A DIFFUSE INTERFACE MODEL
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ABSTRACT. A non-isothermal phase field model for alloys with multiple phases and com-
ponents is derived. The model allows for arbitrary phase diagrams. We relate the model to
classical sharp interface models by formally matched asymptotic expansions. In addition
we discuss several examples and relate our model to the ones already existing.

1. INTRODUCTION

The phase field method is a powerful methodology to describe phase transition phe-
nomena. The method has been used to describe solidification processes [7, 34] as well as
microstructure evolution in solids [15] and liquid-liquid interfaces [28]. There are phase
field models for pure substances [7, 34], binary alloys [9, 21] for eutectic, peritectic and
monotectic systems [45, 31, 32, 33, 39] and furthermore also the evolution of grain bound-
aries can be modelled by phase field models or order parameter models [12, 16]. For recent
reviews or phase field methods we refer to [13, 5, 14].

Traditionally the evolution of interfaces, such as the liquid-solid interface, has been
modeled as a moving boundary problem. This means that pure phases are separated by a
sharp interface. In the phases partial differential equations, e.g. describing mass and heat
diffusion, are solved. These equations are coupled by boundary conditions on the interface,
such as the Stefan condition demanding energy balance and the Gibbs-Thomson equation.
Across the sharp interface certain quantities, e.g. the heat flux, the concentration or the
energy, may suffer jump discontinuities.

In phase field models the individual phases are distinguished by one or more so-called
phase fields. In different phases the phase fields attain different values and interfaces are
now modelled by a diffuse interface, i.e. the phase fields and also all other quantities do
not jump across an interface but they change smoothly on a very thin transition layer (the
diffuse interface). For example for a solid-liquid phase transition we choose a phase field
taking the value one in the solid and zero in the liquid and across an interface the phase
field varies smoothly from one to zero.

The use of diffuse interface models to describe interfacial phenomena goes back to van
der Waals [42], Landau and Ginzburg [26] and Cahn and Hilliard [10]. In the theory of
solidification this idea was introduced by Langer [27] and Caginalp [7]. Caginalp and Fife
[8] used asymptotic expansions to relate the phase field models proposed by Langer to
classical free boundary problems in the sharp interface limit.
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Since the original phase field model is not derived from thermodynamical principles a
number of so called thermodynamically consistent phase field models have been proposed
in the nineties (see Penrose and Fife [34], Alt and Pawlow [2], Wang et al. [44]). All these
models guarantee a positive entropy production.

The classical asymptotics leads to restrictions on parameters which makes it often dif-
ficult to perform practical computations of realistic solidification processes. This ist in
particular true in the regime of small undercooling. In recent years Karma and Rappel
23, 24] (see also [25, 1, 30]) used the so called thin interface asymptotics to be able to realize
numerical simulations in this regime. There, the Gibbs-Thomson equation is approximated
to a higher order and the temperature profile in the interfacial region is recovered with a
higher acuracy when compared to the classical asymptotics. Further numerical simulations
(see [35, 36, 37]) confirm the superiority of this approach in the case of small undercooling.

So far, efforts to generalize this approach to more general situations (see the discussion in
[25]) and in particular an extension to phase field systems handling multiple phases is still
an open problem. Therefore, as a first step, we apply classical sharp interface asymptotics
to handle general systems with multiple phases and components. The task of making this
approach more efficient by the use of thin interface asymptotics is left to further research.

The aim of this paper is to derive a phase field model with the following properties:
The model

e is thermodynamically consistent,

e allows for an arbitrary number of phases and components,

e is defined solely via the bulk free energies of the individual phases, the surface energy
densities (surface entropy densities, respectively) of the interfaces and diffusion and
mobility coefficients,

e yields classical moving boundary problems in the sharp interface limit.

The third requirement enables us to define the full set of phase field evolution equations
by quantities which (in principal) can be measured. Since the bulk free energies determine
the phase diagrams (see e.g. Chalmers [11], Haasen [22]) our model can be used to model
phase transitions for arbitrary phase diagrams. We remark that in a multi phase field
model computing the surface free energy densities (or surface entropy densities) is difficult.
Here one can make use of the studies by Garcke, Nestler and Stoth [18], where free energies
for phase field methods with good calibration properties have been developed. This means
that for given surface free energies (also called surface tensions) one can calibrate the
parameters in the free energies of the phase field model in such a way that the sharp
interface limit is defined via the given surface tensions. In particular the sharp interface
problem is defined with the help of the surface free energies.

In the following section we introduce the phase field model in its full generality and
state the corresponding sharp interface model. In Section 3 we give examples and relate
the model we propose to models already existing in the literature. Furthermore, we discuss
a variety of different applications for the new model. Due to its general formulation, the
model has the capability to describe phase transformation processes in non-isothermal
multi-component alloys as well as grain structure evolution. Different phases and different
crystal orientations can be distinguished at the same time by an appropriate choice of the
phase field variables. This allows to treat effects occuring on different length scales such
as eutectic grains and interdendritic structures.



Finally, we show in Section 4 via formally matched asymptotic expansions that the phase
field model yields the sharp interface model in the limit when the interfacial thickness tends
to zero.

2. THE MODELS

We consider a domain Q ¢ R%, d € {1,2,3}, and we assume that the system has N
components with M different phases possible.

2.1. The phase field model. The phase field model is based on an entropy functional of
the form

S(eve.) = [ (s(erc.0) = (cal6, V9) + Lu(0)) da. 1)

We assume that the bulk entropy density s depends on the internal energy density e,
the concentrations of the N components ¢;, 1 < ¢ < N, and the phase field variable
¢ = (¢o)M .. The variable ¢, denotes the local fraction of phase a and we require that
the concentrations of the components and the phase field variables fulfill the constraints

N

da=1 ) ¢a=1 (2)

i=1

It will be convenient to use the free energy as a thermodynamical potential. We therefore
postulate the Gibbs relation

df = —sdT + Y _ pide; + Y radga (3)

(see Alt and Pawlow [3] who show that the Gibbs relation is a consequence of the entropy
principle). Here, T is the temperature, p; = f ., are the chemical potentials and r, = f 4,
are potentials due to the appearance of different phases.

