
A DIFFUSE INTERFACE MODELFOR ALLOYS WITHMULTIPLE COMPONENTS AND PHASESHARALD GARCKE, BRITTA NESTLER, AND BJ�ORN STINNERAbstrat. A non-isothermal phase �eld model for alloys with multiple phases and om-ponents is derived. The model allows for arbitrary phase diagrams. We relate the model tolassial sharp interfae models by formally mathed asymptoti expansions. In additionwe disuss several examples and relate our model to the ones already existing.1. IntrodutionThe phase �eld method is a powerful methodology to desribe phase transition phe-nomena. The method has been used to desribe solidi�ation proesses [7, 34℄ as well asmirostruture evolution in solids [15℄ and liquid-liquid interfaes [28℄. There are phase�eld models for pure substanes [7, 34℄, binary alloys [9, 21℄ for euteti, periteti andmonoteti systems [45, 31, 32, 33, 39℄ and furthermore also the evolution of grain bound-aries an be modelled by phase �eld models or order parameter models [12, 16℄. For reentreviews or phase �eld methods we refer to [13, 5, 14℄.Traditionally the evolution of interfaes, suh as the liquid-solid interfae, has beenmodeled as a moving boundary problem. This means that pure phases are separated by asharp interfae. In the phases partial di�erential equations, e.g. desribing mass and heatdi�usion, are solved. These equations are oupled by boundary onditions on the interfae,suh as the Stefan ondition demanding energy balane and the Gibbs-Thomson equation.Aross the sharp interfae ertain quantities, e.g. the heat ux, the onentration or theenergy, may su�er jump disontinuities.In phase �eld models the individual phases are distinguished by one or more so-alledphase �elds. In di�erent phases the phase �elds attain di�erent values and interfaes arenow modelled by a di�use interfae, i.e. the phase �elds and also all other quantities donot jump aross an interfae but they hange smoothly on a very thin transition layer (thedi�use interfae). For example for a solid-liquid phase transition we hoose a phase �eldtaking the value one in the solid and zero in the liquid and aross an interfae the phase�eld varies smoothly from one to zero.The use of di�use interfae models to desribe interfaial phenomena goes bak to vander Waals [42℄, Landau and Ginzburg [26℄ and Cahn and Hilliard [10℄. In the theory ofsolidi�ation this idea was introdued by Langer [27℄ and Caginalp [7℄. Caginalp and Fife[8℄ used asymptoti expansions to relate the phase �eld models proposed by Langer tolassial free boundary problems in the sharp interfae limit.1991 Mathematis Subjet Classi�ation. 35K55, 82C26, 34E05, 35B25, 82C24.Key words and phrases. phase �eld models, sharp interfae models, phase transitions, partial di�erentialequations, alloy systems, mathed asymptoti expansions.1



Sine the original phase �eld model is not derived from thermodynamial priniples anumber of so alled thermodynamially onsistent phase �eld models have been proposedin the nineties (see Penrose and Fife [34℄, Alt and Pawlow [2℄, Wang et al. [44℄). All thesemodels guarantee a positive entropy prodution.The lassial asymptotis leads to restritions on parameters whih makes it often dif-�ult to perform pratial omputations of realisti solidi�ation proesses. This ist inpartiular true in the regime of small underooling. In reent years Karma and Rappel[23, 24℄ (see also [25, 1, 30℄) used the so alled thin interfae asymptotis to be able to realizenumerial simulations in this regime. There, the Gibbs-Thomson equation is approximatedto a higher order and the temperature pro�le in the interfaial region is reovered with ahigher auray when ompared to the lassial asymptotis. Further numerial simulations(see [35, 36, 37℄) on�rm the superiority of this approah in the ase of small underooling.So far, e�orts to generalize this approah to more general situations (see the disussion in[25℄) and in partiular an extension to phase �eld systems handling multiple phases is stillan open problem. Therefore, as a �rst step, we apply lassial sharp interfae asymptotisto handle general systems with multiple phases and omponents. The task of making thisapproah more eÆient by the use of thin interfae asymptotis is left to further researh.The aim of this paper is to derive a phase �eld model with the following properties:The model� is thermodynamially onsistent,� allows for an arbitrary number of phases and omponents,� is de�ned solely via the bulk free energies of the individual phases, the surfae energydensities (surfae entropy densities, respetively) of the interfaes and di�usion andmobility oeÆients,� yields lassial moving boundary problems in the sharp interfae limit.The third requirement enables us to de�ne the full set of phase �eld evolution equationsby quantities whih (in prinipal) an be measured. Sine the bulk free energies determinethe phase diagrams (see e.g. Chalmers [11℄, Haasen [22℄) our model an be used to modelphase transitions for arbitrary phase diagrams. We remark that in a multi phase �eldmodel omputing the surfae free energy densities (or surfae entropy densities) is diÆult.Here one an make use of the studies by Garke, Nestler and Stoth [18℄, where free energiesfor phase �eld methods with good alibration properties have been developed. This meansthat for given surfae free energies (also alled surfae tensions) one an alibrate theparameters in the free energies of the phase �eld model in suh a way that the sharpinterfae limit is de�ned via the given surfae tensions. In partiular the sharp interfaeproblem is de�ned with the help of the surfae free energies.In the following setion we introdue the phase �eld model in its full generality andstate the orresponding sharp interfae model. In Setion 3 we give examples and relatethe model we propose to models already existing in the literature. Furthermore, we disussa variety of di�erent appliations for the new model. Due to its general formulation, themodel has the apability to desribe phase transformation proesses in non-isothermalmulti-omponent alloys as well as grain struture evolution. Di�erent phases and di�erentrystal orientations an be distinguished at the same time by an appropriate hoie of thephase �eld variables. This allows to treat e�ets ouring on di�erent length sales suhas euteti grains and interdendriti strutures.2



