
A DIFFUSE INTERFACE MODELFOR ALLOYS WITHMULTIPLE COMPONENTS AND PHASESHARALD GARCKE, BRITTA NESTLER, AND BJ�ORN STINNERAbstra
t. A non-isothermal phase �eld model for alloys with multiple phases and 
om-ponents is derived. The model allows for arbitrary phase diagrams. We relate the model to
lassi
al sharp interfa
e models by formally mat
hed asymptoti
 expansions. In additionwe dis
uss several examples and relate our model to the ones already existing.1. Introdu
tionThe phase �eld method is a powerful methodology to des
ribe phase transition phe-nomena. The method has been used to des
ribe solidi�
ation pro
esses [7, 34℄ as well asmi
rostru
ture evolution in solids [15℄ and liquid-liquid interfa
es [28℄. There are phase�eld models for pure substan
es [7, 34℄, binary alloys [9, 21℄ for eute
ti
, perite
ti
 andmonote
ti
 systems [45, 31, 32, 33, 39℄ and furthermore also the evolution of grain bound-aries 
an be modelled by phase �eld models or order parameter models [12, 16℄. For re
entreviews or phase �eld methods we refer to [13, 5, 14℄.Traditionally the evolution of interfa
es, su
h as the liquid-solid interfa
e, has beenmodeled as a moving boundary problem. This means that pure phases are separated by asharp interfa
e. In the phases partial di�erential equations, e.g. des
ribing mass and heatdi�usion, are solved. These equations are 
oupled by boundary 
onditions on the interfa
e,su
h as the Stefan 
ondition demanding energy balan
e and the Gibbs-Thomson equation.A
ross the sharp interfa
e 
ertain quantities, e.g. the heat 
ux, the 
on
entration or theenergy, may su�er jump dis
ontinuities.In phase �eld models the individual phases are distinguished by one or more so-
alledphase �elds. In di�erent phases the phase �elds attain di�erent values and interfa
es arenow modelled by a di�use interfa
e, i.e. the phase �elds and also all other quantities donot jump a
ross an interfa
e but they 
hange smoothly on a very thin transition layer (thedi�use interfa
e). For example for a solid-liquid phase transition we 
hoose a phase �eldtaking the value one in the solid and zero in the liquid and a
ross an interfa
e the phase�eld varies smoothly from one to zero.The use of di�use interfa
e models to des
ribe interfa
ial phenomena goes ba
k to vander Waals [42℄, Landau and Ginzburg [26℄ and Cahn and Hilliard [10℄. In the theory ofsolidi�
ation this idea was introdu
ed by Langer [27℄ and Caginalp [7℄. Caginalp and Fife[8℄ used asymptoti
 expansions to relate the phase �eld models proposed by Langer to
lassi
al free boundary problems in the sharp interfa
e limit.1991 Mathemati
s Subje
t Classi�
ation. 35K55, 82C26, 34E05, 35B25, 82C24.Key words and phrases. phase �eld models, sharp interfa
e models, phase transitions, partial di�erentialequations, alloy systems, mat
hed asymptoti
 expansions.1