We set
e=f+sT, (4)
and hence
de = Tds + Z wide; + Z Tal®q, (5a)
1 i Ta
ds = de — Z de; — Za: e (5b)
If we interpret s as function of (e, ¢, ¢) then we have
1 — —Ta
Se= Sp = . Sg4. = .
) st T ’¢a T

Later it will be convenient to switch between the variables (T, ¢, ¢), (e, ¢, ¢), (T, u, ¢) and

(—%, %u, ¢) and we therefore assume for the rest of this paper that

e c— f(T,c,¢) is strictly convex,
o T — f(T,c,¢) is strictly concave.



This will make the above changes of variables possible.

We remark that knowing the free energy densities of the pure phases, we obtain the
total free energy as a suitable interpolation of the free energies f,, i.e. f is such that
f(T,c,eq) = fol(T,c), with e, being the o’th coordinate vector.

So far we neglected interfacial effects. The thermodynamics of the interface gives ad-
ditional contributions to entropy and free energy. Let us first consider how interfacial
contributions are accounted for in a sharp interface model. Let I',3 denote an interface be-
tween phases @ and 5 and let v,4 denote the unit normal at I',3 pointing into the S-phase.
Then in sharp interface models an interfacial term

-3 [ eslvap)ant ©)

a<f r
076:1

with a positive function y,5 on S¢! is added to the entropy (see [29], [43]). The notation
dH? ! indicates integration with respect to the (d — 1)-dimensional surface measure.

In diffuse interface models the surface entropy functional (6) is replaced by a Ginzburg-
Landau type functional of the form

—/Q (ca(9, Vo) + Lw(¢)) dx. (7)

Here, a is the gradient energy density which is assumed to be homogeneous of degree two
in the second variable, i.e.

a(p,nX) = n*a(¢, X) V(¢,X) € RM x R”M and Vv € R,

and w is a non-convex function with exactly M global minima at the points e = (d4,5)2,,

1 <8 < M, with w(e,) = 0. It has been shown under appropriate assumptions on a that

the functional (7) converges to the perimeter functional (6) when e converges to zero. We

refer to [18], [19] and Section 3 for appropriate choice of @ and w. We assume in this paper

that a and w and hence the interfacial contributions to the entropy do not depend on

(T, c), but these dependences can be included leading to a much more complicated model.
Our goal is to derive balance equations

oe = -V - Jy (energy balance), (8a)
0ic; ==V - J; (mass balances, i = 1, ..., N) (8b)

that are coupled to
01 = 1.h.5. (8c)

in such a way that the second law of thermodynamics is fulfilled in an appropriate local
version. Here .Jj is the energy flux and Jq, ..., Jy are the fluxes of the components ¢y, ..., cy.
In order to derive appropriate expressions for the fluxes .Jy, ..., Jy, we use the generalized
thermodynamic potentials (compare (5b)) ‘;—i = 7 and g—i = (=£) which will drive the evo-
lution. Now we appeal to non-equilibrium thermodynamics and postulate that the fluxes



are linear functions of the thermodynamic driving forces v&s v V(;‘C—i to obtain

der?
08 08
Jo = Loo(T) ¢, )V —+;LOJ (T, ¢, $)V 5o
1 ul -
- LOO (Ta C, ¢)Vf + ; Lﬂj (Ta C, d)) Tja (9&)
J_ng(Tc¢>V ZL”TC¢> 6c]
1 ul 7
_7 = g e
= Lao(T,c.0)V o + ; Lij(T, . 0)V— (9b)
with mobility coefficients
(Lij)ii=0,....N-
To fulfill the constraint Zf\;l ¢; = 1 during the evolution, we assume
N
» Liy=0, j=0,..,N (10)

which implies 32V, J; = 0 and hence (Zl | cz> =V (Zl | J) = 0. We further assume

that L is symmetric (Onsager relations) and in addition L is assumed to be positive semi-
definite, i.e.

N
Y L& >0 VE=(&,... &) € RV (11)
i,j=0

This condition will later ensure that an entropy inequality is satisfied. We remark that

we include cross effects between mass and energy diffusion in the model. One can neglect

them by setting Lo = 0 and Lo; =0 for all i,5 € {1,...,N}.

For the non-conserved phase field variables ¢, ..., ¢5;, we assume that the evolution
is such that the system locally tends to maximize entropy conserving concentration and
energy locally at the same time. Therefore we postulate

we@tqﬁa = ﬁ - A

0¢a
— 2(V - ax. (6, VO) — a . (6, V) - éw,%(dﬂ _ f%

where we denote with a x, the derivative with respect to the variables corresponding to
V¢,. wis (in this paper) a constant kinetic coefficient and A is an appropriate Lagrange
multiplier such that the constraint 2211 0o = 1 is satisfied, i.e.

1 1 f bu
A= 2 7 e - ) - T, - L2 (13

e}

Y (12)

Relevant for the dynamics are the variational derivatives of S that take the constraints
(2) into account. We can therefore reformulate the equations (9) and (12) in terms of the
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satisfy the constraints. Defining

K
SE={deRF: Y dy=1},
k=1

) onto the tangent space of the linear subspace whose elements

and its tangent space

K
TSK ={deRF: > dy=0}
k=1

In the following PX will denote the

the constraints (2) read as ¢ € L~ and ¢ € =M.
projection onto TXX. Then the relevant quantities for the definition of the fluxes are

(PN(_%NDZ':_% (Nz‘_%Z/L]’) :—%% ‘ (i — 1)

whereas there are no changes to %. We remark that the quantities

i = %Z(Hz — 1)

J

can be interpreted as generalized chemical potential differences. For two components we
obtain 7i; = (p1 — pe)/2, i.e. the usual chemical potential difference multiplied by the

factor 1/2.
With the above notation we can rewrite the fluxes as
yR— —i;
Jo = Loo(T. ¢, )V + ; Loj (T, ¢, )V —*.
- —i;
Ji = Lio(T, ¢, )V + ; Li;(T, ¢, )V —=L.