Finally, we show in Setion 4 via formally mathed asymptoti expansions that the phase�eld model yields the sharp interfae model in the limit when the interfaial thikness tendsto zero. 2. The modelsWe onsider a domain 
 � Rd, d 2 f1; 2; 3g, and we assume that the system has Nomponents with M di�erent phases possible.2.1. The phase �eld model. The phase �eld model is based on an entropy funtional ofthe form S(e; ; �) = Z
 �s(e; ; �)� �"a(�;r�) + 1"w(�)�� dx: (1)We assume that the bulk entropy density s depends on the internal energy density e,the onentrations of the N omponents i, 1 � i � N , and the phase �eld variable� = (��)M�=1. The variable �� denotes the loal fration of phase � and we require thatthe onentrations of the omponents and the phase �eld variables ful�ll the onstraintsNXi=1 i = 1; MX�=1 �� = 1: (2)It will be onvenient to use the free energy as a thermodynamial potential. We thereforepostulate the Gibbs relationdf = �sdT +Xi �idi +X� r�d�� (3)(see Alt and Pawlow [3℄ who show that the Gibbs relation is a onsequene of the entropypriniple). Here, T is the temperature, �i = f;i are the hemial potentials and r� = f;��are potentials due to the appearane of di�erent phases.We set e = f + sT; (4)and hene de = Tds+Xi �idi +X� r�d��; (5a)ds = 1T de�Xi �iT di �X� r�T d��: (5b)If we interpret s as funtion of (e; ; �) then we haves;e = 1T ; s;i = ��iT ; s;�� = �r�T :Later it will be onvenient to swith between the variables (T; ; �), (e; ; �), (T; �; �) and(� 1T ; 1T �; �) and we therefore assume for the rest of this paper that�  7! f(T; ; �) is stritly onvex,� T 7! f(T; ; �) is stritly onave. 3



This will make the above hanges of variables possible.We remark that knowing the free energy densities of the pure phases, we obtain thetotal free energy as a suitable interpolation of the free energies f�, i.e. f is suh thatf(T; ; e�) = f�(T; ), with e� being the �'th oordinate vetor.So far we negleted interfaial e�ets. The thermodynamis of the interfae gives ad-ditional ontributions to entropy and free energy. Let us �rst onsider how interfaialontributions are aounted for in a sharp interfae model. Let ��� denote an interfae be-tween phases � and � and let ��� denote the unit normal at ��� pointing into the �-phase.Then in sharp interfae models an interfaial term� MX�<��;�=1 Z��� ��(���)dHd�1 (6)with a positive funtion �� on Sd�1 is added to the entropy (see [29℄, [43℄). The notationdHd�1 indiates integration with respet to the (d� 1)-dimensional surfae measure.In di�use interfae models the surfae entropy funtional (6) is replaed by a Ginzburg-Landau type funtional of the form� Z
 �"a(�;r�) + 1"w(�)� dx: (7)Here, a is the gradient energy density whih is assumed to be homogeneous of degree twoin the seond variable, i.e.a(�; �X) = �2a(�;X) 8(�;X) 2 RM �Rd�M and 8� 2 R+;and w is a non-onvex funtion with exatlyM global minima at the points e� = (Æ�;�)M�=1,1 � � � M , with w(e�) = 0. It has been shown under appropriate assumptions on a thatthe funtional (7) onverges to the perimeter funtional (6) when " onverges to zero. Werefer to [18℄, [19℄ and Setion 3 for appropriate hoie of a and w. We assume in this paperthat a and w and hene the interfaial ontributions to the entropy do not depend on(T; ), but these dependenes an be inluded leading to a muh more ompliated model.Our goal is to derive balane equations�te = �r � J0 (energy balane); (8a)�ti = �r � Ji (mass balanes, i = 1; :::; N) (8b)that are oupled to �t�� = r:h:s: (8)in suh a way that the seond law of thermodynamis is ful�lled in an appropriate loalversion. Here J0 is the energy ux and J1; :::; JN are the uxes of the omponents 1; :::; N .In order to derive appropriate expressions for the uxes J0; :::; JN , we use the generalizedthermodynami potentials (ompare (5b)) ÆSÆe = 1T and ÆSÆi = ���iT � whih will drive the evo-lution. Now we appeal to non-equilibrium thermodynamis and postulate that the uxes4



are linear funtions of the thermodynami driving fores r ÆSÆe ;r ÆSÆ1 ; :::;r ÆSÆN to obtainJ0 = L00(T; ; �)rÆSÆe + NXj=1 L0j(T; ; �)r ÆSÆj= L00(T; ; �)r 1T + NXj=1 L0j(T; ; �)r��jT ; (9a)Ji = Li0(T; ; �)rÆSÆe + NXj=1 Lij(T; ; �)r ÆSÆj= Li0(T; ; �)r 1T + NXj=1 Lij(T; ; �)r��jT (9b)with mobility oeÆients (Lij)i;j=0;:::;N :To ful�ll the onstraint PNi=1 i = 1 during the evolution, we assumeNXi=1 Lij = 0; j = 0; :::; N (10)whih impliesPNi=1 Ji = 0 and hene �t �PNi=1 i� = r��PNi=1 Ji� = 0:We further assumethat L is symmetri (Onsager relations) and in addition L is assumed to be positive semi-de�nite, i.e. NXi;j=0Lij�i�j � 0 8� = (�0; : : : ; �N) 2 RN+1: (11)This ondition will later ensure that an entropy inequality is satis�ed. We remark thatwe inlude ross e�ets between mass and energy di�usion in the model. One an negletthem by setting Li0 = 0 and L0j = 0 for all i; j 2 f1; : : : ; Ng.For the non-onserved phase �eld variables �1; :::; �M , we assume that the evolutionis suh that the system loally tends to maximize entropy onserving onentration andenergy loally at the same time. Therefore we postulate!"�t�� = ÆSÆ�� � �= "�r � a;X�(�;r�)� a;��(�;r�)�� 1"w;��(�)� f;��T � �; (12)where we denote with a;X� the derivative with respet to the variables orresponding tor��. ! is (in this paper) a onstant kineti oeÆient and � is an appropriate Lagrangemultiplier suh that the onstraint PM�=1 �� = 1 is satis�ed, i.e.� = 1M X� �" (r � a;X� � a;��)� 1"w;�� � f;��T � : (13)Relevant for the dynamis are the variational derivatives of S that take the onstraints(2) into aount. We an therefore reformulate the equations (9) and (12) in terms of the5



projetion of ( ÆSÆe ; ÆSÆj ; ÆSÆ�� ) onto the tangent spae of the linear subspae whose elementssatisfy the onstraints. De�ning�K = fd 2 RK : KXk=1 dk = 1g;and its tangent spae T�K = fd 2 RK : KXk=1 dk = 0gthe onstraints (2) read as  2 �N and � 2 �M . In the following PK will denote theprojetion onto T�K. Then the relevant quantities for the de�nition of the uxes are�PN�� 1T ���i = � 1T  �i � 1N Xj �j! = � 1T 1N Xj (�i � �j)whereas there are no hanges to ÆSÆe . We remark that the quantities�i = 1N Xj (�i � �j)an be interpreted as generalized hemial potential di�erenes. For two omponents weobtain �1 = (�1 � �2)=2, i.e. the usual hemial potential di�erene multiplied by thefator 1=2.With the above notation we an rewrite the uxes asJ0 = L00(T; ; �)r 1T + NXj=1 L0j(T; ; �)r���jT ;Ji = Li0(T; ; �)r 1T + NXj=1 Lij(T; ; �)r���jT :Similarly we an rewrite (12) as!"�t� = PM �"�r � a;X(�;r�)� a;�(�;r�)�� 1"w;�(�)� f;�T � ;Altogether the total entropy density is given bybulk entropy + surfae entropy = s(e; ; �)� �"a(�;r�) + 1"w(�)�6



