigate the idea of replacing the line energy FL by a
Ginzburg-Landau energy of the form

FGL =

∫

Γ

σ
(ε

2
|∇Γc|

2 +
1

ε
ψ(c)

)

, (1.3)

where c is an order parameter to distinguish the two phases, ∇Γ stands for the surface
gradient, ψ(c) = 1

2 (1− c2)2 is a double-well potential and ε a small length scale. The
coefficient σ is related to the line energy coefficient σ̄ by

σ̄ =
4

3
σ (1.4)

which will be motivated by an asymptotic analysis. The double-well potential w has
two minima in the points c = ±1 so that c ≈ 1 and c ≈ −1 in the two phases, whilst
the phase interface γ is replaced by a thin layer of a thickness scaling with ε across
which c changes its value smoothly but quickly. The total membrane energy in this
diffuse interface model reads

FDI(Γ, c) = FMC(Γ, c) + FGC(Γ, c) + FGL(Γ, c)

=

∫

Γ

1

2
kκ(c)

∣

∣κ− κs(c)
∣

∣

2
+

∫

Γ

kg(c)g +

∫

Γ

(σε

2
|∇Γc|

2 +
σ

ε
ψ(c)

)

. (1.5)

With respect to the bending rigidities and the spontaneous curvature we set

kκ(c) =











k
(1)
κ if 1 ≤ c,
k(1)

κ +k(2)
κ

2 +
k(1)

κ −k(2)
κ

4 c(3 − c2) if − 1 < c < 1,

k
(2)
κ if c ≤ −1,

and similarly for κs(c) and kg(c) but other interpolations of the same smoothness are
sufficient to establish the results presented in the study.

The idea of replacing the line energy by (1.3) has already been proposed earlier,
see for example [3, 28, 25, 31, 30] yet a formal asymptotic analysis seems to be
lacking which motivates this study. Furthermore, the phase field method provides a
convenient way to compute equilibrium membrane shapes using surface finite elements
[14]. We remark that it has also been used already to describe the membrane [7, 35,
26].

We first introduce some concepts of a surface calculus, including surface gradients,
an integration by parts formula and a transport identity (Leibniz formula) for evolving
surfaces. This calculus is easily accessible to the discretization using surface finite
elements as they have been used for solving partial differential equations on evolving
surfaces [13] and geometric evolution equations as Willmore flow [12]. Based on
this calculus we carefully derive the Euler-Lagrange equations of the sharp interface
membrane energy (1.2), the sharp interface model. Appropriate two-phase membranes
and admissible deformations that respect the required regularity properties are defined
for this purpose.
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Important works in this context are [22, 15] where deformed sheets with discon-
tinuities along certain curves are considered and the standard notation of differential
geometry is used. That notation is also used in [1] on two-phase biomembranes.
There, conditions not only for critical points but for minimizers are derived, yet ex-
plicit statements of the interface conditions are lacking for an energy density as in
(1.1) since, later on, the dependence on the Gaussian curvature is dropped. Further-
more, there are approaches for open membranes containing numerous computations
using the usual notation in differential geometry [9, 36, 4] or differential forms [32, 33]
that may be used to treat the present case of two open membranes glued together.
The essential novelty of our approach lies in using the mentioned surface calculus
instead. The two-component case is also considered in [32, 34] but due to different
smoothness assumptions on the membrane across the phase interface the resulting
equilibrium equations slightly differ from our equations. We will come back to this
issue in Appendix B.

Using the surface calculus again we will proceed with the membrane energy (1.5)
and derive the diffuse interface model. Varying the line energy FL requires tangential
membrane deformations but now we restrict it to the normal direction because energy
changes due to deformations of the phase interface in lateral direction correspond to
variations of the order parameter. In both models we take hard constraints on the
surface areas of the two phases and the volume of the enclosed domain into account.
We refer to [29] for the physical regime where this is of relevance.

Finally, an asymptotic analysis is performed by matching suitable asymptotic
ε-expansions in the bulk domain with others in the interfacial layers. This way we
recover the equations of the sharp interface model in the limit as the interface thickness
tends to zero (ε → 0). The essential difficulty is that the membrane surface itself
depends on ε so that standard techniques have to be extended. In Appendix A we
relate the equations of the sharp interface model to those in [10, 11] for axisymmetric
surfaces.

2. Notation, material derivative and Leibniz formula.

2.1. Calculus on surfaces. In this section we consider smooth oriented two-
dimensional hypersurfaces Γ̃ ⊂ R

3 which, if not closed, have smooth boundaries ∂Γ̃.
To fix the orientation let ν = (νi)

3
i=1 denote the a unit normal field on Γ̃. Further,

let µ = (µi)
3
i=1 denote the outer co-normal of Γ̃ on ∂Γ̃, i.e., µ is tangential to Γ̃ and

normal to ∂Γ̃.

For any function η defined on a neighborhood N ⊂ R
3 of Γ̃ we define its tangential

gradient on Γ̃ by ∇Γ̃η := ∇η −∇η · ν ν where · denotes the usual scalar product and
∇η denotes the usual gradient on R

3. The tangential gradient ∇Γ̃η only depends on

the values of η restricted to Γ̃, and ∇Γ̃η · ν = 0. The components of the tangential
gradient will be denoted by ∇Γ̃η = (Diη)

3
i=1.

If w = (wi)
3
i=1, z = (zi)

3
i=1 : Γ̃ → R

3 are smooth vector fields then ∇Γ̃w is the
matrix with components (∇Γ̃w)ij = Djwi, and we write (∇Γ̃w)⊥ = (Diwj)i,j for
its transpose and use the scalar product ∇Γ̃w : ∇Γ̃z =

∑

i,j DjwiDjzi. We will
furthermore use the notation w ⊗ z for the matrix with entries wizj . The surface

divergence is defined by ∇Γ̃ · w = tr(∇Γ̃w). The Laplace-Beltrami operator on Γ̃ is
defined as the tangential divergence of the tangential gradient, ∆Γ̃η = ∇Γ̃ · ∇Γ̃η.

At any point x ∈ Γ̃ we define the projection P (x) := I − ν(x) ⊗ ν(x) ∈ R
3×3

(where I is the identity matrix) to the tangent space TxΓ̃. With the help of P we
can write ∇Γ̃η = P∇η, ∇Γ̃w = ∇wP , ∇Γ̃ · w = P : ∇Γ̃w.
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The mean curvature of Γ̃ with respect to ν is defined by

κ = −∇Γ̃ · ν. (2.1)

The symmetric matrix ∇Γ̃ν of the tangential derivatives of the normal field is known
as the Weingarten map or shape operator. It satisfies |∇Γ̃ν|2 = κ2

1 + κ2
2 = κ2 − 2g

where κi, i = 1, 2, are the principle curvatures. Further we have κ = κ1 + κ2 and
g = κ1κ2. We infer from this the formula

g =
1

2

(

κ2 − |∇Γ̃ν|2
)

. (2.2)

Furthermore, we recall the following identity:

∆Γ̃ν = −|∇Γ̃ν|2ν −∇Γ̃κ. (2.3)

The formula for partial integration on surfaces reads
∫

Γ̃

ξDiη = −

∫

Γ̃

ηDiξ −

∫

Γ̃

ξηκνi +

∫

∂Γ̃

ξηµi. (2.4)

2.2. Boundary identities. Let us write γ̃ = ∂Γ̃ for the boundary curve of a
surface Γ̃ as in the previous subsection and let τ denote the unit tangential field along
γ̃ such that (τ ,µ,ν) constitutes a positively oriented orthonormal basis in every point
on γ̃. The notation ∇γ̃f stands for the derivative of a field f : γ̃ → R along γ̃: Using
a parameterization r(s) for the curve γ̃ we have that

∇γ̃f =
1

|∂sr(s)|
∂s(f ◦ r)(s) τ .

The curvature vector of γ̃ is denoted by h and fulfills

h = ∇γ̃ττ =
1

|∂sr(s)|
∂s

( ∂sr(s)

|∂sr(s)|

)

. (2.5)

It is normal to the curve whence we may write h = hgµ+hνν. The quantity hg = h·µ
is the geodesic curvature of γ̃ and hν = h · ν is known as its normal curvature (with
respect to Γ̃).

In analogy to (2.4) we have that

∫

γ̃

ζ∇γ̃f = −

∫

γ̃

f∇γ̃ζ −

∫

γ̃

fh (2.6)

where no boundary term occurs since ∂γ̃ = ∅.
Close to γ̃ we may extend the fields τ and µ to Γ̃. For this purpose, we consider

the distance of a point x ∈ Γ̃ to γ̃ and define the function

d(x) := distΓ̃(x, γ̃) = inf
{

∫ 1

0

‖g′(y)‖dy
∣

∣

∣
g ∈ C1([0, 1], Γ̃), g(0) = x, g(1) ∈ γ̃

}

.