Similarly we can rewrite (12) as

[

w209 = PV (T 0,x(6,96) = 0,0(6,99)) — Tw(6) - 22|

Altogether the total entropy density is given by

bulk entropy + surface entropy = s(e, ¢, ¢) — (ga(¢, Vo) + Lw(¢))



and a straightforward computation shows (setting py = —1)

d;(entropy) = 0, (s(e, ¢, p) —eal(p, Vo) — l11;(g15))

N
=Y v vy (Z’%W >+MZ@%

1,j=0 1,j=0

—EEZV-wxﬁ@J

—V-(Z Mz —5Zaxaat¢a>.
=0

Y

The term in the brackets on the right hand side is the entropy flux. The first term represents
the entropy flux due to mass and energy diffusion and the second one is due to moving phase
boundaries (compare [2]). We refer to Alt and Pawlow [3] who show that for conserved
phase fields (they call them order parameters) either the energy flux or the entropy flux
has to depend on d;¢ in order to describe phase transitions.

The above inequality shows that the local entropy production is positive where the
entropy flux .Js is given by

M
— i
- Ji> —E;a’paat¢a.

2.2. The sharp interface model. In Section 4 we use the method of asymptotic expan-
sions to relate the phase field model of the previous subsection to the sharp interface model
which we state in the following. We obtain that the domain €2 is separated in phase regions
Q1,...,Q23 occupied by the pure phases 1,..., M such that in every phase Q,, a =1,..., M,
the following evolution equations hold

[0}

N
a «a a .« 1 a a0 Hj
Ote =-V. (LOO (T ,C ) Vﬁ - Z LOj (T , C ) VT_]O‘) (energy balance)a (15)

Opci = =V - (L'%(Taa V— - ZL ;J ) Vi (mass balances). (16)

These equations can be e.g. formulated in the variables (T, ) (then the internal energy
e® and the concentrations ¢ are given as e® = e*(7T%, u®) and ¢* = ¢*(T%, u*)) or as
more commonly used in the variables (T, ¢) (then the internal energy e* and the chemical
potentials p® are given as e® = e*(T?, ¢*) and u® = c*(T%, c*)).



On a (smooth) boundary I',s between two phases a and [ we have (assuming an
isotropic surface energy)

T¢ =T =T (continuity of temperature), (17)
it =p’=p Vi (continuity of chem. potentials), (18)
el v =[J]" v (energy balance), (19)
Gl =[] v Vi (mass balances), (20)
Mag ¥V = Yapk + /e — zj:f pi lcila (Gibbs-Thomson relation). (21)

Here, v = v,p is the unit normal pointing into 3, v is the speed of I' in this direction and
k is the mean curvature. The quantities

N N

—Q o 1 o 1 o o « o

Ky =y — N Z:U’j - N Z(ﬂz - :U’j) where p;" = ,ci(T: c) (22)
j=1

J=1

are the generalized chemical potential differences in phase a and []g denotes the jump of
the quantity in the brackets across the interface. The quantity 7,4 is the surface entropy
density and the relation between the surface entropy and the entropy density in the phase
field model is given by

Yas =igf{2/11 \/w(p)\/a(p,p’®V)} (23)

where the infimum is taken over all Lipschitz continuous functions p connecting the minima
of w corresponding to the phases adjacent to the interface, i.e. p(—1) = e, and p(1) = e;.
The kinetic coefficient m,s can also be expressed in terms of the minimizer p (see [17]).

In general, @ and w might depend on temperature and on the concentrations leading to
a temperature and concentration dependent surface entropy in the sharp interface limit.
In this case, the surface terms would also enter the internal energy. For a thin interface
analysis of a partially linearized model for pure substances we refer to [30].

To perform a thin interface analysis for our model would require to study fields like s,
f, T and c in the interfacial region to a higher order. We do not pursue this issue further
at this stage.

We remark that the Gibbs-Thomson equation can be derived by locally maximizing en-
tropy, conserving concentration and energy at the same time. For a stationary flat interface
the equations (17), (18) and (21) yield the classical equilibrium for phase boundaries. The
equilibrium condition at a flat boundary in rest separating phases « and 3 are

pd=p’  forall i=1,..,N.

In addition the temperature has to be the same and (see (21))
15— Zﬂz’ [ci]} = 0.

For M phases to be in equilibrium we therefore have (N +1)(M — 1) conditions. For each
phase we can choose N — 1 components and the temperature. Altogether there are

MN—-(N+1)(M—-1)=N-M+1



degrees of freedom. This is the Gibbs phase rule. We remark that for two component
systems the equilibrium conditions between two phases lead to the well known common
tangent construction.

Finally, at triple junctions where three phases o, and § meet a force balance of the
form

VaBTas + V55786 + VsaTsa =0 (24)

has to hold (compare [19]). Here, 7,5, 735 and 75, are the tangents to the interfaces Iy, I'gs
and I's, and they are assumed to either all pointing in the direction of the triple junction
or they are all pointing away from the triple junction. It can be easily seen that this force
balance is equivalent to certain angle conditions at the triple junction.

In the Appendix we will demonstrate that the entropy does not decrease for solutions of
the above problem. In particular for a closed system we obtain using appropriate transport
theorems and assuming m > 0 and L = (L;;); j=1,..~ is positive semi-definite:

%(/Qs(e’c)dx_/ﬂd}lM) :/Q(V%'JHZ;V_;”-Ji)dﬁ/rmv?d%d1 >0

where the integral over I" is an integral over all possible interfaces.

3. EXAMPLES

In this section we will first demonstrate that the phase field method is capable to model
systems with a very general class of phase diagrams. In the way it is formulated, the model
can describe systems with concave entropies s, (e, ¢) in the pure phases. This corresponds
to free energies f, (7T, ¢) which are convex in ¢ and concave in T. In the case that f(T,c) is
not convex in the variable ¢, the free energy needs to contain gradients of the concentrations
(similar as in the Cahn-Hilliard model).

We will first give a rather general example, which already covers most examples in
practice, and then discuss relations to existing models and possible partial linearizations
of the system.