and a straightforward omputation shows (setting �0 = �1)�t(entropy) = �t �s(e; ; �)� "a(�;r�)� 1"w(�)�= NXi;j=0r��iT � Lijr��jT �r � NXi;j=0 ��iT Lijr��jT !+ !"X� (�t��)2� "X� r � (a;X��t��)� �r � NXi=0 ��iT Ji � " MX�=1 a;X��t��! :The term in the brakets on the right hand side is the entropy ux. The �rst term representsthe entropy ux due to mass and energy di�usion and the seond one is due to moving phaseboundaries (ompare [2℄). We refer to Alt and Pawlow [3℄ who show that for onservedphase �elds (they all them order parameters) either the energy ux or the entropy uxhas to depend on �t� in order to desribe phase transitions.The above inequality shows that the loal entropy prodution is positive where theentropy ux Js is given by Js = NXi=0 ���iT Ji�� " MX�=1 a;p��t��:2.2. The sharp interfae model. In Setion 4 we use the method of asymptoti expan-sions to relate the phase �eld model of the previous subsetion to the sharp interfae modelwhih we state in the following. We obtain that the domain 
 is separated in phase regions
1,...,
M oupied by the pure phases 1; :::;M suh that in every phase 
�, � = 1; :::;M ,the following evolution equations hold�te� = �r � L�00(T �; �)r 1T � � NXj=1 L�0j(T �; �)r��jT �! (energy balane), (15)�t�i = �r � L�i0(T �; �)r 1T � � NXj=1 L�ij(T �; �)r��jT �! 8i (mass balanes). (16)These equations an be e.g. formulated in the variables (T; �) (then the internal energye� and the onentrations � are given as e� = e�(T �; ��) and � = �(T �; ��)) or asmore ommonly used in the variables (T; ) (then the internal energy e� and the hemialpotentials �� are given as e� = e�(T �; �) and �� = �(T �; �)).7



On a (smooth) boundary ��� between two phases � and � we have (assuming anisotropi surfae energy)T � = T � =: T (ontinuity of temperature), (17)���i = ���i =: ��i 8i (ontinuity of hem. potentials), (18)[e℄�� v = [J0℄�� � � (energy balane), (19)[i℄�� v = [Ji℄�� � � 8i (mass balanes), (20)m�� v = ���+ [f ℄�� �Pi ��i [i℄��T (Gibbs-Thomson relation). (21)Here, � = ��� is the unit normal pointing into �, v is the speed of � in this diretion and� is the mean urvature. The quantities���i = ��i � 1N NXj=1 ��j = 1N NXj=1(��i � ��j ) where ��i = f�;i(T; ) (22)are the generalized hemial potential di�erenes in phase � and [�℄�� denotes the jump ofthe quantity in the brakets aross the interfae. The quantity �� is the surfae entropydensity and the relation between the surfae entropy and the entropy density in the phase�eld model is given by �� = infp �2 Z 1�1pw(p)pa(p; p0 
 �)� (23)where the in�mum is taken over all Lipshitz ontinuous funtions p onneting the minimaof w orresponding to the phases adjaent to the interfae, i.e. p(�1) = e� and p(1) = e�.The kineti oeÆient m�� an also be expressed in terms of the minimizer p (see [17℄).In general, a and w might depend on temperature and on the onentrations leading toa temperature and onentration dependent surfae entropy in the sharp interfae limit.In this ase, the surfae terms would also enter the internal energy. For a thin interfaeanalysis of a partially linearized model for pure substanes we refer to [30℄.To perform a thin interfae analysis for our model would require to study �elds like s,f , T and  in the interfaial region to a higher order. We do not pursue this issue furtherat this stage.We remark that the Gibbs-Thomson equation an be derived by loally maximizing en-tropy, onserving onentration and energy at the same time. For a stationary at interfaethe equations (17), (18) and (21) yield the lassial equilibrium for phase boundaries. Theequilibrium ondition at a at boundary in rest separating phases � and � are���i = ���i for all i = 1; :::; N:In addition the temperature has to be the same and (see (21))[f ℄�� �Xi ��i [i℄�� = 0:For M phases to be in equilibrium we therefore have (N +1)(M � 1) onditions. For eahphase we an hoose N � 1 omponents and the temperature. Altogether there areMN � (N + 1)(M � 1) = N �M + 18



degrees of freedom. This is the Gibbs phase rule. We remark that for two omponentsystems the equilibrium onditions between two phases lead to the well known ommontangent onstrution.Finally, at triple juntions where three phases �; � and Æ meet a fore balane of theform ����� + �Æ��Æ + Æ��Æ� = 0 (24)has to hold (ompare [19℄). Here, ���; ��Æ and �Æ� are the tangents to the interfaes ���;��Æand �Æ� and they are assumed to either all pointing in the diretion of the triple juntionor they are all pointing away from the triple juntion. It an be easily seen that this forebalane is equivalent to ertain angle onditions at the triple juntion.In the Appendix we will demonstrate that the entropy does not derease for solutions ofthe above problem. In partiular for a losed system we obtain using appropriate transporttheorems and assuming m � 0 and L = (Lij)i;j=1;:::;N is positive semi-de�nite:ddt�Z
 s(e; )dx� Z� dHd�1� = Z
 �r 1T � J0 +Xi r���iT � Ji�dx+ Z�mv2dHd�1 � 0where the integral over � is an integral over all possible interfaes.3. ExamplesIn this setion we will �rst demonstrate that the phase �eld method is apable to modelsystems with a very general lass of phase diagrams. In the way it is formulated, the modelan desribe systems with onave entropies s�(e; ) in the pure phases. This orrespondsto free energies f�(T; ) whih are onvex in  and onave in T . In the ase that f(T; ) isnot onvex in the variable , the free energy needs to ontain gradients of the onentrations(similar as in the Cahn-Hilliard model).We will �rst give a rather general example, whih already overs most examples inpratie, and then disuss relations to existing models and possible partial linearizationsof the system.3.1. Possible hoies of the free energy. Choosing the phase �eld � suh that � = eMorresponds to the liquid phase, we de�ne bulk free energies for the individual phases byf�(T; ) = NXi=1 �iL�i T�T�iT�i + RvmTi ln(i)�� vT (ln(T )� 1)with LMi = 0 and L�i , i = 1; :::; N , � = 1; :::;M � 1, being the latent heat per unitvolume of the phase transition from phase � to the liquid phase of the pure omponenti. Furthermore, T �i , i = 1; :::; N , � = 1; :::;M � 1, is the melting temperature of the i-thomponent in the phase �, v is the spei� heat whih is assumed to be independent of and �; the molar volume vm ist supposed to be a onstant, R is the gas onstant. Thenwe de�ne the total free energy density as follows:f(T; ; �) := MX�=1 NXi=1 �iL�i T�T�iT�i h(��)� + NXi=1 � RvmTi ln(i)�� vT (ln(T )� 1) (25a)where h is a monotone funtion on [0; 1℄ that satis�es h(0) = 0 and h(1) = 1. Examplesare h(�) = � or h(�) = �2(3� 2�). The last one has the property h0(0) = h0(1) = 0 whih9