(2.7)
By the smoothness of Γ̃ there is a thin tube around γ̃ such that for each point x in that
tube there is a unique geodesic realizing the distance. We define µ(x) := −∇Γ̃d(x)
and choose (the unique) τ (x) such that (τ ,µ,ν) is a positively oriented orthonormal
basis again.
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By the smoothness of Γ̃ the differentials ∇Γ̃τ , ∇Γ̃µ, and ∇Γ̃ν then have limits
when approaching γ̃. From 0 = ν · τ we conclude that

τ · ∇Γ̃ντ = τ · ∇γ̃ντ = −ν · ∇γ̃ττ = −ν · h = −hν

which is an extension of the normal curvature of γ̃ to the surrounding tube. We also
define the quantities

hp := −µ∇Γ̃νµ, hd := −τ · ∇Γ̃νµ (= −µ · ∇Γ̃ντ ).

It can easily shown that

κ = hν + hp, |∇Γ̃ν|2 = h2
ν

+ h2
p + 2h2

d, g = hνhp − h2
d. (2.8)

2.3. Leibniz formulae. Deforming a surface leads to the notion of an evolving
surface {Γ̃(τ)}τ depending smoothly on a time parameter τ ∈ (−τ0, τ0). We will
usually omit the dependence of fields and surfaces on τ since it is clear from the
context whether we deal with the evolving surface or a surface at a specific time.
In particular, we just write ∇Γ̃ for ∇Γ̃(τ) whence this operator contains only spatial
derivatives but no time derivatives.

With each mass point x ∈ Γ̃ we can associate a vector field v which is its material
velocity. Given the normal, one can decompose the velocity in the form v = vνν +vT
into a scalar normal component vν := v ·ν and a tangential vector field vT := v−vνν.

By ∂•τ we denote the material derivative of a scalar function η defined on the
evolving surface {Γ̃(τ)}τ . Occasionally we will also use the normal time derivative
which is the material derivative where only the normal contribution of the velocity is
taken into account: ∂◦τη = ηt + vν

∂η
∂ν
. As a consequence of the splitting of v into a

normal an a tangential part we have the relation ∂•τη = ∂◦τη + vT · ∇Γ̃η.
The following formulae for the differentiation of a parameter dependent surface

integral will play a decisive role.
Lemma 2.1 (Leibniz Formula). Let {Γ̃(τ)}τ be an evolving surface and η, ψ be

smooth scalar fields on Γ̃ such that all the following integrals exist. Then

d

dτ

∫

Γ̃

η =

∫

Γ̃

(∂•τη + η∇Γ̃ · v) (2.9)

=

∫

Γ̃

(∂◦τη − ηvνκ+ ∇Γ̃ · (ηvT )) =

∫

Γ̃

(∂◦t η − ηvνκ) +

∫

∂Γ̃

ηvT · µ (2.10)

where we used (2.4) for the last identity.
With the rate of deformation tensor D(v)ij = 1

2

(

Divj +Djvi
)

(i, j = 1, . . . , n),

d

dτ

∫

Γ̃

∇Γ̃η · ∇Γ̃ψ =

∫

Γ̃

∇Γ̃ψ · ∇Γ̃∂
•

τη +

∫

Γ̃

∇Γ̃∂
•

τψ · ∇Γ̃η

+

∫

Γ̃

∇Γ̃η · (∇Γ̃ · v − 2D(v))∇Γ̃ψ (2.11)

A proof of this Lemma is given in [13].
Further useful formulae are

∂◦τν = −∇Γ̃(v · ν) = −∇Γ̃vν , ∂•τν = −(∇Γ̃v)⊥ν (2.12)

∂◦τκ = ∆Γ̃(ν · v) + |∇Γ̃ν|2ν · v (2.13)
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Fig. 3.1. Sketch of an admissible two-phase membrane with vectors τ, µ, and ν.

as proved in [19]. We conclude this section with some formulae on the boundary
curves γ̃(τ) = ∂Γ̃(τ) where, as for Γ̃, the dependence on τ usually is omitted. Clearly,
∂•ττ is orthogonal to τ since the vector field has unit length. A short calculation
yields that

∂•ττ = P γ̃⊥∇γ̃vτ where P γ̃⊥ = I − τ ⊗ τ (2.14)

is the projection to the plane normal to γ̃. The material derivative of h is obtained
by computing the derivative with respect to τ of the right hand side of (2.5) where
r(s) is replaced by r(τ, s) with ∂τr = v:

∂•τh = −∇γ̃ · v h + ∇γ̃

(

P γ̃⊥∇γ̃vτ
)

τ (2.15)

3. Sharp Interface Equilibrium Equations. Using the calculus presented in
the previous section we will now derive the Euler-Lagrange equations of the membrane
energy FSI defined in (1.2) under constraints on enclosed volume and areas of the
two membrane phases.

Definition 3.1. An admissible two-phase surface for FSI is the boundary
Γ of a bounded, simply connected open domain Ω ⊂ R

3 and can be decomposed in the
form Γ = Γ1 ∪ γ ∪ Γ2 where

• Γ1 and Γ2 are two-dimensional smooth oriented not necessarily connected
hypersurfaces with smooth boundaries that coincide and correspond to γ which
consists of a finite number of smooth curves, ∂Γ1 = ∂Γ2 = γ,

• locally around γ the surface Γ can be parametrized by a C1 map.
Limits of quantities on γ that may be discontinuous will get an upper index

of the form (1) or (2) depending on whether γ is approached from Γ1 or Γ2, and by

[·]
(2)
(1) = (·)(2)−(·)(1) we denote the jump across γ. We denote by µ the outer co-normal

of Γ2. We also recall the notation of τ for the unit tangential vector field along γ
such that (τ ,µ,ν) is positively oriented (cf.Figure 3.1). After extension as described
around (2.7) these vector fields are continuous across γ since Γ is C1. Differentiating

the jump [ν]
(2)
(1) = 0 along γ, i.e., in the direction τ , we see that ∇Γντ is continuous

across γ (also see [22]) so that hν = −τ · ∇Γντ and hd = −µ · ∇Γντ are continuous,
too. Observe that hp = −µ · ∇Γνµ may be discontinuous across γ.

Remark 3.2. The regularity assumptions on hν and hp are consistent with the
approaches in [23, 24, 5, 11] where surfaces of revolution are considered (implying
that hd = 0). See also Appendix A. We refer to [21] for a study of the axisymmetric
case where the assumption of Γ being C1 across γ is dropped.

Definition 3.3. Assume that positive numbers V , A1, and A2 are given such
that

A1 +A2 ≥ 4π(3V/4π)2/3. (3.1)
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For admissible two-phase membrane Γ = Γ1 ∪ γ ∪ Γ2 enclosing the domain Ω the
constraint functionals are

CV (Γ) := |Ω| − V =
1

3

∫

Γ

x · ν − V, CAi
(Γ) := |Γi| −Ai, i = 1, 2.

We remark that (3.1) is a natural requirement due to the fact that the sphere
minimizes the area enclosing a given volume. The constraints then read

CV (Γ) = 0, CAi
(Γ) = 0, i = 1, 2, . (3.2)

Definition 3.4. Suppose that an admissible two-phase surface Γ = Γ1 ∪ γ ∪ Γ2

is given as well as a map w ∈ C1(Γ; R3) which is smooth on Γ1, Γ2, and on γ. The
deformed surface Γ(τ) = Γ1(τ) ∪ γ(τ) ∪ Γ2(τ) in the direction w is defined by

Γ(τ) := {x(τ) := x + τw(x) |x ∈ Γ}.

Such a map w is called admissible deformation field for the admissible two-phase
surface Γ if there is a small τ̄ such that for all τ ∈ (−τ̄ , τ̄) the set Γ(τ) is an admissible
two-phase surface.

In the context of the above definition, the fields w, Pw, ∇Γw are continuous
across γ yet the field ∇Γ(w · ν) may not be because ∇Γν may be discontinuous. But
the field ∇γ(w · ν)τ defined along γ is continuous.

Definition 3.5. Given a function E defined on admissible two-phase surfaces
and given an admissible two-phase surface Γ and an admissible deformation field w

the variation of E in direction w is defined by

〈δE(Γ),w〉 :=
d

dτ
E(Γ(·))

∣

∣

∣

τ=0
.