Sin
e the original phase �eld model is not derived from thermodynami
al prin
iples anumber of so 
alled thermodynami
ally 
onsistent phase �eld models have been proposedin the nineties (see Penrose and Fife [34℄, Alt and Pawlow [2℄, Wang et al. [44℄). All thesemodels guarantee a positive entropy produ
tion.The 
lassi
al asymptoti
s leads to restri
tions on parameters whi
h makes it often dif-�
ult to perform pra
ti
al 
omputations of realisti
 solidi�
ation pro
esses. This ist inparti
ular true in the regime of small under
ooling. In re
ent years Karma and Rappel[23, 24℄ (see also [25, 1, 30℄) used the so 
alled thin interfa
e asymptoti
s to be able to realizenumeri
al simulations in this regime. There, the Gibbs-Thomson equation is approximatedto a higher order and the temperature pro�le in the interfa
ial region is re
overed with ahigher a
ura
y when 
ompared to the 
lassi
al asymptoti
s. Further numeri
al simulations(see [35, 36, 37℄) 
on�rm the superiority of this approa
h in the 
ase of small under
ooling.So far, e�orts to generalize this approa
h to more general situations (see the dis
ussion in[25℄) and in parti
ular an extension to phase �eld systems handling multiple phases is stillan open problem. Therefore, as a �rst step, we apply 
lassi
al sharp interfa
e asymptoti
sto handle general systems with multiple phases and 
omponents. The task of making thisapproa
h more eÆ
ient by the use of thin interfa
e asymptoti
s is left to further resear
h.The aim of this paper is to derive a phase �eld model with the following properties:The model� is thermodynami
ally 
onsistent,� allows for an arbitrary number of phases and 
omponents,� is de�ned solely via the bulk free energies of the individual phases, the surfa
e energydensities (surfa
e entropy densities, respe
tively) of the interfa
es and di�usion andmobility 
oeÆ
ients,� yields 
lassi
al moving boundary problems in the sharp interfa
e limit.The third requirement enables us to de�ne the full set of phase �eld evolution equationsby quantities whi
h (in prin
ipal) 
an be measured. Sin
e the bulk free energies determinethe phase diagrams (see e.g. Chalmers [11℄, Haasen [22℄) our model 
an be used to modelphase transitions for arbitrary phase diagrams. We remark that in a multi phase �eldmodel 
omputing the surfa
e free energy densities (or surfa
e entropy densities) is diÆ
ult.Here one 
an make use of the studies by Gar
ke, Nestler and Stoth [18℄, where free energiesfor phase �eld methods with good 
alibration properties have been developed. This meansthat for given surfa
e free energies (also 
alled surfa
e tensions) one 
an 
alibrate theparameters in the free energies of the phase �eld model in su
h a way that the sharpinterfa
e limit is de�ned via the given surfa
e tensions. In parti
ular the sharp interfa
eproblem is de�ned with the help of the surfa
e free energies.In the following se
tion we introdu
e the phase �eld model in its full generality andstate the 
orresponding sharp interfa
e model. In Se
tion 3 we give examples and relatethe model we propose to models already existing in the literature. Furthermore, we dis
ussa variety of di�erent appli
ations for the new model. Due to its general formulation, themodel has the 
apability to des
ribe phase transformation pro
esses in non-isothermalmulti-
omponent alloys as well as grain stru
ture evolution. Di�erent phases and di�erent
rystal orientations 
an be distinguished at the same time by an appropriate 
hoi
e of thephase �eld variables. This allows to treat e�e
ts o

uring on di�erent length s
ales su
has eute
ti
 grains and interdendriti
 stru
tures.2



Finally, we show in Se
tion 4 via formally mat
hed asymptoti
 expansions that the phase�eld model yields the sharp interfa
e model in the limit when the interfa
ial thi
kness tendsto zero. 2. The modelsWe 
onsider a domain 
 � Rd, d 2 f1; 2; 3g, and we assume that the system has N
omponents with M di�erent phases possible.2.1. The phase �eld model. The phase �eld model is based on an entropy fun
tional ofthe form S(e; 
; �) = Z
 �s(e; 
; �)� �"a(�;r�) + 1"w(�)�� dx: (1)We assume that the bulk entropy density s depends on the internal energy density e,the 
on
entrations of the N 
omponents 
i, 1 � i � N , and the phase �eld variable� = (��)M�=1. The variable �� denotes the lo
al fra
tion of phase � and we require thatthe 
on
entrations of the 
omponents and the phase �eld variables ful�ll the 
onstraintsNXi=1 
i = 1; MX�=1 �� = 1: (2)It will be 
onvenient to use the free energy as a thermodynami
al potential. We thereforepostulate the Gibbs relationdf = �sdT +Xi �id
i +X� r�d�� (3)(see Alt and Pawlow [3℄ who show that the Gibbs relation is a 
onsequen
e of the entropyprin
iple). Here, T is the temperature, �i = f;
i are the 
hemi
al potentials and r� = f;��are potentials due to the appearan
e of di�erent phases.We set e = f + sT; (4)and hen
e de = Tds+Xi �id
i +X� r�d��; (5a)ds = 1T de�Xi �iT d
i �X� r�T d��: (5b)If we interpret s as fun
tion of (e; 
; �) then we haves;e = 1T ; s;
i = ��iT ; s;�� = �r�T :Later it will be 
onvenient to swit
h between the variables (T; 
; �), (e; 
; �), (T; �; �) and(� 1T ; 1T �; �) and we therefore assume for the rest of this paper that� 
 7! f(T; 
; �) is stri
tly 
onvex,� T 7! f(T; 
; �) is stri
tly 
on
ave. 3