3.1. Possible choices of the free energy. Choosing the phase field ¢ such that ¢ = ey,
corresponds to the liquid phase, we define bulk free energies for the individual phases by

N
fulTo) = (CZ eI Ly, ln(ci)> — ¢, T(In(T) — 1)
i=1
with LM = 0 and L¢, i = 1,..,N, a = 1,.... M — 1, being the latent heat per unit
volume of the phase transition from phase « to the liquid phase of the pure component
i. Furthermore, T7*, i =1,...,N, a = 1,..., M — 1, is the melting temperature of the i-th
component in the phase «, ¢, is the specific heat which is assumed to be independent of
¢ and ¢; the molar volume v, ist supposed to be a constant, R is the gas constant. Then

we define the total free energy density as follows:

F(T, e, 0) ZZ( LT h %)) i(%qun(ci))—ch(ln(T)—l) (25a)

a=1 i=1 =1

where h is a monotone function on [0, 1] that satisfies h(0) = 0 and h(1) = 1. Examples
are h(¢) = ¢ or h(¢) = ¢*(3 — 2¢). The last one has the property h'(0) = h/(1) = 0 which



is suitable for phase field models as we will see below. With this choice of A the function
f is an interpolation of the individual free energy densities f,.
We can calculate

s=—fr=— ii (ci%h(qsa ) i (—cl In(c; ) + e, In(T), (25b)

a=1 1=1 i=1

so that

e=f+Ts=— Z Z (¢;Lih(¢a)) + ¢, T (25¢)

a=1 i=1
We remark that if L$ = L* for all components 7 then e does not depend on ¢. The chemical
potentials are given as

M:

(T, 6,0) = fo(Tye, ¢) = (L“T I )) + ET(In(c;) + 1). (26)

a=1

Expressions for the quantities above in the pure phases are obtained by setting ¢, = e,.
For example we have

o aT-T
:U’i - 8Cifa - aczf(T’ ¢ 6‘1) = LZ Tia + %T(ln(cz) + 1)

for the chemical potential of the i-th component in the phase a.
Now we give some examples for the terms modelling interfacial contributions to the free
energy. The simplest form of the gradient energy is

a(¢, V) = |Vo|* = Z Vol

However, it has been shown [17, 19, 39] that gradient energies of the form
(¢, V) = Y Aap(0aVs — 05V6a)

a,f=1
a<f

where A,z are convex functions that are homogeneous of degree two are more convenient
with respect to the calibration of parameters in the phase field model to the surface terms
in the sharp interface model. A choice that leads to isotropic surface terms is

a(¢, Vo) =D 2 16a Vs — dVba’
a<f

with constants 7,5 and m,s that can be related to 7,5 and mgyps in (21) (cf. [17]). For the
bulk potential one may take the standard multi well potential

wst(9) =9 Z maﬂfyaﬂ¢i¢?3
a<f

or a higher order variant

wst(qs) = wst(d)) + Z 7&ﬁ6¢i¢%¢§'

a<fpB<d

10



For practical computations the multi obstacle potential yields good calibration properties.
It is defined by

W (P) = % Z MapYapPa®s

a<p
with a higher order variant

Woh(¢) = wan(¢) + Z YapsPaPpPs

a<fB<d

where w,, and w,, are defined to be infinity whenever ¢ is not on the Gibbs-Simplex
G={dex™: d,>0}. Werefer to [18] and [19] for a further discussion of the properties
of the surface terms.

3.2. Possible choices of the mobility matrix. Here we only give an example for the
part of the mobility matrix (L;;); j—o,.. n that defines mass diffusion resulting from chemical
potential differences, i.e. we do not specify L;g = Lg; for 0 <7 < N. An example for those
terms, which in particular define cross effects between mass and energy diffusion will be
given in Section 3.4.

If [;(c;, T, ¢) are the nonnegative bare mobilities of the pure components we can argue
as in [4] to obtain

N —
L’L](TJ &) ¢) = l’L(Ta Ci:¢) <6l] - <ZZQ(T: Cqs ¢)> 1lj(T: Cj, ¢)) ) 1 S Z:] S N.
q=1

To give a simple example we assume that all bare mobilities are the same constant (e.g.
Li(T, c;,¢) = 1). Hence
(Lij)yioy =id— £1®1,
where 1 = (1,...,1) and ® is the tensor product. Often it is more reasonable to assume
that the bare mobilities /; are linear in ¢;, and in the simplest case ([;(T,¢;, ¢) = ¢;) we
obtain

(Lij)iie1 = (ci(8i — )Ny
Choosing a free energy of the form (25a) and taking (26) into account we get the following
equations for the concentrations:

8,501 =-V-

LoV + 3 ailbs — )V (= Yo = H)h(6a) — £ in(ey) + 1))

a=1

—V. + %Aci.

1 M N
LZ()Vf + ZZLUV<L]&(7}? - %)h’(gba))

a=1 j=1

3.3. Relation to the Penrose-Fife model. In this subsection we will demonstrate that
our model includes the model of Penrose and Fife [34] as a special case. In this case there
is only one component and we can neglect the variable ¢. There are two phases, so we will
write the equations in terms of the solid fraction ¢) = ¢;. Then by (2) ¢o =1 — ).

The first phase, the solid one, is characterised by ¢ = 1, hence 1) = 1. We assume its
free energy density to be

= L% — ¢, T(In(T) — 1)

11



where T}, is the melting temperature and L the latent heat of the solid-liquid phase tran-
sition. The second phase, the liquid one, is characterised by ¢ = es, so ¢» = 0, and we take
the free energy density to be

fl=—c,T(In(T) - 1).
We have
f(T, ) = LT h(y) — ¢, T(In(T) - 1),
hence
s(T,9) = —7=h(¥) + ¢y In(T)
so that e(T, ) = —Lh(¢)) 4+ ¢,T. The evolution equation for the energy density yields

¢,0,T — LK (4))0yp = —V - (LUOV%> .

No we choose Loy = ¢, KoT?, \(¢)) = LK (¢) /¢, and
a(¢, Vo) = §|Vo|* = §(IVoi[* + Vs /?)

where ¢ = k1¢,/(2¢) for some constant ;. Setting w =1, K; = ¢,/(2¢) and

so(¥) = — w1 =) — F-h(¥).

we arrive at the system

o = Ky (M + sh(w) + mAv),
6tT - )\(w)atw = KQAT
which is the model of Penrose and Fife [34], Chapter 6.

3.4. A linearized model. In this subsection we are going to partially linearize our model.
This is done in such a way that the evolution equations in the pure phases are linear and
they indeed reduce to standard linear diffusion equations. We restrict ourselves to binary
systems but a generalization to higher order systems is straightforward.