Lemma 3.6. Variation of the bending energy. Assume that Γ = Γ1 ∪ γ ∪ Γ2

is an admissible two-phase membrane and w an admissible deformation field. Then

〈δFB(Γ),w〉 =
∑

i=1,2

∫

Γi

k(i)
κ

(

∆Γκ+ |∇Γν|2(κ− κ(i)
s ) −

1

2
(κ− κ(1)

s )2κ
)

ν · w

+

∫

γ

[

kκ(hν + hp − κs)
](2)

(1)
ν · ∇Γwµ −

[

kκ∇Γ(hν + hp) · µ
](2)

(1)
ν · w

+

∫

γ

[

1
2kκ(hν + hp − κs)

2µ + kκ(hν + hp − κs)∇Γνµ
](2)

(1)
· P w

+

∫

γ

[

kghν

](2)

(1)
ν · ∇Γwµ +

[

kg
](2)

(1)
(∇γhd · τ ) (ν · w)

+

∫

γ

[

kg(hνhp − h2
d)µ + kghν∇Γνµ

](2)

(1)
· Pw. (3.3)

Proof. We start with the mean curvature bending terms in (1.2). The Leibniz
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formula (2.10) together with identity (2.13) yields

d

dτ

∫

Γ1(τ)

k
(1)
κ

2

∣

∣κ(·) − κ(1)
s

∣

∣

2
∣

∣

∣

τ=0

=

∫

Γ1

k(1)
κ

(

∂◦t (κ− κ(1)
s )

)

(κ− κ(1)
s ) −

1

2
k(1)
κ (κ− κ(1)

s )2κ · w

+

∫

γ

1

2
k(1)
κ (κ(1) − κ(1)

s )2(−µ) · w

=

∫

Γ1

k(1)
κ

(

∆Γ(ν · w) + |∇Γ1ν|
2ν · w

)

(κ− κ(1)
s ) −

1

2
k(1)
κ (κ− κ(1)

s )2κν · w

+

∫

γ

−
1

2
k(1)
κ (κ(1) − κ(1)

s )2µ · Pw,

and applying (2.4) twice to the first and once to the last term gives

=

∫

Γ1

(

k(1)
κ ∆Γκ+ k(1)

κ |∇Γ1ν|
2(κ− κ(1)

s ) −
1

2
k(1)
κ (κ− κ(1)

s )2κ
)

(ν · w)

+

∫

γ

k(1)
κ (∇Γκ)

(1) · µ(ν · w) − k(1)
κ (κ(1) − κ(1)

s )
(

∇Γ(ν · w)
)(1)

· µ

+

∫

γ

−
1

2
k(1)
κ (κ(1) − κ(1)

s )2µ · Pw

=

∫

Γ1

(

k(1)
κ ∆Γ1κ+ k(1)

κ |∇Γ1ν|
2(κ− κ(1)

s ) −
1

2
k(1)
κ (κ− κ(1)

s )2κ
)

(ν · w) (3.4)

+

∫

γ

k(1)
κ

(

∇Γ(hν + hp)
)(1)

· µ(ν · w) − k(1)
κ (hν + h(1)

p − κ(1)
s )ν · ∇Γwµ

+

∫

γ

−
1

2
k(1)
κ (hν + h(1)

p − κ(1)
s )2µ · P w − k(1)

κ (hν + h(1)
p − κ(1)

s )
(

∇Γνµ)(1) · w.

Since ∇Γν is a tangential tensor we may replace w by Pw in the last term. The
computation of the variation of the mean curvature bending energy of Γ2 is similar.
Adding the terms together we recover the first three lines on the right hand side of
the asserted identity (3.3).

With respect to the Gaussian curvature terms in (1.2) we observe that thanks

to the Gauss-Bonnet formula
∫

Γ1
k

(1)
g g = 2πk

(1)
g −

∫

γ k
(1)
g hg and

∫

Γ2
k

(2)
g g = 2πk

(2)
g +

∫

γ k
(2)
g hg. As {γ(τ)}τ is just a one-dimensional evolving surface with velocity field w

we can apply (2.9) to see that

d

dτ

∫

γ(·)

k(2)
g hg(·)

∣

∣

∣

τ=0
= k(2)

g

∫

γ

∂•τh · µ + h · ∂•τµ + hg∇γ · w. (3.5)

Using the orthonormality of µ, τ , and ν and the identities (2.14) and (2.12) we obtain

∂•τµ = ∂•τµ · τ τ + ∂•τµ · ν ν

= −µ · ∂•ττ τ − µ · ∂•τν ν = −(µ · ∇γw τ )τ + (ν · ∇Γw µ)ν.

Thanks to (2.15) and since h is orthogonal to τ we obtain from (3.5)

d

dτ

∫

γ(·)

k(2)
g hg(·)

∣

∣

∣

τ=0
= k(2)

g

∫

γ

(

∇γ(P γ⊥∇γwτ )τ
)

· µ + k(2)
g

∫

γ

hν(ν · ∇Γwµ).
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When integrating by parts with respect to the first term this is

= k(2)
g

∫

γ

−(∇γµτ ) · P γ⊥∇γwτ + k(2)
g

∫

γ

hν(ν · ∇Γwµ)

=: I + II. (3.6)

The vector field ∇γµτ is orthogonal to µ, and since P γ⊥ maps vectors to the
space span{µ,ν} in each point on γ we have that

− (∇γµτ ) · P γ⊥∇γwτ = −(ν · ∇γµτ )(∇γwτ · ν)

= (µ · ∇γντ )(ν · ∇γwτ ) = −hd(ν · ∇γwτ ).

We now split the deformation field in the form

w = (w · ν)ν + (w · µ)µ + (w · τ )τ =: wνν + wµµ + wγτ . (3.7)

We assume that wγ = 0 because deformations in direction τ neither change the
membrane shape nor the position of the phase interface and, hence, don’t result in
any energy change. In fact, if one kept the terms with wγ in the following one would
see that the contributions to I and II cancel each other. We then have that

∇γw = ν ⊗∇γwν + ∇γν wν + µ ⊗∇γwµ + ∇γµwµ

and then

ν · ∇γwτ = ∇γwν · τ + ν · ∇γµτ wµ

= ∇γwν · τ − µ · ∇γντ wµ = ∇γwν · τ + hdwµ.

Altogether we end up with

I = k(2)
g

∫

γ

−hd∇γwν · τ − h2
dwµ = k(2)

g

∫

γ

∇γhd · τ wν − h2
dwµ. (3.8)

We also want to employ the splitting (3.7) to deal with II but we have to deal
with the fact that ∇Γwν = ∇Γ(w · ν) may not be continuous across γ. Since we

are computing the variation of
∫

Γ2
k

(2)
g g we consider limits of the fields on γ when

approaching it from Γ2 and indicate this by the usual upper index wherever necessary.
From the splitting (3.7) we get

∇Γw = ν ⊗ (∇Γwν)(2) + (∇Γν)(2) wν + µ ⊗∇Γwµ + (∇Γµ)(2) wµ

which yields

ν · ∇Γwµ = (∇Γwν)(2) · µ + ν · (∇Γµ)(2)µwµ

= ∇Γwµ · ν + (∇Γνµ)(2) · w − µ · (∇Γν)(2)µwµ

= ν · ∇Γwµ + (∇Γνµ)(2) · Pw + h(2)
p wµ.

We finally end up with

II = k(2)
g

∫

γ

hν

(

ν · ∇Γwµ + (∇Γνµ)(2) · P w + h(2)
p wµ

)

. (3.9)
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Writing wµ = µ · w = µ · Pw we get from (3.6), (3.8), (3.9)

d

dτ

∫

γ(·)

k(2)
g hg(·)

∣

∣

∣

τ=0
= k(2)

g

∫

γ

(

(∇γhd · τ ) (ν · w) + (hνh
(2)
p − h2

d)µ · Pw

+ hνν · ∇Γwµ + hν(∇Γνµ)(2) · Pw
)

. (3.10)

Similarly for the variation of
∫

γ k
(1)
g hg, and we obtain the last two lines of the asserted

identity (3.3) which completes the proof.
Remark 3.7. The formula for the variation of the Gaussian curvature term

(3.10) is the same as the one obtained in the appendix of [4] where a different calculus
has been used. To see this one has to observe that µ is the inner co-normal in our
notation and that the shape operator is denoted by k = −∇Γν.

Lemma 3.8. Variation of line energy and constraint functionals. Assume
that Γ = Γ1∪γ∪Γ2 is an admissible two-phase membrane and that w is an admissible
deformation field. Then

〈δFL(Γ),w〉 =

∫

γ

−σ̄h · w =

∫

γ

−σ̄hgµ · P w − σ̄hνν · w, (3.11)

〈δCV (Γ),w〉 =

∫

Γ

ν · w, (3.12)

〈δCA1(Γ),w〉 =

∫

Γ1

−κν · w +

∫

γ

(−µ) · Pw, (3.13)

〈δCA2(Γ),w〉 =

∫

Γ2

−κν · w +

∫

γ

µ · Pw. (3.14)

Proof. The first identity is consequence of the fact that −h is the variation of
the length of γ. The subsequent identities follow from (2.10) applied to Ω and the Γi,
respectively.

Definition 3.9. An admissible two-phase surface Γ = Γ1 ∪ γ ∪ γ2 is a critical
point of (1.2) subject to the constraints (3.2) if for all admissible deformations w

0 =
〈

(δFB + δFL + λV δCV + λ
(1)
A δCA1 + λ

(2)
A δCA2)(Γ),w〉

where λV , λ
(1)
A , and λ

(2)
A are appropriate Lagrange multipliers.