This will make the above 
hanges of variables possible.We remark that knowing the free energy densities of the pure phases, we obtain thetotal free energy as a suitable interpolation of the free energies f�, i.e. f is su
h thatf(T; 
; e�) = f�(T; 
), with e� being the �'th 
oordinate ve
tor.So far we negle
ted interfa
ial e�e
ts. The thermodynami
s of the interfa
e gives ad-ditional 
ontributions to entropy and free energy. Let us �rst 
onsider how interfa
ial
ontributions are a

ounted for in a sharp interfa
e model. Let ��� denote an interfa
e be-tween phases � and � and let ��� denote the unit normal at ��� pointing into the �-phase.Then in sharp interfa
e models an interfa
ial term� MX�<��;�=1 Z��� 
��(���)dHd�1 (6)with a positive fun
tion 
�� on Sd�1 is added to the entropy (see [29℄, [43℄). The notationdHd�1 indi
ates integration with respe
t to the (d� 1)-dimensional surfa
e measure.In di�use interfa
e models the surfa
e entropy fun
tional (6) is repla
ed by a Ginzburg-Landau type fun
tional of the form� Z
 �"a(�;r�) + 1"w(�)� dx: (7)Here, a is the gradient energy density whi
h is assumed to be homogeneous of degree twoin the se
ond variable, i.e.a(�; �X) = �2a(�;X) 8(�;X) 2 RM �Rd�M and 8� 2 R+;and w is a non-
onvex fun
tion with exa
tlyM global minima at the points e� = (Æ�;�)M�=1,1 � � � M , with w(e�) = 0. It has been shown under appropriate assumptions on a thatthe fun
tional (7) 
onverges to the perimeter fun
tional (6) when " 
onverges to zero. Werefer to [18℄, [19℄ and Se
tion 3 for appropriate 
hoi
e of a and w. We assume in this paperthat a and w and hen
e the interfa
ial 
ontributions to the entropy do not depend on(T; 
), but these dependen
es 
an be in
luded leading to a mu
h more 
ompli
ated model.Our goal is to derive balan
e equations�te = �r � J0 (energy balan
e); (8a)�t
i = �r � Ji (mass balan
es, i = 1; :::; N) (8b)that are 
oupled to �t�� = r:h:s: (8
)in su
h a way that the se
ond law of thermodynami
s is ful�lled in an appropriate lo
alversion. Here J0 is the energy 
ux and J1; :::; JN are the 
uxes of the 
omponents 
1; :::; 
N .In order to derive appropriate expressions for the 
uxes J0; :::; JN , we use the generalizedthermodynami
 potentials (
ompare (5b)) ÆSÆe = 1T and ÆSÆ
i = ���iT � whi
h will drive the evo-lution. Now we appeal to non-equilibrium thermodynami
s and postulate that the 
uxes4