We denote by ¢ = ¢; the concentration of the first component; therefore co = 1 — c.
Using that L is symmetric and the algebraic constraints (10) we obtain

Lor = Lig = —Lga = — Ly and Lyt = Loy = —Lis = —Loyy.
Furthermore, we introduce the chemical potential difference
= fe=Ffer = frea = 1 — pa.

Then the conservation laws for energy and concentration read (up to a factor 2 in the last
term of the right hand sides)

1 —J,c

8te =-V- Lgon - V- L10V%, (27&)
1 —J,c

8tC =-V- Llovf -V LHV 1{’ . (27b)

Choosing

Ly = D%, Lig= Lo1 =e.D and Ly = e?CD% + KT?

,ce

12



the system (27a),(27b) reduces to

die =V - (KVT +e.DVe+e DI2vs), (28a)
e =V <DVC + Df}—sz)) . (28b)

Here K and D are coefficients that may depend on ¢. These equations (28a), (28b) then
have to be coupled to the phase field system (12).

We assume as in (25¢) that the internal energy density is affine linear in the variables
(T,¢). Then the system (28a), (28b) reduces in regions where ¢ is constant, i.e. in the
pure phases, to (here K and D are constants)

0T =V - KVT = KAT, 0,c=V - -DVe= DAc.

Here ¢, is the specific heat. These are classical linear diffusion equations for temperature
(Fourier’s law) and concentration (Fick’s law).

3.5. Relation to the Caginalp model. If we further linearize the system it can be seen
that our model leads to a generalization of the original phase field model [7] to the case
of alloy solidification. We consider a three phase system for a binary alloy. We choose the
free energy density

F(T, e 0) = (5 - ZL%Q)CT— e, T(In(T ZLO‘qﬁa,

where L§ are latent heat coefficients and L{ and x respectively are coefficients entering
the chemical potentials. Then we get

s=—fr= —( ke — ZL“d)a)c—l-cvln(T)
e=f+Ts=cT—Y L5¢a,

o fe a

T:?:KJC—;Ll%U
Ta f(b Lg
— = = [%% - =
T T 1T

Choosing the mobility matrix as in the previous subsection we obtain

) (ch - Lg%) — V- (KVT),

e}

Qe =V - DV(HC - ZLWQ).

For the gradient energy we take the isotropic function a(¢, V¢) = L3 |V@,|%. Then
the equations for the phase field variables are

wedhBa = AG — Lw g (§) + Lic+ 2 — ),

13



where A is the Lagrange multiplier (13). Now we linearize the term £ in the above equation
around a temperature 7T, to obtain

wedibo = 00y — L, (8) + e+ 15 (75 — (T = T)) = A

The equations for (T, ¢) are linear and all terms in the equation for ¢ are linear except
for the term wg,. A complete linearization cannot be expected because systems with
moving interfaces can never be linear as can be seen easily for the sharp interface model.

Finally we remark that this simplification of the model leads to a linearized phase
diagram, in particular the magnitude of the jump of the concentration in the sharp interface
model is constant for each of the phase boundaries.

3.6. Fields of application. In this paragraph, we comment on the generality of the pre-
sented phase-field model, on the new features and on the various different applications
to solidification processes, microstructure formation and polycrystalline grain growth. By
setting up the phase-field model for an arbitary number of alloy components and phases in
a non-isothermal system, the set of governing equations is capable to describe the coupled
heat- and mass diffusion processes as well as the phase transformations in multi-component
systems. Due to the flexiblity to choose parameters in the gradient and in the potential
free energy, the model consists of enough degrees of freedom to prescribe the physics of
each phase boundary and interface seperately by defining values for appropriate surface
energies Y,4 and for the mobilities m,5. The model allows for both, kinetic and surface
energy anisotropies. Different types of anisotropy such as smooth and crystalline expres-
sions corresponding to Wulff shapes with a different number of vertices can be realized
in 3D. Considering the application point of view, the effect of the type and strength of
anisotropy on the growth structure can be investigated. Examples of experimentally ob-
served anisotropic characteristics in eutectic systems are tilted or spiral phase formations
and the growth of neighbouring eutectic grains.

The phase-field variables ¢, can represent different phases and different grains of orien-
tational variants at the same time. Therefore, phenomena such as eutectic grain formation
involving different length scales (grains on the larger scale and a eutectic structure on a
smaller scale) and interpretations of the non-conserved order parameters can be described
using the new model. A main focus of application in future development is the two and
three dimensional numerical simulation of solidification in multi-component alloy systems
with arbitrary phase diagrams. By choosing the specific thermodynamical quantities - the
latent heats of fusion L$ and the melting temperatures 7 - and by inserting these data as
input parameters for the numerical simulations, different types of phase transformations
such as peritectics, eutectics and monotectics are modelled. In particular, the stability of
ternary eutectic lamellae with phase arrays of different period length and phase permuta-
tions will be investigated by phase-field simulations in a forthcoming paper. The results
of computed structures are compared with a generalization of the classical Jackson-Hunt
theory for ternary eutectics. The occurance of a ternary phase impurity leads to the for-
mation of eutectic colonies. The resulting complex structure is of multi-scale type and can
also be modelled with the new approach.

4. RELATING THE MODELS BY ASYMPTOTIC EXPANSIONS

By matched asymptotic expansions we want to establish the relation between the phase
field model and the sharp interface model that were both described in Section 2. We are

14



going to generalize methods developed by Caginalp, Fife [8], Bronsard, Garcke, Stoth [6],
Garcke, Novick-Cohen [20], and Garcke, Nestler, Stoth [17]. We restrict ourselves to two
space dimensions, i.e. d = 2, but generalizations are possible.

Since the quantities (T, 1) are continuous across a phase boundary it will be convenient
to use them in the asymptotic expansions. More precisely we will use the variables ¢ and
u= (75, ..., Bx). Since f(T,-, ) is strictly convex and f(-,c, ¢) is strictly concave we
obtain that the mappings

(T,c,p) — (u,¢) and (e, c,d) — (u,p)

are both invertible and a change of variables between these quantities is possible.