To formulate the Euler-Lagrange equations we use the identities (3.3), (3.11),
(3.12), (3.13), and (3.14) and the fact that the fields ν · w, Pw, and ∇Γwµ are
independent on γ. From the terms in duality with Pw we obtain

0 =
[

kκ

2 (hν + hp − κs)
2µ + kg(hνhp − h2

d)µ
](2)

(1)

+
[

(kκ(hν + hp − κs) + kghν)∇Γνµ
](2)

(1)
− σ̄hgµ + (λ

(2)
A − λ

(1)
A )µ

on γ. On may multiply with µ this yields a scalar equation where we may replace
∇Γνµ·µ = −hp which yields equation (3.18) below. We observe that multiplying with
τ does not give further equations since ∇Γνµ · τ = −hd is continuous by assumption
and kκ(hν + hp − κs) + kghν is continuous, too, by condition (3.16) below.

Problem 3.10. Sharp interface equilibrium equations. For given real
values V , A1, A2 fulfilling (3.1) find an admissible two-phase membrane Γ = Γ1∪γ∪Γ2
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and find Lagrange multipliers λV , λ
(1)
A , and λ

(2)
A such that

0 = k(i)
κ ∆Γi

κ+ k(i)
κ |∇Γi

ν|2(κ− κ(i)
s )

− 1
2k

(i)
κ (κ− κ(i)

s )2κ+ λV − λ
(i)
A κ on Γi, i = 1, 2, (3.15)

0 =
[

kκ(hν + hp − κs) + kghν

](2)

(1)
on γ, (3.16)

0 = −
[

kκ∇Γ(hν + hp)
](2)

(1)
· µ +

[

kg
](2)

(1)
∇γhd · τ − σ̄hν on γ, (3.17)

0 =
[

kκ

2 (hν + hp − κs)
2 + kg(hνhp − h2

d)
](2)

(1)

−
[

(kκ(hν + hp − κs) + kghν)hp
](2)

(1)
− σ̄hg +

[

λA
](2)

(1)
on γ, (3.18)

0 = |Ω| − V, (3.19)

0 = |Γi| −Ai, i = 1, 2. (3.20)

Remark 3.11. Equation (3.15) is the (normal) force balance for the membrane
and is independent of the phase separation. On the phase interface, (3.16) is a con-
tinuity condition, and the conditions (3.17) and (3.18) can be considered as force
balances in the normal and co-normal direction, respectively. We show in Appendix
A that for axisymmetric shapes the conditions coincide with (1), (3)–(5) in [11].

4. Diffuse Interface Equilibrium Equations. We now consider the phase
field version (1.5) for the membrane energy.

Definition 4.1. An admissible phase field surface for the membrane energy
(1.5) is the smooth boundary Γ of a bounded, simply connected open set Ω ⊂ R

3

together with a smooth field c : Γ → R which is called order parameter or phase
field variable.

As specified in the introduction we are interested in critical points (Γ, c) of F(·, ·)
defined by (1.5) subject to side conditions concerning the areas of the two phases and
the volume of the enclosed domain. To take the area constraints into account in the
phase field model we consider the function h(c) = 1

2c(3 − c2) if −1 < c < 1, h(c) = 1
if c ≥ 1, and h(c) = −1 if c ≤ −1 and impose a constraint on

∫

Γ h(c) and on |Γ|. In
fact, in the limit as ε → 0 one expects that

∫

Γ
h(c) → |Γ1| − |Γ2|. Recalling that we

want to preserve the areas of Γ1 and Γ2 in this limit motivates to preserve
∫

Γ h(c)
and |Γ| = |Γ1|+ |Γ2| instead. The constraints on the total area and on the phase area
difference read

CA(Γ, c) = 0, Cc(Γ, c) = 0 (4.1)

in terms of the functionals

CA(Γ, c) := |Γ| − (A1 +A2), Cc(Γ, c) :=

∫

Γ

h(c) − (A1 −A2).

The constraint Cc will be called mass constraint in the following with the notion
behind that

∫

Γ
h(c) could correspond to some kind of mass. The volume constraint

CV (Γ, c) := |Ω| − V = 0 (4.2)

is kept in the diffuse interface setting where we use the same notation CV for the
functional for convenience.
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Definition 4.2. Given an admissible phase field surface (Γ, c), a smooth normal
vector field w = wν : Γ → R

3 and a smooth function η : Γ → R, the deformed
admissible phase field surface (Γ(τ), c(τ)) in direction (w, η) for a small τ ∈ R is
defined by

Γ(τ) := {x(τ) := x + τw(x)ν(x) |x ∈ Γ},

c(τ) : Γ(τ) → R, c(τ,x(τ)) := c(x) + τη(x). (4.3)

Such a pair (w, η) is called admissible deformation (field) for an admissible phase
field surface.

By the regularity assumptions on admissible phase field surfaces there is a small
τ0 > 0 so that (Γ(τ), c(τ)) is indeed is admissible for all τ ∈ (−τ0, τ0). In particular,
for each point x(τ) on Γ(τ) there is a unique point x ∈ Γ with x(τ) = x+τw(x)ν(x).
Therefore

d

dτ
c(·,x(·))

∣

∣

τ=0
= ∂τc(0,x(0)) + ∂τx(0) · ∇c(0,x(0))

= ∂τ c(0,x) + w(x)ν(x) · ∇c(x) = ∂◦τ c(·,x(·))|τ=0.

On the other hand, from (4.3) we see that d
dτ c(·,x(·))|τ=0 = η(x), whence

∂•τ c(·,x(·))
∣

∣

τ=0
= ∂◦τ c(·,x(·))

∣

∣

τ=0
= η(x). (4.4)

In the case η = 0 this means that we extend the phase field constantly in the normal
direction away from Γ in order to define it on the deformed surface Γ(τ).

Definition 4.3. Let E = E(Γ, c) be a functional defined on admissible phase field
surfaces, let (Γ, c) be an admissible surface and let (w, η) be an admissible deformation
field. The variation of E in (Γ, c) in direction (w, η) is defined by

〈

δE(Γ, c), (w, η)
〉

=
d

dτ
E
(

Γ(·), c(·)
)

∣

∣

∣

τ=0
.

Lemma 4.4. Variation of the mean curvature bending energy. For an
admissible phase field surface (Γ, c) with admissible deformation (w, η) we have that

〈

δFMC(Γ, c), (w, η)
〉

=

∫

Γ

(1

2
(κ− κs(c))

2k′κ(c) − kκ(c)(κ− κs(c))κ
′

s(c)
)

η

+

∫

Γ

(

∆Γ

(

kκ(c)(κ− κs(c))
)

+ |∇Γν|2kκ(c)(κ− κs(c)) −
1

2
kκ(c)(κ− κs(c))

2κ
)

w.

(4.5)

Proof. Using (2.10) and then (2.13) and (4.4) we obtain

d

dτ
FMC

(

Γ(·), c(·)
)

∣

∣

∣

τ=0

=

∫

Γ

1

2
k′κ(c)(κ− κs(c))

2η − kκ(c)(κ− κs(c))κ
′

s(c)η

+

∫

Γ

kκ(c)(κ− κs(c))(∆Γw + |∇Γν|2w) −
1

2
kκ(c)

∣

∣κ− κs(c)
∣

∣

2
κw.

Twice integrating by parts in the term with ∆Γw yields the assertion.
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Lemma 4.5. Variation of the Gaussian curvature bending energy. For an
admissible phase field surface (Γ, c) with admissible deformation field (w, η) we have
that

〈

δFGC(Γ, c), (w, η)
〉

=

∫

Γ

(

gk′g(c)
)

η +

∫

Γ

(

∇Γ ·
(

k′g(c)(κI + ∇Γν)∇Γc
)

)

w (4.6)

Proof. We use formula (2.2) for the Gaussian curvature. With (2.10), (4.4), (2.12)

d

dτ

∫

Γ(·)

1

2
kg(c(·))|∇Γ(·)ν(·)|2

∣

∣

∣

τ=0

=

3
∑

i=1

∫

Γ

1

2
∂◦τ

(

kg(c)|∇Γνi|
2
)

−
1

2
kg(c)|∇Γνi|

2κw

=
∑

i

∫

Γ

1

2
k′g(c)∂

◦

τ c|∇Γνi|
2 + kg(c)∇Γνi · ∇Γ∂

◦

τνi

+
∑

i

∫

Γ

−kg(c)∇Γνi ·D(wν)∇Γνi −
1

2
kg(c)|∇Γνi|

2κw

=

∫

Γ

1

2
k′g(c)|∇Γν|2η +

∫

Γ

kg(c)
∑

i

∇Γνi · ∇Γ(−Diw)

−

∫

Γ

kg(c)
(

∑

i

∇Γνi ⊗∇Γνi : ν
)

w −

∫

Γ

1

2
kg(c)|∇Γν|2κw.

Using (2.3) we obtain that

∫

Γ

kg(c)
∑

i

∇Γνi · ∇Γ(−Diw) =

∫

Γ

∑

i

∇Γ

(

kg(c)∇Γνi
)

·Diw

=

∫

Γ

∑

i

k′g(c)∇Γc · ∇ΓνiDiw + kg(c)∆ΓνiDiw

=

∫

Γ

k′g(c)∇Γν∇Γc · ∇Γw − kg(c)∇Γκ · ∇Γw

=

∫

Γ

∇Γ ·
(

− kg(c)∇Γν∇Γc+ kg(c)∇Γκ
)

w.