are linear fun
tions of the thermodynami
 driving for
es r ÆSÆe ;r ÆSÆ
1 ; :::;r ÆSÆ
N to obtainJ0 = L00(T; 
; �)rÆSÆe + NXj=1 L0j(T; 
; �)r ÆSÆ
j= L00(T; 
; �)r 1T + NXj=1 L0j(T; 
; �)r��jT ; (9a)Ji = Li0(T; 
; �)rÆSÆe + NXj=1 Lij(T; 
; �)r ÆSÆ
j= Li0(T; 
; �)r 1T + NXj=1 Lij(T; 
; �)r��jT (9b)with mobility 
oeÆ
ients (Lij)i;j=0;:::;N :To ful�ll the 
onstraint PNi=1 
i = 1 during the evolution, we assumeNXi=1 Lij = 0; j = 0; :::; N (10)whi
h impliesPNi=1 Ji = 0 and hen
e �t �PNi=1 
i� = r��PNi=1 Ji� = 0:We further assumethat L is symmetri
 (Onsager relations) and in addition L is assumed to be positive semi-de�nite, i.e. NXi;j=0Lij�i�j � 0 8� = (�0; : : : ; �N) 2 RN+1: (11)This 
ondition will later ensure that an entropy inequality is satis�ed. We remark thatwe in
lude 
ross e�e
ts between mass and energy di�usion in the model. One 
an negle
tthem by setting Li0 = 0 and L0j = 0 for all i; j 2 f1; : : : ; Ng.For the non-
onserved phase �eld variables �1; :::; �M , we assume that the evolutionis su
h that the system lo
ally tends to maximize entropy 
onserving 
on
entration andenergy lo
ally at the same time. Therefore we postulate!"�t�� = ÆSÆ�� � �= "�r � a;X�(�;r�)� a;��(�;r�)�� 1"w;��(�)� f;��T � �; (12)where we denote with a;X� the derivative with respe
t to the variables 
orresponding tor��. ! is (in this paper) a 
onstant kineti
 
oeÆ
ient and � is an appropriate Lagrangemultiplier su
h that the 
onstraint PM�=1 �� = 1 is satis�ed, i.e.� = 1M X� �" (r � a;X� � a;��)� 1"w;�� � f;��T � : (13)Relevant for the dynami
s are the variational derivatives of S that take the 
onstraints(2) into a

ount. We 
an therefore reformulate the equations (9) and (12) in terms of the5



proje
tion of ( ÆSÆe ; ÆSÆ
j ; ÆSÆ�� ) onto the tangent spa
e of the linear subspa
e whose elementssatisfy the 
onstraints. De�ning�K = fd 2 RK : KXk=1 dk = 1g;and its tangent spa
e T�K = fd 2 RK : KXk=1 dk = 0gthe 
onstraints (2) read as 
 2 �N and � 2 �M . In the following PK will denote theproje
tion onto T�K. Then the relevant quantities for the de�nition of the 
uxes are�PN�� 1T ���i = � 1T  �i � 1N Xj �j! = � 1T 1N Xj (�i � �j)whereas there are no 
hanges to ÆSÆe . We remark that the quantities�i = 1N Xj (�i � �j)
an be interpreted as generalized 
hemi
al potential di�eren
es. For two 
omponents weobtain �1 = (�1 � �2)=2, i.e. the usual 
hemi
al potential di�eren
e multiplied by thefa
tor 1=2.With the above notation we 
an rewrite the 
uxes asJ0 = L00(T; 
; �)r 1T + NXj=1 L0j(T; 
; �)r���jT ;Ji = Li0(T; 
; �)r 1T + NXj=1 Lij(T; 
; �)r���jT :Similarly we 
an rewrite (12) as!"�t� = PM �"�r � a;X(�;r�)� a;�(�;r�)�� 1"w;�(�)� f;�T � ;Altogether the total entropy density is given bybulk entropy + surfa
e entropy = s(e; 
; �)� �"a(�;r�) + 1"w(�)�6