is suitable for phase �eld models as we will see below. With this hoie of h the funtionf is an interpolation of the individual free energy densities f�.We an alulates = �f;T = � MX�=1 NXi=1 �i L�iT�i h(��)�� NXi=1 � Rvm i ln(i)� + v ln(T ); (25b)so that e = f + Ts = � MX�=1 NXi=1 (iL�i h(��)) + vT: (25)We remark that if L�i = L� for all omponents i then e does not depend on . The hemialpotentials are given as�i(T; ; �) = f;i(T; ; �) = MX�=1 �L�i T�T�iT�i h(��)� + RvmT (ln(i) + 1): (26)Expressions for the quantities above in the pure phases are obtained by setting �� = e�.For example we have��i = �if� = �if(T; ; e�) = L�i T�T�iT�i + RvmT (ln(i) + 1)for the hemial potential of the i-th omponent in the phase �.Now we give some examples for the terms modelling interfaial ontributions to the freeenergy. The simplest form of the gradient energy isa(�;r�) = jr�j2 = MX�=1 jr��j2:However, it has been shown [17, 19, 39℄ that gradient energies of the forma(�;r�) = X�;�=1�<� A��(��r�� � ��r��)where A�� are onvex funtions that are homogeneous of degree two are more onvenientwith respet to the alibration of parameters in the phase �eld model to the surfae termsin the sharp interfae model. A hoie that leads to isotropi surfae terms isa(�;r�) =X�<� ~��~m�� j��r�� � ��r��j2with onstants ~�� and ~m�� that an be related to �� and m�� in (21) (f. [17℄). For thebulk potential one may take the standard multi well potentialwst(�) = 9X�<� ~m��~���2��2�or a higher order variant ~wst(�) = wst(�) + X�<�<Æ ��Æ�2��2��2Æ:10



For pratial omputations the multi obstale potential yields good alibration properties.It is de�ned by wob(�) = 16�2 X�<� ~m��~������with a higher order variant ~wob(�) = wob(�) + X�<�<Æ ��Æ�����Æwhere wob and ~wob are de�ned to be in�nity whenever � is not on the Gibbs-SimplexG = fd 2 �M : d� � 0g. We refer to [18℄ and [19℄ for a further disussion of the propertiesof the surfae terms.3.2. Possible hoies of the mobility matrix. Here we only give an example for thepart of the mobility matrix (Lij)i;j=0;:::;N that de�nes mass di�usion resulting from hemialpotential di�erenes, i.e. we do not speify Li0 = L0i for 0 � i � N . An example for thoseterms, whih in partiular de�ne ross e�ets between mass and energy di�usion will begiven in Setion 3.4.If li(i; T; �) are the nonnegative bare mobilities of the pure omponents we an argueas in [4℄ to obtainLij(T; ; �) = li(T; i; �) Æij � � NXq=1 lq(T; q; �)��1lj(T; j; �)! ; 1 � i; j � N:To give a simple example we assume that all bare mobilities are the same onstant (e.g.li(T; i; �) = 1). Hene (Lij)Ni;j=1 = id� 1N 1
 1;where 1 = (1; : : : ; 1) and 
 is the tensor produt. Often it is more reasonable to assumethat the bare mobilities li are linear in i, and in the simplest ase (li(T; i; �) = i) weobtain (Lij)Ni;j=1 = (i(Æij � j))Ni;j=1:Choosing a free energy of the form (25a) and taking (26) into aount we get the followingequations for the onentrations:�ti = �r � "Li0r 1T + NXj=1 i(Æij � j)r�� MX�=1(L�j ( 1T�j � 1T )h(��))� Rvm (ln(j) + 1)�#= r � "Li0r 1T + MX�=1 NXj=1 Lijr�L�j ( 1T�j � 1T )h(��)�#+ Rvm�i:3.3. Relation to the Penrose-Fife model. In this subsetion we will demonstrate thatour model inludes the model of Penrose and Fife [34℄ as a speial ase. In this ase thereis only one omponent and we an neglet the variable . There are two phases, so we willwrite the equations in terms of the solid fration  = �1. Then by (2) �2 = 1�  .The �rst phase, the solid one, is haraterised by � = 1, hene  = 1. We assume itsfree energy density to be f s = LT�TmTm � vT (ln(T )� 1)11