Applying (4.5) with kκ = kg and κs = 0 we get

d

dτ

∫

Γ(·)

1

2
kg(c(·))κ(·)

2
∣

∣

∣

τ=0
=

∫

Γ

(1

2
k′g(c)κ

2
)

η

+

∫

Γ

(

∆Γ

(

kg(c)κ
)

+ kg(c)|∇Γν|2κ−
1

2
kg(c)κ

2κ
)

w.
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Altogether

d

dτ

∫

Γ(·)

1

2
kg(c(·))

(

κ2 − |∇Γ(·)ν(·)|2
)

∣

∣

∣

τ=0

=

∫

Γ

1

2
κ2k′g(c)η +

∫

Γ

(

∆Γ

(

kg(c)κ
)

+ |∇Γν|2kg(c)κ−
1

2
kg(c)κ

2κ
)

w

−

∫

Γ

1

2
|∇Γν|2k′g(c)η −

∫

Γ

∇Γ ·
(

− k′g(c)∇Γν∇Γc+ kg(c)∇Γκ
)

w

−

∫

Γ

−kg(c)
(

∑

i

∇Γνi ⊗∇Γνi : ∇Γν
)

w +

∫

Γ

1

2
kg(c)|∇Γν|2κw

=

∫

Γ

gk′g(c)η + ∇Γ ·
(

∇Γ(kg(c)κ) − kg(c)∇Γκ+ k′g(c)∇Γν∇Γ

)

w

+

∫

Γ

(

|∇Γν|2κ+
∑

i

∇Γνi ⊗∇Γνi : ∇Γν − gκ
)

kg(c)w.

Observe that ∇Γ(kg(c)κ) − kg(c)∇Γκ = κk′g(c)∇Γc. Furthermore,

|∇Γν|2κ+
∑

i

∇Γνi ⊗∇Γνi : ∇Γν − gκ = 0 (4.7)

so that we end up with the claimed formula (4.6) for the variation of the Gaussian cur-
vature bending energy. To show (4.7) one can employ an orthogonal matrix Q ∈ R

3×3

such that Q−1∇ΓνQ = diag(−κ1,−κ2, 0) where κ1, κ2 are the principal curvatures
and proceed using that each of the summands is invariant under such a similarity
transformation.

Remark 4.6. If kg(c) = kg is a constant independent of c then the energy
∫

Γ kgg
is a topological invariant by the Gauss-Bonnet theorem so that its variation must
vanish. Formula (4.6) indeed then yields 〈FGC(Γ, c), (w, η)〉 = 0 since k′g(c) = 0.

Lemma 4.7. Variation of line energy and constraint functionals. For an
admissible phase field surface (Γ, c) with admissible deformation field (w, η) we have
that

〈

δFGL(Γ, c), (w, η)
〉

=

∫

Γ

(

− σε∆Γc+
σ

ε
ψ′(c)

)

η (4.8)

−

∫

Γ

σ
(

ε∇Γc⊗∇Γc : ∇Γν +
(ε

2
|∇Γc|

2 +
1

ε
ψ(c)

)

κ
)

w, (4.9)

〈

δCc(Γ, c), (w, η)
〉

=

∫

Γ

h′(c)η − h(c)κw, (4.10)

〈

δCV (Γ, c), (w, η)
〉

=

∫

Γ

w,
〈

δCA(Γ, c), (w, η)
〉

= −

∫

Γ

κw. (4.11)

Proof. For the first assertion, we use (2.11) for the term involving ∇Γc, (2.9) for
the term with the double well potential, (2.4) for partial integration (recall that Γ is
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closed whence no boundary term appears), (2.1) and (4.4) to obtain (4.9):

d

dτ
FGL

(

Γ(·), c(·)
)

∣

∣

∣

τ=0
= σ

∫

Γ

ε∇Γc · ∇Γ∂
•

τ c− ε∇Γc⊗∇Γc : 2D(w) +
1

ε
ψ′(c)∂•τ c

+ σ

∫

Γ

(ε

2
|∇Γc|

2 +
1

ε
ψ(c)

)

∇Γ · w

= σ

∫

Γ

−ε∆Γc η +
1

ε
ψ′(c)η − ε∇Γc⊗∇Γc : ∇Γν w

+ σ

∫

Γ

−
(ε

2
|∇Γc|

2 +
1

ε
ψ(c)

)

κw.

The other identities can be proved similarly.
Definition 4.8. For given values V , A1, A2 fulfilling (3.1), an admissible phase

field surface (Γ, c) is a critical point of the diffuse interface membrane energy (1.5)
subject to constraints (4.1) and (4.2) if

0 =
(

δFMC + δFGC + δFGL + δFM + λV δCV + λAδCA + λcδCc
)

(Γ, c)

where λV , λA, and λc are appropriate Lagrange multipliers.
Using (4.5), (4.6), (4.9), (4.11), and (4.10) critical points fulfill
Problem 4.9. Diffuse interface equilibrium equations. For given values

V , A1, A2 fulfilling (3.1) find an admissible phase field surface (Γ, c) and Lagrange
multipliers λV , λA, and λc such that

0 = ∆Γ

(

kκ(c)(κ− κs(c))
)

+ |∇Γν|2kκ(c)(κ− κs(c)) −
1
2kκ(c)(κ − κs(c))

2κ

+ ∇Γ ·
(

k′g(c)(κI + ∇Γν)∇Γc
)

− σε∇Γc⊗∇Γc : ∇Γν − σ
(

ε
2 |∇Γc|

2 + 1
εψ(c)

)

κ

+ λV −
(

λA + λch(c)
)

κ, (4.12)

0 = 1
2 (κ− κs(c))

2k′κ(c) − kκ(c)(κ− κs(c))κ
′

s(c) + gk′g(c)

− εσ∆Γc+ σ
εψ

′(c) + λch
′(c), (4.13)

0 = |Ω| − V, 0 = |Γ| − (A1 +A2), 0 =

∫

Γ

h(c) − (A1 −A2). (4.14)

We may consider the level set γε := {x ∈ Γ | c(x) = 0} as an approximation to the
phase interface γ in the sharp interface model. For performing an asymptotic analysis
of the above diffuse interface model it is convenient to write the governing equations
close to γε in terms of the curvatures hν , hp, and hd which are defined close to γε as
described in Section 2.2. Recalling the relations (2.8) we obtain

0 =∆Γ

(

kκ(c)(hν + hp − κs(c))
)

+ (h2
ν

+ h2
p + 2h2

d)kκ(c)(hν + hp − κs(c))

− 1
2kκ(c)(hν + hp − κs(c))

2(hν + hp)

+ ∇Γ ·
(

k′g(c)((hν + hp)I + ∇Γν)∇Γc
)

− σε∇Γc⊗∇Γc : ∇Γν − σ
( ε

2
|∇Γc|

2 + 1
εψ(c)

)

(hν + hp)

+ λV −
(

λA + λch(c)
)

(hν + hp), (4.15)

0 = 1
2 (hν + hp − κs(c))

2k′κ(c) − kκ(c)(hν + hp − κs(c))κ
′

s(c)

+ (hνhp − h2
d)k

′

g(c) − εσ∆Γc+ σ
εψ

′(c) + λch
′(c) (4.16)
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where

∇Γν = − hντ ⊗ τ − hpµ ⊗ µ − hdτ ⊗ µ − hdµ ⊗ τ (4.17)

which we get from ∇Γν = STS∇ΓνSTS with the orthogonal matrix S = (τ ,µ,ν).

5. Asymptotic Analysis. The goal is now to relate the diffuse interface prob-
lem to the sharp interface problem by matching appropriate asymptotic ε-expansions.
The technique is carefully explained in [17] yet we have to extend it since the mem-
brane shape, i.e., the underlying space, depends on ε.

5.1. Assumptions. Let {(Γε, cε), λV,ε, λA,ε, λc,ε}ε be a family of solutions to
Problem 4.9. Denoting the curvatures associated with the solutions appearing in
(4.12) and (4.13) by κε and gε, respectively, the fields occurring in (4.15), (4.16),
and (4.17) are denoted by hν,ε, hp,ε, hd,ε, µε, and τ ε . We assume that there is a
limiting surface Γ0 to which the surfaces Γε converge as ε → 0 and that this limit
is an admissible two-phase surface. In fact, in numerical simulations [14] we have
observed that κε remains bounded in L∞ as ε → 0. The compactness and regularity
properties of integral varifolds [2] to which the Γε belong suggest that any limiting
surface indeed is a C1 surface.