and a straightforward 
omputation shows (setting �0 = �1)�t(entropy) = �t �s(e; 
; �)� "a(�;r�)� 1"w(�)�= NXi;j=0r��iT � Lijr��jT �r � NXi;j=0 ��iT Lijr��jT !+ !"X� (�t��)2� "X� r � (a;X��t��)� �r � NXi=0 ��iT Ji � " MX�=1 a;X��t��! :The term in the bra
kets on the right hand side is the entropy 
ux. The �rst term representsthe entropy 
ux due to mass and energy di�usion and the se
ond one is due to moving phaseboundaries (
ompare [2℄). We refer to Alt and Pawlow [3℄ who show that for 
onservedphase �elds (they 
all them order parameters) either the energy 
ux or the entropy 
uxhas to depend on �t� in order to des
ribe phase transitions.The above inequality shows that the lo
al entropy produ
tion is positive where theentropy 
ux Js is given by Js = NXi=0 ���iT Ji�� " MX�=1 a;p��t��:2.2. The sharp interfa
e model. In Se
tion 4 we use the method of asymptoti
 expan-sions to relate the phase �eld model of the previous subse
tion to the sharp interfa
e modelwhi
h we state in the following. We obtain that the domain 
 is separated in phase regions
1,...,
M o

upied by the pure phases 1; :::;M su
h that in every phase 
�, � = 1; :::;M ,the following evolution equations hold�te� = �r � L�00(T �; 
�)r 1T � � NXj=1 L�0j(T �; 
�)r��jT �! (energy balan
e), (15)�t
�i = �r � L�i0(T �; 
�)r 1T � � NXj=1 L�ij(T �; 
�)r��jT �! 8i (mass balan
es). (16)These equations 
an be e.g. formulated in the variables (T; �) (then the internal energye� and the 
on
entrations 
� are given as e� = e�(T �; ��) and 
� = 
�(T �; ��)) or asmore 
ommonly used in the variables (T; 
) (then the internal energy e� and the 
hemi
alpotentials �� are given as e� = e�(T �; 
�) and �� = 
�(T �; 
�)).7



On a (smooth) boundary ��� between two phases � and � we have (assuming anisotropi
 surfa
e energy)T � = T � =: T (
ontinuity of temperature), (17)���i = ���i =: ��i 8i (
ontinuity of 
hem. potentials), (18)[e℄�� v = [J0℄�� � � (energy balan
e), (19)[
i℄�� v = [Ji℄�� � � 8i (mass balan
es), (20)m�� v = 
���+ [f ℄�� �Pi ��i [
i℄��T (Gibbs-Thomson relation). (21)Here, � = ��� is the unit normal pointing into �, v is the speed of � in this dire
tion and� is the mean 
urvature. The quantities���i = ��i � 1N NXj=1 ��j = 1N NXj=1(��i � ��j ) where ��i = f�;
i(T; 
) (22)are the generalized 
hemi
al potential di�eren
es in phase � and [�℄�� denotes the jump ofthe quantity in the bra
kets a
ross the interfa
e. The quantity 
�� is the surfa
e entropydensity and the relation between the surfa
e entropy and the entropy density in the phase�eld model is given by 
�� = infp �2 Z 1�1pw(p)pa(p; p0 
 �)� (23)where the in�mum is taken over all Lips
hitz 
ontinuous fun
tions p 
onne
ting the minimaof w 
orresponding to the phases adja
ent to the interfa
e, i.e. p(�1) = e� and p(1) = e�.The kineti
 