We will use the variables (u, ¢) in the asymptotics but the equations can always be
reinterpreted with respect to the variables (T, ¢, ¢) or (e, ¢, ¢). We write the conservation
laws as

ici(u, ) =V - > Lij(u,¢)Vuy, 0<i <N,

where we have set ¢y = e.
The phase field equations are

wgat¢ = pM |:5 (v ' a,X(¢a V¢) - a,¢(¢: v¢)) - %w,d)(gb) + UUf,dJ(T(U: ¢): C(U, ¢): ¢) )

We assume that the matrix L = (L;;)};_, is strictly positive definite for all arguments

on the space
N

HY = {d — (AN, e RV Y d, = 0} — R x TV,
i=1
In addition we will frequently make use of the fact that a is 2-homogeneous in the variable
X. In particular we have (cf. [17])

ax(o,nX): X = 2na(¢ X), (29a)
a4(6,nX): X =1aq(h X), (29b)
a(d)a U) = U (290)
ax(p,0) = 0. (29d)

4.1. Outer expansion. We expect, e.g. based on experiences from numerical simulations,
that several phases arise which are separated by diffuse interfaces whose thickness is of order
e. We will see that these phases correspond to the M minima of the potential w. In such
a phase, away from an interface to another phase, we consider an outer expansion in the
bulk region. For a function b in (¢, 2) we make the ansatz

out t SE Z SKbﬁzt (30)

In this way we expand the variables u; and ¢,, 0 < j < N, 1 < a < M. For the
constraints ¢ € ™ and u € H" to be satisfied we assume

exM K cTvM K >1,

out

e HY, K >o.

out

out
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First we consider the equation for the phase field variables. We expand PMw 4(¢),

pr:¢(¢) = pryd’( out) + 8(PM’U} ¢) ¢( gut) ) out + O( )
To leading order O(c~') the equation (12) becomes

0= pM ( gut) = ’U}¢ out (Zw¢a out ) ' (31)

As we are searching for stable solutions for this equation, ¢?,, is one of the base vectors
{es}1<p<m. We can conclude that to leading order the whole domain €2 is partitioned into
phases which are characterized by the M possible values of ¢2,,.

The O(1)-equations for the conserved variables are (0 < i < N)

8,561'( Ugyts ¢out V- ZLU Uputs ¢out ],out (32)

Boundary conditions for these equations W111 be obtained by matching with the inner
expansion. One should remark that we have expanded the coefficients L;; in (u3,,, #%,,)
in the same way as PMw 4 in ¢0,,. In phase a, i.e. at points where ¢2,, = e,, we write

L (u) = Lij(u, eq). Then the O(1)-equations become

atci( Ugyty € V Z L out yout

Since cg = e, ug = —7 and u; = % we obtain the equations (15) and (16). We remark

that an upper index in (15) and (16) refers to the phase whereas an upper index in this
section refers to the order in the expansion.

4.2. Inner expansion. Now we consider an interfacial region where two phases meet.
Without loss of generality we assume that ¢° , = e; in one of the outer regions, denoted
by Qi, and ¢2,, = ey in the other one, denoted by Q,. We assume that these two regions
are separated by a family {T';}; of evolvmg smooth curves. Let 1) be a smooth function
such that s — (¢, s) is an arc-length parametrization of T';. The unit tangential vector
7(t,z) on Iy in & = 9)(t, s) is given by 7(¢t,z) = 0s1(t, s), the unit normal v(¢,z) on T
in x = 9(t, s) is such that (v,7) is positively oriented. We choose the orientation in the
parametrization ¢ such that v points into €.

Since the parametrization is smooth, it is possible to introduce new space coordinates
(2(t,z),s(t,x)) in a strip S around I'; in the following way. We define r(¢,z) = d(x,T;) to
be the signed distance between a point x and I';, i.e. r is positive in €2y and negative in
Q5. Then the variable z is defined by z(¢, z) = ir(t,z). Let P, be the projection of S onto
[';. Then by the smoothness of I'; one can use the strip S narrow enough such that there
is exactly one s(t,x) for every x € S such that P;(z) = ;(s). It holds

Vez(t,x) = Ltu(t, Py(z)),
Ves(t,z) = 7(t, Py(x)) + O(e).

In the new variables (¢, z, s) we make for some real function b in (¢, ) the ansatz

bin(t, ) ZstK (t,2(t, ), s(t, x)). (33)
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Introducing the notation v(P;(x)) = v(t, s(t,z)) and similarly for 7(P(z)) = 7(¢, s(t, x))
we obtain

Vabin(t, 2(t, 2), 5(t, 7)) = 2[0:bin(t, 2, 5) [0 (t, 5) + [Osbin (. 2, 5)]7(t, 5) + O(e),
and for some vector field b we have
Vo - b(t, 2(t,x), 5(t, x)) = 2(0.b(t, 2, 5)) - v(t, 5) + (Dsb(t, 2, 5)) - 7(t, 5) + O(e).
Moreover it holds
Oz(t, x) = 9 2d(x,Ty) = —Lv(Pi(x)),
Ois(t, x) = —v-(Py(2)) + O(e)

where v is the normal velocity and v, the tangential velocity. We remark that v, depends
on the parametrization whereas v is an intrinsic quantity. This leads to

%bffl(t, z2(t, ), s(t, m)) = O4bjs (L, 2, 5) — 200,bf (L, 2, 5) — v, 05biy (£, 2,8) + Ofe).
Now we expand ¢ and u in the variables (¢, z, s) and we assume
nex ol eTsM  K>1,
ul e HY, K >1,
to ensure that the constraints on ¢ and u are satisfied. Taking a Taylor expansion of L;;

around (ud,, ¢2,) and writing Ly;" = L;;(u?,, ¢,) we obtain from the conservation laws for
mass and energy to lowest order, i.e. O(s7?):

d - 0,in 0 ;
0=— <Z L;j az“j,m) , 0<i<N (34)

J=0

where we used that 0,v = 0. Integrating yields

Lol =k (35)
for some vector £ € R¥*!. Later the matching with the outer solution will give k& = 0.