More precisely, we assume that we can parametrize Γε over Γ0 in the form Γε =
{pε(x) |x ∈ Γ0} where the functions pε are C1 across γ0 and smooth in Γ0,1 and Γ0,2

and can be expanded as

pε(x) = x + εp1(x) +O(ε2), (5.1)

with p1 ∈ C1(Γ0). Further, we assume that the level sets

γε := {xε ∈ Γε | cε(xε) = 0} (5.2)

converge to a finite number of smooth curves γ0 on Γ0, and additionally we assume
that the parameterization is such that

γε = {pε(x) |x ∈ γ0}. (5.3)

Writing Γ0 = Γ0,1 ∪ γ0 ∪ Γ0,2 in the sense of Definition 3.1 the domains Γ0,i, i = 1, 2,
are the limits of the sets Γε,1 := {cε > 0}, Γε,2 := {cε < 0}.

We note that (5.1) implies linear convergence of Γε in ε which is what we have
observed in our numerical simulations, see [14] (a paper on the more general model
presented in this study is in preparation). We also observed linear convergence of
γε in ε which motivates assumption (5.3). Intuitively, one may think of pε(x) − x

pointing in the normal direction with respect to Γ0 but the additional assumption
(5.3) means that, in general, there will be tangential contributions. We stress that
for the following asymptotic analysis up to first order in ε this is not of relevance.

The unit normal on Γε can be expanded in the form

νε(pε(x)) = ν0(x) + εν1(x) +O(ε2) (5.4)

where ν1 is a vector field tangential to Γ0. Furthermore, one can show that the
expansion of the surface gradient on Γε for any field fε : Γε → R is

∇Γε
fε(pε(x)) = ∇Γ0(fε ◦ pε) − ε(∇Γ0p1)

⊥∇Γ0(fε ◦ pε) +O(ε2). (5.5)
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If we further assume that the field fε can be expanded in the form

fε(pε(x)) = f0(x) + εf1(x) +O(ε2) (5.6)

then (5.5) results in

∇Γε
fε(pε(x)) = ∇Γ0f0 + ε

(

− (∇Γ0p1)
⊥∇Γ0f0 + ∇Γ0f1

)

+O(ε2).

5.2. Outer expansions. Away from the interfacial layer around the curve γε
we assume that we may expand curvature, order parameter, and Lagrange multipliers
in the form

κε(pε(x)) = κ0(x) + εκ1(x) +O(ε2),

cε(pε(x)) = c0(x) + εc1(x) +O(ε2),

λi,ε = λi,0 + ελi,1 +O(ε2), i = V,A, c (5.7)

with smooth functions κi, ci on each domain Γ0,j , j = 1, 2, that are bounded when
approaching γ0. From the expansion (5.4) and since Γ0 is smooth away from γ0 we
conclude that ∇Γε

νε = ∇Γ0ν0 + O(ε). All these expansions are plugged into the
equations of Problem 4.9 which are expanded in ε-series again.

5.3. Outer solutions. To order ε−1 the equation (4.13) yields 0 = ψ′(c0). The
only stable solutions are the minima of w, whence c0 = ±1. Recalling the definition
of Γε,i, i = 1, 2, we see that we will have c0 = 1 in Γ0,1 and c0 = −1 in Γ0,2. The
equation to the next order ε0 reads 0 = −σψ′′(c0)c1 − λc,0h

′(c0). Since ψ′′(±1) > 0
and h′(±1) = 0 we obtain that c1 = 0.

Since k′G(c0) = 0, ∇Γ0c0 = 0, ψ′(c0) = 0, and h(c0) = c0 = −(−1)i on Γ0,i,
i = 1, 2, the equation determining the membrane shape (4.12) yields to leading order

0 =∆Γ0

(

kκ(c0)(κ0 − κs(c0))
)

+ |∇Γ0ν0|
2
(

kκ(c0)(κ0 − κs(c0))
)

−
1

2
kκ(c0)(κ0 − κs(c0))

2κ0 + λV,0 −
(

λA,0 + h(c0)λc,0
)

κ0

=∆Γ0

(

k(i)
κ (κ0 − κ(i)

s )
)

+ |∇Γ0ν0|
2
(

k(i)
κ (κ0 − κ(i)

s )
)

−
1

2
k(i)
κ (κ0 − κ(i)

s )2κ0 + λV,0 −
(

λA,0 − (−1)iλc,0
)

κ0. (5.8)

To check that this equation becomes (3.15) we have to identify the Lagrange multi-
pliers.

For the first constraint in (4.14) we obtain to leading order that

0 = |Ω0| − V =
1

3

∫

Γ0

x0 · ν0 − V = CV (Γ0)

which is (3.19). We see that λV,0 in (5.8) does the job of λV in (3.15). Since
∫

Γε

h(cε) =

∫

Γ0

h(c0) +O(ε) = |Γ0,1| − |Γ0,2| +O(ε)

the second and third constraint in (4.14) yield 0 = |Γ0,1| + |Γ0,2| − (A1 + A2) and
0 = |Γ0,1| − |Γ0,2| − (A1 − A2) to leading order, respectively, which is equivalent to
(3.20). We identify

λ
(1)
A = λA,0 + λc,0, λ

(2)
A = λA,0 − λc,0 (5.9)

but we will need to check that the recurrence of the λ
(i)
A in (3.18) is correctly recovered.
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5.4. Interface coordinates. Since the interfacial layer has a thickness scaling
with ε we want to use a coordinate across the interface scaling in the same way. In
other words, in this new coordinate the interfacial layer is blown up to a thickness
of order one which enables to investigate the limits of fields such as cε and κε in
a sensible way. Again, expansions of the fields will be inserted into the governing
equations. In order to obtain boundary values for the resulting problems these inner
expansions are matched with the outer expansions employed in the phases.

Let us denote by τ 0 a unit tangent along γ0 and by µ0 the outer unit co-normal
of Γ0,2 (= inner unit co-normal of Γ0,1) on γ0 where we may assume that (τ 0,µ0,ν0)
is positively oriented. The fields τ 0 and µ0 are extended away from γ0 as explained in
Section 2.2. We also recall the definition of d(x) in (2.7) which we use for points x ∈
Γ0,1 so that µ0(x) = ∇Γ0d(x). The latter identity is extended to Γ0,2 by considering
−d(x) in points x, i.e., d is the signed distance to γ0 with positive sign in Γ0,1 and
negative sign in Γ0,2.

Let x̃(s) be a parameterization of γ0 by arc-length s with ∂sx̃(s) = τ 0(x̃(s)). We
may extend it to a parameterization x(s, r) of Γ0 locally around γ0 by requiring that
d(x(s, r), γ0) = d(x(s, r), x̃(s)) = r. Furthermore, ∂dx(s, r) = µ0(x(s, r)), and for
fixed s the curve r 7→ x(s, r) is a geodesic. We infer that ∇Γ0(∇Γ0d)µ0 points in the
direction of ν0 so that

τ 0 · ∇Γ0(∇Γ0d)µ0 = 0, µ0 · ∇Γ0(∇Γ0d)µ0 = 0. (5.10)

With z(x) := d(x)/ε we now introduce a scaled distance function as a new
coordinate. In a point x(s, εz) we then have

∇Γ0d(x) = µ0(x̃) + ε∇Γ0(∇Γ0d(x̃))µ0(x̃)z +O(ε2). (5.11)

The arc-length parameter s may also be considered as a function of x, and then
∇Γ0s(x) = τ 0(x) for all x ∈ γ0. An expansion of ∇Γ0s is obtained in a similar
fashion to that for ∇Γ0d:

∇Γ0s(x) = τ 0(x̃) + ε∇Γ0(∇Γ0s(x̃))µ0(x̃)z +O(ε2). (5.12)

Given any field fε on Γε, writing f̃ε(s(x), z(x)) := fε(pε(x)), and recalling (5.5) we
see that

∇Γε
fε(pε(x)) =

(

I − ε(∇Γ0p1)
⊥

)(

τ 0 + ε∇Γ0(∇Γ0s)µ0z
)

∂sf̃ε(s(x), z(x))

+
1

ε

(

I − ε(∇Γ0p1)
⊥

)(

µ0 + ε∇Γ0(∇Γ0d)µ0z
)

∂z f̃ε(s(x), z(x)) +O(ε) (5.13)

where ∇Γ0p1, τ 0, µ0, and the derivatives of s and d are evaluated at x̃(s(x)). Assume
now that the field fε can be expanded in the form

fε(pε(x)) = F0(s, z) + εF1(s, z) +O(ε2) (5.14)

close to the interface γε in terms of the new coordinates (s, z). Then we end up with
an ε-expansion of the form

∇Γε
fε(pε(x)) = 1

εµ0∂zF0

+
(

τ 0∂sF0 − (∇Γ0p1)
⊥µ0∂zF0 + ∇Γ0(∇Γ0d)µ0z∂zF0 + µ0∂sF1

)

+O(ε) (5.15)

for the spatial derivative of fε close to γε where ∇Γ0p1, µ0, τ 0, and ∇Γ0(∇Γ0d) are
evaluated at x̃(s).
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5.5. Matching conditions. In view of (5.6) and (5.14) we have two expansions
of a field fε on Γε, the first one being valid away from the interface γε and the second
one, expressed in terms of rescaled coordinates, close to γε. These expansions are
supposed to match, and this leads to some conditions on the functions fi and Fi.
Here, we only state these conditions and refer to the appendix of [18] for a careful
derivation. As z → ±∞

F0(s, z) ∼ f0(x(s, 0±)), (5.16)

F1(s, z) ∼ f1(x(s, 0±)) +
(

∇Γ0f0(x(s, 0±)) · µ0(x(s, 0))
)

z, (5.17)

∂zF1(s, z) ∼ ∇Γ0f0(x(s, 0±)) · µ0(x(s, 0)) (5.18)

where 0± stands for the limit as d ց 0 (approaching γ0 from Γ0,1) and d ր 0 (from
Γ0,2), respectively.