oeÆ
ient m�� 
an also be expressed in terms of the minimizer p (see [17℄).In general, a and w might depend on temperature and on the 
on
entrations leading toa temperature and 
on
entration dependent surfa
e entropy in the sharp interfa
e limit.In this 
ase, the surfa
e terms would also enter the internal energy. For a thin interfa
eanalysis of a partially linearized model for pure substan
es we refer to [30℄.To perform a thin interfa
e analysis for our model would require to study �elds like s,f , T and 
 in the interfa
ial region to a higher order. We do not pursue this issue furtherat this stage.We remark that the Gibbs-Thomson equation 
an be derived by lo
ally maximizing en-tropy, 
onserving 
on
entration and energy at the same time. For a stationary 
at interfa
ethe equations (17), (18) and (21) yield the 
lassi
al equilibrium for phase boundaries. Theequilibrium 
ondition at a 
at boundary in rest separating phases � and � are���i = ���i for all i = 1; :::; N:In addition the temperature has to be the same and (see (21))[f ℄�� �Xi ��i [
i℄�� = 0:For M phases to be in equilibrium we therefore have (N +1)(M � 1) 
onditions. For ea
hphase we 
an 
hoose N � 1 
omponents and the temperature. Altogether there areMN � (N + 1)(M � 1) = N �M + 18



degrees of freedom. This is the Gibbs phase rule. We remark that for two 
omponentsystems the equilibrium 
onditions between two phases lead to the well known 
ommontangent 
onstru
tion.Finally, at triple jun
tions where three phases �; � and Æ meet a for
e balan
e of theform 
����� + 
�Æ��Æ + 
Æ��Æ� = 0 (24)has to hold (
ompare [19℄). Here, ���; ��Æ and �Æ� are the tangents to the interfa
es ���;��Æand �Æ� and they are assumed to either all pointing in the dire
tion of the triple jun
tionor they are all pointing away from the triple jun
tion. It 
an be easily seen that this for
ebalan
e is equivalent to 
ertain angle 
onditions at the triple jun
tion.In the Appendix we will demonstrate that the entropy does not de
rease for solutions ofthe above problem. In parti
ular for a 
losed system we obtain using appropriate transporttheorems and assuming m � 0 and L = (Lij)i;j=1;:::;N is positive semi-de�nite:ddt�Z
 s(e; 
)dx� Z� 
dHd�1� = Z
 �r 1T � J0 +Xi r���iT � Ji�dx+ Z�mv2dHd�1 � 0where the integral over � is an integral over all possible interfa
es.3. ExamplesIn this se
tion we will �rst demonstrate that the phase �eld method is 
apable to modelsystems with a very general 
lass of phase diagrams. In the way it is formulated, the model
an des
ribe systems with 
on
ave entropies s�(e; 
) in the pure phases. This 
orrespondsto free energies f�(T; 
) whi
h are 
onvex in 
 and 
on
ave in T . In the 
ase that f(T; 
) isnot 
onvex in the variable 
, the free energy needs to 
ontain gradients of the 
on
entrations(similar as in the Cahn-Hilliard model).We will �rst give a rather general example, whi
h already 
overs most examples inpra
ti
e, and then dis
uss relations to existing models and possible partial linearizationsof the system.3.1. Possible 
hoi
es of the free energy. Choosing the phase �eld � su
h that � = eM
orresponds to the liquid phase, we de�ne bulk free energies for the individual phases byf�(T; 
) = NXi=1 �
iL�i T�T�iT�i + RvmT
i ln(
i)�� 
vT (ln(T )� 1)with LMi = 0 and L�i , i = 1; :::; N , � = 1; :::;M � 1, being the latent heat per unitvolume of the phase transition from phase � to the liquid phase of the pure 
omponenti. Furthermore, T �i , i = 1; :::; N , � = 1; :::;M � 1, is the melting temperature of the i-th
omponent in the phase �, 
v is the spe
i�
 heat whi
h is assumed to be independent of
 and �; the molar volume vm ist supposed to be a 
onstant, R is the gas 
onstant. Thenwe de�ne the total free energy density as follows:f(T; 
; �) := MX�=1 NXi=1 �
iL�i T�T�iT�i h(��)� + NXi=1 � RvmT
i ln(
i)�� 
vT (ln(T )� 1) (25a)where h is a monotone fun
tion on [0; 1℄ that satis�es h(0) = 0 and h(1) = 1. Examplesare h(�) = � or h(�) = �2(3� 2�). The last one has the property h0(0) = h0(1) = 0 whi
h9