where Tm is the melting temperature and L the latent heat of the solid-liquid phase tran-sition. The seond phase, the liquid one, is haraterised by � = e2, so  = 0, and we takethe free energy density to be f l = �vT (ln(T )� 1):We have f(T;  ) = LT�TmTm h( )� vT (ln(T )� 1);hene s(T;  ) = � LTmh( ) + v ln(T )so that e(T;  ) = �Lh( ) + vT . The evolution equation for the energy density yieldsv�tT � Lh0( )�t = �r � �L00r 1T � :No we hoose L00 = vK2T 2, �( ) = Lh0( )=v anda(�;r�) = 2 jr�j2 = 2(jr�1j2 + jr�2j2)where  = �1v=(2") for some onstant �1. Setting ! = 1, K1 = v=(2") ands0( ) = � 1"vw( ; 1�  )� LvTmh( ):we arrive at the system �t = K1 ��( )T + s00( ) + �1� � ;�tT � �( )�t = K2�Twhih is the model of Penrose and Fife [34℄, Chapter 6.3.4. A linearized model. In this subsetion we are going to partially linearize our model.This is done in suh a way that the evolution equations in the pure phases are linear andthey indeed redue to standard linear di�usion equations. We restrit ourselves to binarysystems but a generalization to higher order systems is straightforward.We denote by  = 1 the onentration of the �rst omponent; therefore 2 = 1 � .Using that L is symmetri and the algebrai onstraints (10) we obtainL01 = L10 = �L02 = �L20 and L11 = L22 = �L12 = �L21:Furthermore, we introdue the hemial potential di�erene� = f; = f;1 � f;2 = �1 � �2:Then the onservation laws for energy and onentration read (up to a fator 2 in the lastterm of the right hand sides)�te = �r � L00r 1T �r � L10r�f;T ; (27a)�t = �r � L10r 1T �r � L11r�f;T : (27b)Choosing L11 = D Tf; ; L10 = L01 = e;D Tf; and L00 = e2;D Tf; +KT 212



the system (27a),(27b) redues to�te = r � �KrT + e;Dr+ e;D f;�f;r�� ; (28a)�t = r � �Dr+D f;�f;r�� : (28b)Here K and D are oeÆients that may depend on �. These equations (28a), (28b) thenhave to be oupled to the phase �eld system (12).We assume as in (25) that the internal energy density is aÆne linear in the variables(T; ). Then the system (28a), (28b) redues in regions where � is onstant, i.e. in thepure phases, to (here K and D are onstants)v�tT = r �KrT = K�T; �t = r �Dr = D�:Here v is the spei� heat. These are lassial linear di�usion equations for temperature(Fourier's law) and onentration (Fik's law).3.5. Relation to the Caginalp model. If we further linearize the system it an be seenthat our model leads to a generalization of the original phase �eld model [7℄ to the aseof alloy solidi�ation. We onsider a three phase system for a binary alloy. We hoose thefree energy densityf(T; ; �) = �� 2 � 3X�=1 L�1���T � vT (ln(T )� 1)� 3X�=1 L�2��;where L�2 are latent heat oeÆients and L�1 and � respetively are oeÆients enteringthe hemial potentials. Then we gets = �f;T = ��� 2 � 3X�=1 L�1���+ v ln(T );e = f + Ts = vT �X� L�2��;�T = f;T = ��X� L�1��;r�T = f;��T = �L�1 � L�2T :Choosing the mobility matrix as in the previous subsetion we obtain�te = �t�vT �X� L�2��� = r � (KrT );�t = r �Dr���X� L�1���:For the gradient energy we take the isotropi funtion a(�;r�) = 12P� jr��j2. Thenthe equations for the phase �eld variables are!"�t�� = "��� � 1"w;��(�) + L�1 + L�2T � �;13



where � is the Lagrange multiplier (13). Now we linearize the term 1T in the above equationaround a temperature Tm to obtain!"�t�� = "��� � 1"w;��(�) + L�1 + L�2 � 1Tm � 1T 2m (T � Tm)�� �:The equations for (T; ) are linear and all terms in the equation for � are linear exeptfor the term w;��. A omplete linearization annot be expeted beause systems withmoving interfaes an never be linear as an be seen easily for the sharp interfae model.Finally we remark that this simpli�ation of the model leads to a linearized phasediagram, in partiular the magnitude of the jump of the onentration in the sharp interfaemodel is onstant for eah of the phase boundaries.3.6. Fields of appliation. In this paragraph, we omment on the generality of the pre-sented phase-�eld model, on the new features and on the various di�erent appliationsto solidi�ation proesses, mirostruture formation and polyrystalline grain growth. Bysetting up the phase-�eld model for an arbitary number of alloy omponents and phases ina non-isothermal system, the set of governing equations is apable to desribe the oupledheat- and mass di�usion proesses as well as the phase transformations in multi-omponentsystems. Due to the exiblity to hoose parameters in the gradient and in the potentialfree energy, the model onsists of enough degrees of freedom to presribe the physis ofeah phase boundary and interfae seperately by de�ning values for appropriate surfaeenergies ~�� and for the mobilities ~m��. The model allows for both, kineti and surfaeenergy anisotropies. Di�erent types of anisotropy suh as smooth and rystalline expres-sions orresponding to Wul� shapes with a di�erent number of verties an be realizedin 3D. Considering the appliation point of view, the e�et of the type and strength ofanisotropy on the growth struture an be investigated. Examples of experimentally ob-served anisotropi harateristis in euteti systems are tilted or spiral phase formationsand the growth of neighbouring euteti grains.The phase-�eld variables �� an represent di�erent phases and di�erent grains of orien-tational variants at the same time. Therefore, phenomena suh as euteti grain formationinvolving di�erent length sales (grains on the larger sale and a euteti struture on asmaller sale) and interpretations of the non-onserved order parameters an be desribedusing the new model. A main fous of appliation in future development is the two andthree dimensional numerial simulation of solidi�ation in multi-omponent alloy systemswith arbitrary phase diagrams. By hoosing the spei� thermodynamial quantities - thelatent heats of fusion L�i and the melting temperatures T �i - and by inserting these data asinput parameters for the numerial simulations, di�erent types of phase transformationssuh as peritetis, eutetis and monotetis are modelled. In partiular, the stability ofternary euteti lamellae with phase arrays of di�erent period length and phase permuta-tions will be investigated by phase-�eld simulations in a forthoming paper. The resultsof omputed strutures are ompared with a generalization of the lassial Jakson-Hunttheory for ternary eutetis. The ourane of a ternary phase impurity leads to the for-mation of euteti olonies. The resulting omplex struture is of multi-sale type and analso be modelled with the new approah.4. Relating the models by asymptoti expansionsBy mathed asymptoti expansions we want to establish the relation between the phase�eld model and the sharp interfae model that were both desribed in Setion 2. We are14