5.6. Inner expansions. Recalling that µε = ∇Γε
dε(xε) where dε is the signed

distance to γε on Γε, the expansions (5.1) and the smoothness of pε away from γ0

yields that there is an expansion of µε of the form

µε(pε(x)) = µ0(x) + εµ1(x) +O(ε2).

With the Taylor-expansion of µ0(x(s, r)) in x̃(s) = x(s, 0) and replacing r = εz again
we see that

µε(pε(x)) = µ0(x̃) + ε
(

∇Γ0(∇Γ0d(x̃))µ0(x̃)z + µ1(x̃)
)

+O(ε2). (5.19)

In particular, since µ1(x̃) = d
dεµε(pε(x̃))|ε=0 and since |µε(pε(x̃))| = 1 for all ε

the first order correction is orthogonal to the co-normal on γ0, µ1(x̃) · µ0(x̃) = 0.
Similarly, the expansion of τ ε can be derived:

τ ε(pε(x)) = τ 0(x̃) + ε
(

∇Γ0(∇Γ0s(x̃))µ0(x̃)z + τ 1(x̃)
)

+O(ε2). (5.20)

We assume that within the interfacial layer around the curve γε we have expan-
sions of the form

hν,ε(pε(x)) = Hν,0(s) + εHν,1(s, z) +O(ε2),

hd,ε(pε(x)) = Hd,0(s) + εHd,1(s, z) +O(ε2),

hp,ε(pε(x)) = Hp,0(s, z) + εHp,1(s, z) +O(ε2),

cε(pε(x)) = C0(s, z) + εC1(s, z) +O(ε2).

Since by assumption the limiting surface Γ0 is an admissible two-phase surface and,
hence, C1 the quantities hν and hd are continuous in the limit, or hν,0(x(s, 0+)) =
hν,0(x(s, 0−)) and similarly for hd. The matching condition (5.16) motivates to as-
sume that Hν,0 and Hd,0 are independent of z.

The above expansions are plugged into the governing equations (4.15), (4.16), and
(4.17) where the spatial derivatives are expanded as in (5.15).

5.7. Inner solutions: First order. The phase field equations (4.13) yields to
order ε−1

0 = σ
(

∂zzC0 − ψ′(C0)
)

. (5.21)

Recalling that c0 = ±1 in Γ0,i, i = 1, 2, respectively, the matching condition (5.16)
yields the boundary conditions C0(s, z) → ±1 as z → ±∞. By (5.2) and (5.3)
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cε(pε(x)) = 0 for x ∈ γ0 = {x(s, 0)}, hence we also have that C0(s, 0) = 0. The solu-
tion is given by C0(z) = tanh(z) and, in particular, does not depend on s. Multiplying
(5.21) with ∂zC0 and integrating with respect to sz from −∞ to z̃ we obtain

ψ(C0(z̃)) = 1
2 |∂zC0(z̃)|

2 (5.22)

which is commonly known as equipartition of energy. Let

Q0 := kκ(C0)(Hν,0 +Hp,0 − κs(C0)) + kg(C0)Hν,0.

The membrane equation (4.12) to order ε−2 reads 0 = ∂zzQ0, hence Q0 is a linear
function in z. The matching condition (5.16) implies that ∂zQ0 → 0 as z → ±∞
whence ∂z

(

kκ(C0)(Hν,0 +Hp,0 − κs(C0)) +Hν,0kg(C0)
)

= ∂zQ0 = 0, and we further
conclude that

Q0 = k(1)
κ (hν,0 + h

(1)
p,0 − κ(1)

s ) + hν,0k
(1)
g = k(2)

κ (hν,0 + h
(2)
p,0 − κ(2)

s ) + hν,0k
(2)
g

so that, in particular, kκ(hν,0 + hp,0 − κs) + hν,0kg is continuous across γ0 and we
have recovered equation (3.16).

5.8. Inner solutions: Tangential force balance. Using that ∂sC0 = 0 equa-
tion (4.13) to order ε0 reads

0 = −σ
(

∂zzC1 − hg,0∂zC0 − 2µ0 · ∇Γ0p1µ0∂zzC0 − ψ′′(C0)C1

)

+ 1
2

(

Hν,0 +Hp,0 − κs(C0)
)2
k′κ(C0) − kκ(C0)

(

Hν,0 +Hp,0 − κs(C0)
)

κ′s(C0)

+ λc,0h
′(C0) (5.23)

which can be considered as an equation for the correction C1. We multiply with ∂zC0

and integrate with respect to z from −∞ to ∞. The third summand then vanishes
because

∫ ∞

−∞
∂zzC0∂zC0 = 0. By (5.17) and (5.18) and since c1 = 0 we see that

C1(s, z) → 0 and ∂zC1(s, z) → 0 as z → ±∞, whence using (5.21)

∫ ∞

−∞

(

∂zzC1 − ψ′′(C0)C1

)

∂zC0 =

∫ ∞

−∞

(−∂zzC0 + ψ′(C0))∂zC1 = 0.

As a solvability condition for (5.23) we therefore obtain that

0 =

∫ ∞

−∞

(

σhg,0(∂zC0)
2 + λc,0h

′(C0)∂zC0

)

+

∫ ∞

−∞

1
2 (Hν,0 +Hp,0 − κs(C0))

2∂zkκ(C0)

−

∫ ∞

−∞

kκ(C0)(Hν,0 +Hp,0 − κs(C0))∂zκs(C0) (5.24)

Consider the function

f(hp, c, hν , hd) := 1
2kκ(c)(hν + hp − κs(c))

2 + kg(c)(hνhp − h2
d)

which clearly is convex in hp. The relation between the partial derivative

q(hp, c, hν , hd) := ∂hp
f(hp, c, hν , hd) = kκ(c)(hν + hp − κs(c)) + kg(c)hν
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and hp may be inverted and we may write hp = hp(q, c, hν , hd). The Legendre trans-
form of f with respect to hp is

j(q, c, hν , hd) := f(hp(q, c, hν , hd), c, hν , hd) − qhp(q, c, hν , hd)

and fulfills ∂cj = ∂cf . We remark that j is given by

j(q(hp, c, ...), ...) = 1
2kκ(c)(hν + hp − κs(c))

2 + kg(c)(hνhp − h2
d)

− (kκ(c)(hν + hp − κs(c)) + kg(c)hν)hp (5.25)

Observe thatQ0 = q(Hp,0, C0, Hν,0, Hd,0). Using that ∂zQ0 = 0 and the matching
condition (5.16)

∫ ∞

−∞

∂cf(Hp,0, C0, Hν,0, Hd,0)∂zC0

=

∫ ∞

−∞

∂cj(Q0, C0, Hν,0, Hd,0)∂zC0 + ∂qj(Q0, C0, Hν,0, Hd,0)∂zQ0

=

∫ ∞

−∞

∂zj(Q0, C0, Hν,0, Hd,0)

= j(Q0, c0, hν,0, hd,0)(s, 0
+) − j(Q0, c0, hν,0, hd,0)(s, 0

−)

With
∫ ∞

−∞
(∂zC0)

2 =
∫ ∞

−∞
(tanh′(z))2 = 4

3 and (1.4) and observing that by (5.9)

2λc,0 = λ
(1)
A − λ

(2)
A we obtain from (5.24) that

0 =

∫ ∞

−∞

σhg,0(∂zC0)
2 + λc,0h

′(C0)∂zC0 + ∂cf(Hp,0, C0, Hν,0, Hd,0)∂zC0

= σhg,0
(

∫ ∞

−∞

(∂zC0)
2
)

+ 2λc,0 +

∫ ∞

−∞

∂zj(Q0, C0, Hν,0, Hd,0)

= σ̄hg,0 + λ
(1)
A − λ

(2)
A +

[

j(Q0, c0, hν,0, hd,0)
](1)

(2)
.

Thanks to (5.25) we see that we have recovered (3.18). Furthermore, the identification
(5.9) now is fully justified.