is suitable for phase �eld models as we will see below. With this 
hoi
e of h the fun
tionf is an interpolation of the individual free energy densities f�.We 
an 
al
ulates = �f;T = � MX�=1 NXi=1 �
i L�iT�i h(��)�� NXi=1 � Rvm 
i ln(
i)� + 
v ln(T ); (25b)so that e = f + Ts = � MX�=1 NXi=1 (
iL�i h(��)) + 
vT: (25
)We remark that if L�i = L� for all 
omponents i then e does not depend on 
. The 
hemi
alpotentials are given as�i(T; 
; �) = f;
i(T; 
; �) = MX�=1 �L�i T�T�iT�i h(��)� + RvmT (ln(
i) + 1): (26)Expressions for the quantities above in the pure phases are obtained by setting �� = e�.For example we have��i = �
if� = �
if(T; 
; e�) = L�i T�T�iT�i + RvmT (ln(
i) + 1)for the 
hemi
al potential of the i-th 
omponent in the phase �.Now we give some examples for the terms modelling interfa
ial 
ontributions to the freeenergy. The simplest form of the gradient energy isa(�;r�) = jr�j2 = MX�=1 jr��j2:However, it has been shown [17, 19, 39℄ that gradient energies of the forma(�;r�) = X�;�=1�<� A��(��r�� � ��r��)where A�� are 
onvex fun
tions that are homogeneous of degree two are more 
onvenientwith respe
t to the 
alibration of parameters in the phase �eld model to the surfa
e termsin the sharp interfa
e model. A 
hoi
e that leads to isotropi
 surfa
e terms isa(�;r�) =X�<� ~
��~m�� j��r�� � ��r��j2with 
onstants ~
�� and ~m�� that 
an be related to 
�� and m�� in (21) (
f. [17℄). For thebulk potential one may take the standard multi well potentialwst(�) = 9X�<� ~m��~
���2��2�or a higher order variant ~wst(�) = wst(�) + X�<�<Æ 
��Æ�2��2��2Æ:10



For pra
ti
al 
omputations the multi obsta
le potential yields good 
alibration properties.It is de�ned by wob(�) = 16�2 X�<� ~m��~
������with a higher order variant ~wob(�) = wob(�) + X�<�<Æ 
��Æ�����Æwhere wob and ~wob are de�ned to be in�nity whenever � is not on the Gibbs-SimplexG = fd 2 �M : d� � 0g. We refer to [18℄ and [19℄ for a further dis
ussion of the propertiesof the surfa
e terms.3.2. Possible 
hoi
es of the mobility matrix. Here we only give an example for thepart of the mobility matrix (Lij)i;j=0;:::;N that de�nes mass di�usion resulting from 
hemi
alpotential di�eren
es, i.e. we do not spe
ify Li0 = L0i for 0 � i � N . An example for thoseterms, whi
h in parti
ular de�ne 
ross e�e
ts between mass and energy di�usion will begiven in Se
tion 3.4.If li(
i; T; �) are the nonnegative bare mobilities of the pure 
omponents we 
an argueas in [4℄ to obtainLij(T; 
; �) = li(T; 
i; �) Æij � � NXq=1 lq(T; 
q; �)��1lj(T; 
j; �)! ; 1 � i; j � N:To give a simple example we assume that all bare mobilities are the same 
onstant (e.g.li(T; 
i; �) = 1). Hen
e (Lij)Ni;j=1 = id� 1N 1
 1;where 1 = (1; : : : ; 1) and 
 is the tensor produ
t. Often it is more reasonable to assumethat the bare mobilities li are linear in 
i, and in the simplest 
ase (li(T; 
i; �) = 
i) weobtain (Lij)Ni;j=1 = (
i(Æij � 
j))Ni;j=1:Choosing a free energy of the form (25a) and taking (26) into a