We have
o,v=0, 0,7=0, 0,7 =kKv, 0O =—KT,

where k is the curvature of I';. Concerning the sign of the curvature we remark that for
a circle of radius r whose normal is outward oriented (with our orientation the tangent is

then running counterclockwise) the curvature is —1/r.
Hence the O(s™")-equations of the conserved quantities are

N N
4 d .
0 0 - 0,in 0 0,in 1
—00,¢i(Uj, Piy) = — K (;_U: L;j aZ“j,z‘n) T (Zj_o Li; azuj,m)

N

d in in

+@(Z((Lz~j>% o+ (L)) -as}n)azuﬁ,m)- (36)
7=0

0

These equations will further simplify when an expression for u;, has been derived.
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Now we consider the equations for the phase field variables. As done in [17] we expand
the a-terms in (¢?,,0,4% ® v), the w-term in ¢, and the f-term in (ud , ¢9,). To leading
order O(¢~!) we then obtain the equation

d
U:E(PMG,X( in’ Z¢?n®y))V_PMa¢( m?aqs'?n@l/) PMw¢( 0) (37&)
Multiplying this equation with 9,¢) € TSM gives
d
0= (ax (088, ©0): (0, © 1) — ol 0dh @) —wléh)).  (37h)

The equation of order O(1) is

d d

—wv0, ¢y, = - [(P a.x)e: b; + (PMa X)X (0,00, @ T + 0,0}, ® l/)} v+ %(PMG’X)T
- (PMG’¢)’¢'¢m— (PMa¢) : (a d)?n®7—+azd)zln®l/)
- (PMw,¢),¢ ’ ¢zln + pMUO znf¢( ( ?n: ¢?n)7 C(U?n: ¢?n)7 ?n) (38)

where w and all its derivatives are evaluated in ¢? and a and its derivatives in (¢ , 0,02

v).

4.3. Matching and resulting jump conditions. For some quantity b(¢,z) we gave by
(30) and (33) expansions in bulk regions respectively in a strip around an interface between
such regions. Now we want to match these expansions in an overlap domain. We will need
the matching conditions of order zero and one. For the outer expansions in €; and €y we
will use the subscripts by, and byyso.

We observe that near I'; we can express the functions bX (¢, z) in the variables (, z, s).
By expanding in power series in (0, s(¢,2)) which corresponds to the boundary point
Yy(s(t,z)) € Iy (remember that z(t,2) = ir(t,2) and 9, = v - V) we obtain:

Dowt (£ @) = by (8, 7(1, ), 5(t, 7))
= oy (£, 0, 5(t, ) + 70, (b)) (1,0, 5(t, ) + O(r?)
_bK )

(t
K (t,0,s(t,2)) +e2(VobE (t,0,s(t,x)) - v(t,0,5(t,x))) + O(?)
where b% ,(t,0, s) and Vb5 (¢,

bout (t, %) = bgyy (£, 0, 5) + £ (2(Vabpu (£, 0. 5) - v(t,5)) + by (t,0, 5)) + O(7).

Now we consider an intermediate variable z. = n(¢)z for some z > 0 where 7(¢) is some
function in € in the overlap domain of validity of the two expansions (which we suppose to
exist), i.e. 7 = o(1) and € = o(n). Because of z = r/e we have z. — +oc as ¢ — 0.

We substitute the variable z in our expansions by this intermediate variable z. and
consider their difference; the expansions of v match if, in the limit as ¢ — 0, the terms of
every order ¢X vanish. For the O(1)-terms this means

t,0,s) mean the evaluation in (¢, P;(z)). We get

out

Ze—»00

0= ll\l"% (boutl (t 0 S) b?n(ti Res S)) = lim (boutl (t 0 S) b?n(ti Res S)) )

0= ll/r‘% (bgth(t’ 0, s) - b?n(t’ e S)) = lim (bgth(ta 0, S) - b?n(ta Zes S)) ’

Ze—>—00
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while for the O(e')-terms the matching condition is

0= lim (2.V,00,(£0,8) - v(t,s) + blun (£,0,8) — bl (£, 2, 5)) ,

2e—»00

0= lim (2V,b00(t,0,5) - v(t,s) + bluo(t, 0,5) — bL (¢, 2., 5)) .

Ze—>—00

First we apply the matching conditions on the functions u?
differential equations (35). The assumption on L yields

o.ud, = L k.

0 < j < N, solving the

7,in?

By the matching conditions of order zero u) must be bounded if |z] — oo. Then the
assumption on L gives necessarily £k =0 so that u), is constant.

Since u}, is constant, we obtain that ul ,,(¢,0,s) = ul,,,(¢,0,s) and hence u and there-
fore the temperature and the chemical potential differences are in the sharp interface limit
continuous across an interface.

Now, due to d,uj,, = 0 the O(¢™")-equations (36) for the conserved variables simplify

N
0 § : 1
_Uazci(uma - Ll] zn’ uj,in .

Jj=0

to

Integrating with respect to z from —oc to oc (or, more correctly, integrating from —R to
R and then considering the limit as R — oc) and using that v(t, s) is independent of z we
obtain

z /f00
0 z,/00 ul
v [Ci(uin’ ) z\, — [Z Ll] zn’ Ujin
2N\(—0C
As has been shown in [8, 6] the matching conditions of order one for the bj;, yield
0, b; in— V bg outl * for Z — 00

and

0.b% ., — beg,om v for Z — —00

7yin

where the right hand sides are evaluated in (¢, ) = (¢, 1,(s)) or, in the other coordinates,
n (t,r,s) = (t,0,s(t,x)). In fact, these are the boundary values of Vﬁ?u?,out,@ v, B e {1,2},
on I[';. After matching for the phase field variables ¢ we obtain

U[CZ]Z - U( Z(uoutli ¢out1) Ci (Ugth’ ¢2ut2)) (t’ ':E)

= [cz(u oo

( Z LO O’Uﬂ z ] outl L?]"OUQVIUS,ouﬂ) (ti l‘) ’ V(ti l‘)

]:
= (J’i(ugutli gutl) - Ji(uguﬂi ¢2ut2)) (ti aj) ’ V(ti l‘)
= [Jily v
We will refer to this fact to be the jump condition for the inner energy density e = ¢, and

the concentrations ¢;, 1 <1 < N.
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4.4. Matching and the Gibbs-Thomson relation. In the bulk regions we have ¢2ut5 =
es, B € {1,2}. Hence for each s, we have to solve equation (37a) of second order in z with
respect to the boundary conditions e; for z — oo and ey for z — —o0.