going to generalize methods developed by Caginalp, Fife [8℄, Bronsard, Garke, Stoth [6℄,Garke, Novik-Cohen [20℄, and Garke, Nestler, Stoth [17℄. We restrit ourselves to twospae dimensions, i.e. d = 2, but generalizations are possible.Sine the quantities (T; ��) are ontinuous aross a phase boundary it will be onvenientto use them in the asymptoti expansions. More preisely we will use the variables � andu = (�1T ; ��1T ; : : : ; ��NT ). Sine f(T; �; �) is stritly onvex and f(�; ; �) is stritly onave weobtain that the mappings(T; ; �) 7! (u; �) and (e; ; �) 7! (u; �)are both invertible and a hange of variables between these quantities is possible.We will use the variables (u; �) in the asymptotis but the equations an always bereinterpreted with respet to the variables (T; ; �) or (e; ; �). We write the onservationlaws as �ti(u; �) = r � NXj=0 Lij(u; �)ruj; 0 � i � N;where we have set 0 = e.The phase �eld equations are!"�t� = PMh"�r � a;X(�;r�)� a;�(�;r�)�� 1"w;�(�) + u0f;�(T (u; �); (u; �); �)i;We assume that the matrix L = (Lij)Ni;j=0 is stritly positive de�nite for all argumentson the spae HN := nd = (di)Ni=0 2 RN+1 : NXi=1 di = 0o = R� T�N :In addition we will frequently make use of the fat that a is 2-homogeneous in the variableX. In partiular we have (f. [17℄)a;X(�; �X) : X = 2�a(�;X); (29a)a;�(�; �X) : X = �2a;�(�;X); (29b)a(�; 0) = 0; (29)a;X(�; 0) = 0: (29d)4.1. Outer expansion. We expet, e.g. based on experienes from numerial simulations,that several phases arise whih are separated by di�use interfaes whose thikness is of order". We will see that these phases orrespond to the M minima of the potential w. In suha phase, away from an interfae to another phase, we onsider an outer expansion in thebulk region. For a funtion b in (t; x) we make the ansatzbout(t; x) = 1XK=0 "KbKout(t; x): (30)In this way we expand the variables uj and ��, 0 � j � N , 1 � � � M . For theonstraints � 2 �M and u 2 HN to be satis�ed we assume�0out 2 �M ; �Kout 2 T�M ; K � 1;uKout 2 HN ; K � 0:15



First we onsider the equation for the phase �eld variables. We expand PMw;�(�),PMw;�(�) = PMw;�(�0out) + "(PMw;�);�(�0out) � �1out +O("2):To leading order O("�1) the equation (12) beomes0 = PMw;�(�0out) = w;�(�0out)� 1M  MX�=1 w;��(�0out)! 1: (31)As we are searhing for stable solutions for this equation, �0out is one of the base vetorsfe�g1���M . We an onlude that to leading order the whole domain 
 is partitioned intophases whih are haraterized by the M possible values of �0out.The O(1)-equations for the onserved variables are (0 � i � N)�ti(u0out; �0out) = r � NXj=0 Lij(u0out; �0out)ru0j;out: (32)Boundary onditions for these equations will be obtained by mathing with the innerexpansion. One should remark that we have expanded the oeÆients Lij in (u0out; �0out)in the same way as PMw;� in �0out. In phase �, i.e. at points where �0out = e�, we writeL�ij(u) = Lij(u; e�). Then the O(1)-equations beome�ti(u0out; e�) = r � NXj=0 L�ij(u0out)ru0j;out:Sine 0 = e, u0 = � 1T and uj = �jT we obtain the equations (15) and (16). We remarkthat an upper index in (15) and (16) refers to the phase whereas an upper index in thissetion refers to the order in the expansion.4.2. Inner expansion. Now we onsider an interfaial region where two phases meet.Without loss of generality we assume that �0out = e1 in one of the outer regions, denotedby 
1, and �0out = e2 in the other one, denoted by 
2. We assume that these two regionsare separated by a family f�tgt of evolving smooth urves. Let  be a smooth funtionsuh that s 7!  (t; s) is an ar-length parametrization of �t. The unit tangential vetor�(t; x) on �t in x =  (t; s) is given by �(t; x) = �s (t; s), the unit normal �(t; x) on �tin x =  (t; s) is suh that (�; �) is positively oriented. We hoose the orientation in theparametrization  suh that � points into 
1.Sine the parametrization is smooth, it is possible to introdue new spae oordinates(z(t; x); s(t; x)) in a strip S around �t in the following way. We de�ne r(t; x) = d(x;�t) tobe the signed distane between a point x and �t, i.e. r is positive in 
1 and negative in
2. Then the variable z is de�ned by z(t; x) = 1"r(t; x). Let Pt be the projetion of S onto�t. Then by the smoothness of �t one an use the strip S narrow enough suh that thereis exatly one s(t; x) for every x 2 S suh that Pt(x) =  t(s). It holdsrxz(t; x) = 1"�(t; Pt(x));rxs(t; x) = �(t; Pt(x)) +O("):In the new variables (t; z; s) we make for some real funtion b in (t; x) the ansatzbin(t; x) = 1XK=0 "KbKin(t; z(t; x); s(t; x)): (33)16



Introduing the notation �(Pt(x)) = �(t; s(t; x)) and similarly for �(Pt(x)) = �(t; s(t; x))we obtainrxbin(t; z(t; x); s(t; x)) = 1" [�zbin(t; z; s)℄�(t; s) + [�sbin(t; z; s)℄�(t; s) +O(");and for some vetor �eld ~b we haverx �~b(t; z(t; x); s(t; x)) = 1"(�z~b(t; z; s)) � �(t; s) + (�s~b(t; z; s)) � �(t; s) +O("):Moreover it holds �tz(t; x) = �t 1"d(x;�t) = �1"v(Pt(x));�ts(t; x) = �v� (Pt(x)) +O(")where v is the normal veloity and v� the tangential veloity. We remark that v� dependson the parametrization whereas v is an intrinsi quantity. This leads toddtbKin(t; z(t; x); s(t; x)) = �tbKin(t; z; s)� 1"v�zbKin(t; z; s)� v��sbKin(t; z; s) +O("):Now we expand � and u in the variables (t; z; s) and we assume�0in 2 �M ; �Kin 2 T�M ; K � 1;uKin 2 HN ; K � 1;to ensure that the onstraints on � and u are satis�ed. Taking a Taylor expansion of Lijaround (u0in; �0in) and writing L0;inij = Lij(u0in; �0in) we obtain from the onservation laws formass and energy to lowest order, i.e. O("�2):0 = ddz  NXj=0 L0;inij �zu0j;in! ; 0 � i � N (34)where we used that �z� = 0. Integrating yieldsL�zu0in = k (35)for some vetor k 2 RN+1. Later the mathing with the outer solution will give k = 0.We have �z� = 0; �z� = 0; �s� = ��; �s� = ���;where � is the urvature of �t. Conerning the sign of the urvature we remark that fora irle of radius r whose normal is outward oriented (with our orientation the tangent isthen running ounterlokwise) the urvature is �1=r.Hene the O("�1)-equations of the onserved quantities are�v�zi(u0in; �0in) =� � NXj=0 L0;inij �zu0j;in!+ ddz  NXj=0 L0;inij �zu1j;in!+ ddz  NXj=0((Lij)0;in;u � u1j;in + (Lij)0;in;� � �1in)�zu0j;in! : (36)These equations will further simplify when an expression for u0in has been derived.17