5.9. Inner solutions: Normal force balance. Equation (4.15) to order ε−1

is

0 = ∂zz
(

k′κ(C0)C1(Hν,0 +Hp,0 − κs(C0)) + kκ(C0)(Hν,1 +Hp,1 − κ′s(C0)C1)
)

+ ∂zz
(

Hν,0k
′

g(C0)C1

)

+ ∂z
(

Hν,1∂zkg(C0)
)

− ∂sHd,0∂zkg(C0)

+ 2(Hd,0µ0 · ∇Γ0p1τ 0 −Hd,0τ 1 · µ0)∂zzkg(C0)

+ σ(∂zC0)
2Hp,0 − σ

(

1
2 (∂zC0)

2 + ψ(C0)
)

(Hν,0 +Hp,0) (5.26)

where as usual τ 0 and µ0 are evaluated at x̃(s) and we used that ∂sC0 = 0 and
∂zQ0 = 0. In the last line we may use the equipartition of energy (5.22) to replace
ψ(C0) by 1

2 (∂zC0)
2 and altogether arrive at −σ(∂zC0)

2Hν,0 in that line.

We integrate with respect to z from 0 to a variable that we, for convenience,
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denote by z again and obtain

0 = ∂z
(

k′κ(C0)C1(Hν,0 +Hp,0 − κs(C0)) + kκ(C0)(Hν,1 +Hp,1 − κ′s(C0)C1)
)

+ ∂z
(

Hν,0k
′

g(C0)C1

)

+
(

Hν,1∂zkg(C0)
)

− ∂sHd,0kg(C0)

+ 2(Hd,0µ0 · ∇Γ0p1τ 0 −Hd,0τ 1 · µ0)∂zkg(C0)

− σ

∫ z

0

(∂zC0)
2dz Hν,0 +A (5.27)

with an integration constant A. We are interested in the limit of this identity when
z → ±∞ and use the matching conditions (5.16)–(5.18) to draw conclusions. The
fields C0, C1, Hν,0, Hp,0, Hd,0 are bounded and their derivatives with respect to z
converge to zero. Since κ′s(±1) = 0 we also have that κ′s(C0) → 0. Furthermore as
z → ±∞

Hν,1(s, z) ∼ hν,1(x(s, 0±)) + ∇Γ0hν,0(x(s, 0±)) · µ0(x̃(s))z,

but since κi = hν,i + hp,i, i = 0, 1, have bounded limits on γ0 (see assumptions after
(5.7)) we see that Hν,1 is at most of linear growth in z as z → ±∞. But ∂zkg(C0)
exponentially decays so that

Hν,1∂zkg(C0) → 0 as z → ±∞.

With
∫ ±∞

0
(∂zC0)

2 = ±2/3 and the relation (1.4) we obtain

(5.27) → k(1)
κ ∇Γ0(hν,0 + hp,0) · µ − k(1)

g ∂shd,0 −
σ̄
2hν,0 −A as z → ∞,

(5.27) → k(2)
κ ∇Γ0(hν,0 + hp,0) · µ − k(2)

g ∂shd,0 −
σ̄
2hν,0 −A as z → −∞,

where the functions are evaluated at x(s, 0+) in the first row and at x(s, 0−) in the
second row. We remark that ∂shd,0 = ∇γ0hd,0 · τ 0. Subtracting the two rows we
recover the only remaining equation (3.17) which finishes the asymptotic analysis.

Concluding, we have formally shown that the limiting membrane Γ0 = Γ0,1∪γ0∪
Γ0,2 together with λV,0, λA,0 + λc,0, and λA,0 − λc,0 solves Problem 3.10.

Appendix A. Sharp interface equilibrium equations in the axisymmet-
ric case.

We briefly show that the interface conditions (3.15)–(3.18) coincide with the con-
ditions in the axisymmetric case as stated, for instance, in [11].

The boundary Γ of the vesicle is obtained by rotating a curve around a symmetry
axis. Denoting by s the arc-length parameter of the curve and by θ ∈ [0, 2π] the
rotation angle the membrane surface may be parameterized in the form (s, θ) 7→
(x(s), r(s) cos(θ), r(s) sin(θ)) where x(s) the coordinate along the symmetry axis and
r(s) ≥ 0 is the distance to it. For any s we may consider the curve

γ̃(s) = {(x(s), r(s) cos(θ), r(s) sin(θ)) | θ ∈ [0, 2π]},

and the phase interface γ is such a curve at a specific position s∗.

Let ψ(s) denote the angle between the plane perpendicular to the symmetry axis
and the surface Γ so that hg(s) = cos(ψ(s))/r(s) and hν(s) = − sin(ψ(s))/r(s) for the
geodesic and the normal curvature of a curve γ̃. We here have chosen the orientation
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to be such that ν points outward of the vesicle. Since the curvature vector of a γ̃ is
given by

hγ̃(s, θ) =
(

0,−
cos(θ)

r(s)
,−

sin(θ)

r(s)

)

the normal curvature then has the opposite sign than in [11]. Furthermore, hp(s) =
−ψ′(s) (again with the opposite sign than in [11]) and hd = 0.

Some lengthy calculations involving rewriting the surface gradient ∇Γ in terms
of the coordinates (s, θ) show that for any quantity f = f̃(s) that depends on s but
not on θ we have that ∆Γf = f̃ ′′(s) + r′(s)∂sf̃

′(s)/r(s) (we will drop the tilde sign
in the following when considering the field in the new coordinates for convenience).
Furthermore, thanks to (2.8), some short calculations show that

|∇Γν|2(κ− κs) −
1
2 (κ− κs)

2κ = 1
2κ(κ

2 − κ2
s) + 2( sin(ψ)

r κ+ sin2(ψ)
r2 )(κ− κs).

Defining Q := −kκκ′ (where the prime denotes the derivative with respect to s;
observe that κ = hν + hp depends on s only), equation (3.15) then becomes

0 = −Q′ −
r′

r
Q+

kκ
2
κ
(

κ2 − κ2
s

)

+ 2kκ(κ− κs)
( sin(ψ)

r
κ+

sin2(ψ)

r2

)

+ λAκ− λV

which is equation (1) of [11]. Using that ∇Γκ · µ = −∂sκ we obtain from the normal

force balance (3.17) equation (3) of [11], 0 = −
[

Q′
](2)

(1)
+ σ̄ sin(ψ)

r .

The continuity condition (3.16) gives

0 =
[

kκ(κ− κs)
](2)

(1)
−

[

kg
](2)

(1)

sin(ψ)

r
(A.1)

which is just (4) of [11]. With respect to the tangential force balance (3.18) we observe
that

[

kκ

2 (hν + hp − κs)
2 + kg(hνhp − h2

d)
](2)

(1)
−

[

(kκ(hν + hp − κs) + kghν)hp
](2)

(1)

=
[

kκ

2 (hν + hp − κs)(hν + hp − κs − 2hp)
](2)

(1)

=
[

kκ(hν + hp − κs)
](2)

(1)
hν +

[

kκ

2 (hν + hp − κs)(−hν − κs − hp)
](2)

(1)

which, using (A.1), is

= −
[

kg
](2)

(1)

sin2(ψ)

r2
−

[

kκ

2 (κ2 − κ2
s)

](2)

(1)
. (A.2)

Altogether, (3.18) yields

0 = −
[

kg
](2)

(1)

sin2(ψ)

r2
−

[

kκ

2 (κ2 − κ2
s)

](2)

(1)
− σ̄

cos(ψ)

r
+

[

λA
](2)

(1)

from which we recover the remaining equation (5) of [11].

Appendix B. Relation to results for open membranes.
Equilibrium conditions for two-phase membranes are stated in [32], Section 4.3.

Using |∇Γν| = κ2 − 2g and with the change of notation κ → 2H , g → K, λV → p,



24 C.M. Elliott and B. Stinner

λiA → 2µi, and κs → −c0 we see that our condition (3.15) coincides with equation (88)
in that paper. Furthermore, with the change of notation µ → e2, hν → kn, hd → τg,
∇γ(·)·τ → d

ds(·), kg → k̄, and hg → kg we also see that (3.16) coincides with condition
(90) and (3.17) with (89). But our condition (3.18) reveals the additional term

−
[

(kκ(hν + hp − κs) + kghν)hp
](2)

(1)
(B.1)

in comparison with the corresponding condition (91).

In [32], the conditions for two-phase membranes are derived from the conditions
for open membranes and can be traced back to the identities (71)–(76) where the
variation of the energy of an open membrane is stated. The authors then assume
that the two-phase membrane is smooth (see above identity (87) in [32]). Therefore,
the quantity Ω323, which is ∇Γ(ν · w) · µ in our notation, is continuous across the
phase interface. Under this assumption it then would not be necessary to split up
the term ∇Γ(ν · w) in our calculation (3.4). And since hp = −µ · ∇Γνµ then would
be continuous across γ the term (B.1) would vanish thanks to (3.16) so that (3.18)
would coincide with (91).

We stress that condition (3.16) implies that, in general, the mean curvature is
discontinuous across γ. Furthermore, in our calculation (A.2) it can be seen that
we need the additional term (B.1) in order to obtain the equilibrium conditions for
axisymmetric shapes stated in [11].

In turn, for an open membrane (i.e., Γ1 is not present) without volume constraint
(λV = 0) we obtain the equations (81), (83), (85), (86) in [32] (or (87)–(90) in [34])
since then kκ(κ − κs) + kghν = 0 on γ by (3.16) so that the second term in (3.18)
vanishes.
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