By integrating (37b) and using (29c¢), (29d) and w(e;) = w(ey) = 0 we obtain

Oza,X( zn?8¢9n®l/) (82¢?n®y)_a( zn?a¢?n®y)_w( 0)

Using (29a) we deduce

Cl( in’ Z¢?n ® l/) - U)( ) (39)
which is known as equipartition of energy. We set
C’gﬁl([—l 1], M) = {p — Y™ | p Lipschitz cont., p(—1) = e, and p(1) = 65}
(40a)

and define the surface entropy for some e € R" to be

Yap (€ 1nf{2/ Vw(p)valp,p ®e)(y dy\pEC’ (40b)

As shown in [40, 17], if a minimizer exists for e = v(t, s) then a reparametrization of the
minimizer fulfills (37a) and in addition

@) = [ (a6 000 B0) + () b= (41)

o

Now we want to deduce the Gibbs-Thomson law. We multiply the equation (37a) for ¢},
by 0,6), € TSM and the equation (38) for ¢}, by 9,¢% € TEM. Observe that we can drop
the projections PM. Then we sum up the two equations and integrate from —o0o to oc with
respect to z. Some straightforward calculations together with the matching conditions for
the boundary values yield the following solvability condition for equation (38):

i [Tt = ([ a6 a5 0. 500) 9 0(6) - 0108 902 ) ()

o¢] o

BT ) 68). 6) - 008 (42

]

Using that ug ;, and @y, = (u},,,...,u},,) are independent of z the last term on the r.h.s.

of (42) yields
UU mf¢( in’ m7¢ ) : z¢0 dz
d
<dz (UO mf(ﬂ?u Cin> ?n)) - UO mf (7122“ Cins '?n) 8zc?n> dz
) i( nf (L0, 80,)) + udy - D.ch, | dz
dz in> m? in in in

7
'mf( n? zn7 ¢zn) + u’m ) C’(L]TL] j\iooo

- [uS (F(T %, 6%) = fo(T°.". %) - ) ],
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Here we use the abbreviation T2 = T(u ,¢%), ) = c(ud,¢2), T° = T(u’ ¢°) and
& = c(u®, ¢%). Finally as [c°] € TS" we obtain
|

00 011 _ 0. 1.0
[ ol ity oz = - (LRELER

o

Calculating the total derivative of 7, ; which becomes with (41)

D1 (v) :/ ax - 6z¢?ndz

oo

and setting
mw) =w [ (@68

the solvability condition reduces to (writing V- g = (0sg) - 7 for the surface divergence of
some vector field g on I'y)

m(v)v = =V - Dy (v) +

Considering v and v as function in an angle 6 € [0, 27), i.e. setting v(f) = (cos(6), sin(f))
and §(0) = v(v(#)) one can derive (see [17])

Vi Dyi(v) = —(52.(0) + %1,1(9))""7
with the curvature kK = —V, - v which may be inserted into the solvability condition to

yield

m(v)v = (@2’1(9) + ,%/’1(9))/{ n [fo]% _jﬁﬁﬂ . [co]%‘

Finally, the force balance at triple junctions (24) can be derived as in [17]. Therefore, all
equations defining the sharp interface model have been derived by asymptotic expansions.

5. APPENDIX

In this Appendix we want to show that for the sharp interface model described in Section
2 the entropy does not decrease in time. We consider a situation where a bounded domain
2 is partitioned into M phases Q4 (t), ..., Qy(t) which are separated by smooth boundaries
Tos(t) = Qa N Qs N Q. For simplicity we restrict ourselves to two space dimensions, but
the calculations can also be done in higher dimensions.

Given some domain R(t) C Q with smooth boundary dR(t) and a smooth evolving curve
['(t) C © with normal velocity v we will make use of the following transport identities:

d
(], ). f o e
dt \Jr) I(to)

endpoints
d
— < / udx)

= / Oy dzr + / uv dH' ()
t=to R(to) 8R(t0)

for some smooth function u = wu(¢,x) and some constant v; x is the curvature of the
interface I and v is the unit normal. By p we denote the velocity of the endpoints of T’
and 7 is the exterior tangent vector to I'(¢) at the endpoints.

Let the evolution in each phase be given by

3teq:—V-Jg, athZ—V'Jiq, 1§Z§N, 1§(JSM

t=to
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with the fluxes given in (15) and (16). We assume that the functions are smooth in
their domain €2, and that the fluxes vanish at the external boundary of €2. Observe that

—0,c=V -JeTEN. Then
/ [s]%v dH!
FaB(tO)

i (L, e0m) =5
— s(e, c) dx = ois(e,c)dr —
o m() - ; mﬂ() ;
:Z/ at6+28c,8t01 dm—Z/ s]Pv dH!
o a(to) a<f Lap(to)
1 —Hi
- _ V. g d
Za:/a(to) (Tv J0+; =V J) e

- Z/ [s]Pv dH!
Faﬁ(to)

a<f

—Z/ %+ZVM-
a(to)

—H
B (b p )

a<f

The fact that L is positive semi-definite leads to

1 —Hi
— . . J; > 0.
v 0+zi:vT >

Besides we make use of the continuity conditions (17), (18) and the jump conditions (19),
(20) to obtain

! 1 —Hi [T's]?
d > B i’B B o p L
dt </Q(t) s(e, c) :E) - Z/Taﬁ(to) (T[6]av + 5 T [eilow v) 4

a<f

_ Lf ] Z ﬂZ[Cz] 1
B Z/aﬂ(to) v

a<f r

Furthermore we have

d
ETE ’704 d% Yo "ﬂ)del_ p'Ta Ya

endpoints

_ di(/ ecdx—Z/ *yagd’H)
/ < LZ“M + Yo K:)vd?'[l
a<,3

/ V) ZdHnt  >o0.
Faﬁ tO

22

so that we get

d
d

t=to

a<f



In the last equality we used the Gibbs-Thomson relation (21), the fact that the mobility
coefficient m is supposed to be positive, the force balance at triple junctions (24) and the
fact that in a closed system the interfaces intersect the exterior boundary by a 90° angle
condition (compare [6] and the references therein).
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