Now we onsider the equations for the phase �eld variables. As done in [17℄ we expandthe a-terms in (�0in; �z�0in 
 �), the w-term in �0in and the f -term in (u0in; �0in). To leadingorder O("�1) we then obtain the equation0 = ddz �PMa;X(�0in; �z�0in 
 �)� � � PMa;�(�0in; �z�0in 
 �)� PMw;�(�0in): (37a)Multiplying this equation with �z�0in 2 T�M gives0 = ddz �a;X(�0in; �z�0in 
 �) : (�z�0in 
 �)� a(�0in; �z�0in 
 �)� w(�0in)� : (37b)The equation of order O(1) is�!v�z�0in = ddz �(PMa;X);� � �1in + (PMa;X);X : (�s�0in 
 � + �z�1in 
 �)� � + dds(PMa;X)�� (PMa;�);� � �1in � (PMa;�);X : (�s�0in 
 � + �z�1in 
 �)� (PMw;�);� � �1in + PMu00;inf;�(T (u0in; �0in); (u0in; �0in); �0in) (38)where w and all its derivatives are evaluated in �0in and a and its derivatives in (�0in; �z�0in
�).4.3. Mathing and resulting jump onditions. For some quantity b(t; x) we gave by(30) and (33) expansions in bulk regions respetively in a strip around an interfae betweensuh regions. Now we want to math these expansions in an overlap domain. We will needthe mathing onditions of order zero and one. For the outer expansions in 
1 and 
2 wewill use the subsripts bout1 and bout2.We observe that near �t we an express the funtions bKout(t; x) in the variables (t; z; s).By expanding in power series in (0; s(t; x)) whih orresponds to the boundary point t(s(t; x)) 2 �t (remember that z(t; x) = 1"r(t; x) and �r = � � rx) we obtain:bKout(t; x) = bKout(t; r(t; x); s(t; x))= bKout(t; 0; s(t; x)) + r�r(bKout)(t; 0; s(t; x)) +O(r2)= bKout(t; 0; s(t; x)) + "z(rxbKout(t; 0; s(t; x)) � �(t; 0; s(t; x))) +O("2)where bKout(t; 0; s) and rxbKout(t; 0; s) mean the evaluation in (t; Pt(x)). We getbout(t; x) = b0out(t; 0; s) + " �z(rxb0out(t; 0; s) � �(t; s)) + b1out(t; 0; s)�+O("2):Now we onsider an intermediate variable z" = �(")z for some z > 0 where �(") is somefuntion in " in the overlap domain of validity of the two expansions (whih we suppose toexist), i.e. � = o(1) and " = o(�). Beause of z = r=" we have z" ! �1 as "! 0.We substitute the variable z in our expansions by this intermediate variable z" andonsider their di�erene; the expansions of u math if, in the limit as "! 0, the terms ofevery order "K vanish. For the O(1)-terms this means0 != lim"&0 �b0out1(t; 0; s)� b0in(t; z"; s)� = limz"!1 �b0out1(t; 0; s)� b0in(t; z"; s)� ;0 != lim"%0 �b0out2(t; 0; s)� b0in(t; z"; s)� = limz"!�1 �b0out2(t; 0; s)� b0in(t; z"; s)� ;18



while for the O("1)-terms the mathing ondition is0 != limz"!1 �z"rxb0out1(t; 0; s) � �(t; s) + b1out1(t; 0; s)� b1in(t; z"; s)� ;0 != limz"!�1 �z"rxb0out2(t; 0; s) � �(t; s) + b1out2(t; 0; s)� b1in(t; z"; s)� :First we apply the mathing onditions on the funtions u0j;in, 0 � j � N , solving thedi�erential equations (35). The assumption on L yields�zu0in = L�1k:By the mathing onditions of order zero u0in must be bounded if jzj ! 1. Then theassumption on L gives neessarily k = 0 so that u0in is onstant.Sine u0in is onstant, we obtain that u0out1(t; 0; s) = u0out2(t; 0; s) and hene u and there-fore the temperature and the hemial potential di�erenes are in the sharp interfae limitontinuous aross an interfae.Now, due to �zu0j;in = 0 the O("�1)-equations (36) for the onserved variables simplifyto �v�zi(u0in; �0in) = ddz  NXj=0 Lij(u0in; �0in)�zu1j;in! :Integrating with respet to z from �1 to 1 (or, more orretly, integrating from �R toR and then onsidering the limit as R!1) and using that v(t; s) is independent of z weobtain v �i(u0in; �0in)�z%1z&�1 = �" NXj=0 Lij(u0in; �0in)�zu1j;in#z%1z&�1 :As has been shown in [8, 6℄ the mathing onditions of order one for the b1j;in yield�zb1j;in !rxb0j;out1 � � for z !1and �zb1j;in !rxb0j;out2 � � for z ! �1where the right hand sides are evaluated in (t; x) = (t;  t(s)) or, in the other oordinates,in (t; r; s) = (t; 0; s(t; x)). In fat, these are the boundary values of rxu0j;out� ��, � 2 f1; 2g,on �t. After mathing for the phase �eld variables � we obtainv[i℄12 = v�i(u0out1; �0out1)� i(u0out2; �0out2)�(t; x)= v �i(u0in; �0in)�z%1z&�1= �� NXj=0 L0;out1ij rxu0j;out1 � L0;out2ij rxu0j;out2�(t; x) � �(t; x)= �Ji(u0out1; �0out1)� Ji(u0out2; �0out2)�(t; x) � �(t; x)= [Ji℄12 � �We will refer to this fat to be the jump ondition for the inner energy density e = 0 andthe onentrations i, 1 � i � N . 19



4.4. Mathing and the Gibbs-Thomson relation. In the bulk regions we have �0out� =e�, � 2 f1; 2g. Hene for eah s, we have to solve equation (37a) of seond order in z withrespet to the boundary onditions e1 for z !1 and e2 for z ! �1.By integrating (37b) and using (29), (29d) and w(e1) = w(e2) = 0 we obtain0 = a;X(�0in; �z�0in 
 �) : (�z�0in 
 �)� a(�0in; �z�0in 
 �)� w(�0in):Using (29a) we dedue a(�0in; �z�0in 
 �) = w(�0in) (39)whih is known as equipartition of energy. We setC0;1�� ([�1; 1℄;�M) = �p : [�1; 1℄! �M j p Lipshitz ont., p(�1) = e� and p(1) = e�	(40a)and de�ne the surfae entropy for some e 2 Rn to be��(e) = inf �2 Z 1�1pw(p)pa(p; p0 
 e)(y)dy j p 2 C0;1��	: (40b)As shown in [40, 17℄, if a minimizer exists for e = �(t; s) then a reparametrization of theminimizer ful�lls (37a) and in addition2;1(�) = Z 1�1 �a(�0in; �z�0in 
 �) + w(�0in)� dz: (41)Now we want to dedue the Gibbs-Thomson law. We multiply the equation (37a) for �0inby �z�1in 2 T�M and the equation (38) for �1in by �z�0in 2 T�M . Observe that we an dropthe projetions PM . Then we sum up the two equations and integrate from �1 to1 withrespet to z. Some straightforward alulations together with the mathing onditions forthe boundary values yield the following solvability ondition for equation (38):�!v Z 1�1(�z�0in(z; s))2 = dds �Z 1�1 a;X(�0in(z; s); �z�0in(z; s)
 �(s)) � �z�0in(z; s)dz� �(s)+ Z 1�1 u00;inf;�(T (u0in; �0in)(u0in; �0in); �) � �z�0indz: (42)Using that u00;in and �u0in = (u01;in; :::; u0N;in) are independent of z the last term on the r.h.s.of (42) yields Z 1�1 u00;inf;�(T 0in; 0in; �0in) � �z�0indz= Z 1�1� ddz �u00;inf(T 0in; 0in; �0in)�� u00;inf;(T 0in; 0in; �0in) � �z0in� dz= Z 1�1� ddz �u00;inf(T 0in; 0in; �0in)�+ �u0in � �z0in� dz= �u00;inf(T 0in; 0in; �0in) + �u0in � 0in�z%1z&�1=: �u00 �f(T 0; 0; �0)� f;(T 0; 0; �0) � 0� �12:20



Here we use the abbreviation T 0in = T (u0in; �0in), 0in = (u0in; �0in), T 0 = T (u0; �0) and0 = (u0; �0). Finally as [0℄ 2 T�N we obtainZ 1�1 u00;inf;�(T 0in; 0in; �0in) � �z�0indz = �� [f 0℄12 � �0 � [0℄12T 0 � (t; x):Calulating the total derivative of 2;1 whih beomes with (41)D2;1(�) = Z 1�1 a;X � �z�0indzand setting m(�) = ! Z 1�1(�z�0in)2dzthe solvability ondition redues to (writing rs � g = (�sg) � � for the surfae divergene ofsome vetor �eld g on �t)m(�)v = �rs �D2;1(�) + [f 0℄12 � �0 � [0℄12T 0 :Considering � and  as funtion in an angle � 2 [0; 2�), i.e. setting �(�) = (os(�); sin(�))and ̂(�) = (�(�)) one an derive (see [17℄)rs �D2;1(�) = �(̂2;1(�) + ̂002;1(�))�with the urvature � = �rs � � whih may be inserted into the solvability ondition toyield m(�)v = (̂2;1(�) + ̂002;1(�))�+ [f 0℄12 � �0 � [0℄12T 0 :Finally, the fore balane at triple juntions (24) an be derived as in [17℄. Therefore, allequations de�ning the sharp interfae model have been derived by asymptoti expansions.5. AppendixIn this Appendix we want to show that for the sharp interfae model desribed in Setion2 the entropy does not derease in time. We onsider a situation where a bounded domain
 is partitioned intoM phases 
1(t); : : : ;
M(t) whih are separated by smooth boundaries���(t) = 
� \ 
� \ 
. For simpliity we restrit ourselves to two spae dimensions, butthe alulations an also be done in higher dimensions.Given some domainR(t) � 
 with smooth boundary �R(t) and a smooth evolving urve�(t) � 
 with normal veloity v we will make use of the following transport identities:ddt �Z�(t)  dH1� ���t=t0 = � Z�(t0) �v dH1 + Xendpoints _p � � andddt �ZR(t) u dx� ���t=t0 = ZR(t0) �tu dx+ Z�R(t0) uv dH1(x)for some smooth funtion u = u(t; x) and some onstant ; � is the urvature of theinterfae � and � is the unit normal. By _p we denote the veloity of the endpoints of �and � is the exterior tangent vetor to �(t) at the endpoints.Let the evolution in eah phase be given by�teq = �r � Jq0 ; �tqi = �r � Jqi ; 1 � i � N; 1 � q � M:21



with the uxes given in (15) and (16). We assume that the funtions are smooth intheir domain 
q and that the uxes vanish at the external boundary of 
. Observe that��t = r � J 2 T�N . Thenddt �Z
(t) s(e; ) dx� ���t=t0 =X� Z
�(t0) �ts(e; ) dx�X�<� Z���(t0)[s℄��v dH1=X� Z
�(t0) �s;e�te+Xi s;i�ti� dx�X�<� Z���(t0)[s℄��v dH1= �X� Z
�(t0) 1Tr � J0 +Xi ���iT r � Ji! dx�X�<� Z���(t0)[s℄��v dH1=X� Z
�(t0)r 1T � J0 +Xi r���iT � Ji dx+X�<� Z���(t0) h 1T J0 +Xi ���iT Jii�� � � � [s℄��v! dH1:The fat that L is positive semi-de�nite leads tor 1T � J0 +Xi r���iT � Ji � 0:Besides we make use of the ontinuity onditions (17), (18) and the jump onditions (19),(20) to obtainddt �Z
(t) s(e; ) dx� ���t=t0 �X�<� Z���(t0) � 1T [e℄��v +Xi ���iT [i℄��v � [Ts℄��T v� dH1=X�<� Z���(t0) [f ℄�� �Pi �i[i℄��T v dH1:Furthermore we haveddt  � Z���(t) �� dH1! ���t=t0 = Z���(t0) ���v dH1 � Xendpoints _p � �����so that we get ddtS���t=t0 = ddt  Z
(t) s(e; ) dx�X�<� Z���(t) �� dH1!���t=t0�X�<� Z���(t0)� [f ℄�� �Pi �i[i℄��T + ���� v dH1=X�<� Z���(t0)m(�)v2 dH1 � 0:22
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