ount we get the followingequations for the 
on
entrations:�t
i = �r � "Li0r 1T + NXj=1 
i(Æij � 
j)r�� MX�=1(L�j ( 1T�j � 1T )h(��))� Rvm (ln(
j) + 1)�#= r � "Li0r 1T + MX�=1 NXj=1 Lijr�L�j ( 1T�j � 1T )h(��)�#+ Rvm�
i:3.3. Relation to the Penrose-Fife model. In this subse
tion we will demonstrate thatour model in
ludes the model of Penrose and Fife [34℄ as a spe
ial 
ase. In this 
ase thereis only one 
omponent and we 
an negle
t the variable 
. There are two phases, so we willwrite the equations in terms of the solid fra
tion  = �1. Then by (2) �2 = 1�  .The �rst phase, the solid one, is 
hara
terised by � = 1, hen
e  = 1. We assume itsfree energy density to be f s = LT�TmTm � 
vT (ln(T )� 1)11



where Tm is the melting temperature and L the latent heat of the solid-liquid phase tran-sition. The se
ond phase, the liquid one, is 
hara
terised by � = e2, so  = 0, and we takethe free energy density to be f l = �
vT (ln(T )� 1):We have f(T;  ) = LT�TmTm h( )� 
vT (ln(T )� 1);hen
e s(T;  ) = � LTmh( ) + 
v ln(T )so that e(T;  ) = �Lh( ) + 
vT . The evolution equation for the energy density yields
v�tT � Lh0( )�t = �r � �L00r 1T � :No we 
hoose L00 = 
vK2T 2, �( ) = Lh0( )=
v anda(�;r�) = 
2 jr�j2 = 
2(jr�1j2 + jr�2j2)where 
 = �1
v=(2") for some 
onstant �1. Setting ! = 1, K1 = 
v=(2") ands0( ) = � 1"
vw( ; 1�  )� L
vTmh( ):we arrive at the system �t = K1 ��( )T + s00( ) + �1� � ;�tT � �( )�t = K2�Twhi
h is the model of Penrose and Fife [34℄, Chapter 6.3.4. A linearized model. In this subse
tion we are going to partially linearize our model.This is done in su
h a way that the evolution equations in the pure phases are linear andthey indeed redu
e to standard linear di�usion equations. We restri
t ourselves to binarysystems but a generalization to higher order systems is straightforward.We denote by 
 = 
1 the 
on
entration of the �rst 
omponent; therefore 
2 = 1 � 
.Using that L is symmetri
 and the algebrai
 
onstraints (10) we obtainL01 = L10 = �L02 = �L20 and L11 = L22 = �L12 = �L21:Furthermore, we introdu
e the 
hemi
al potential di�eren
e� = f;
 = f;
1 � f;
2 = �1 � �2:Then the 
onservation laws for energy and 
on
entration read (up to a fa
tor 2 in the lastterm of the right hand sides)�te = �r � L00r 1T �r � L10r�f;
T ; (27a)�t
 = �r � L10r 1T �r � L11r�f;
T : (27b)Choosing L11 = D Tf;

 ; L10 = L01 = e;
D Tf;

 and L00 = e2;
D Tf;
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the system (27a),(27b) redu
es to�te = r � �KrT + e;
Dr
+ e;
D f;
�f;

r�� ; (28a)�t
 = r � �Dr
+D f;
�f;

r�� : (28b)Here K and D are 
oeÆ
ients that may depend on �. These equations (28a), (28b) thenhave to be 
oupled to the phase �eld system (12).We assume as in (25
) that the internal energy density is aÆne linear in the variables(T; 
). Then the system (28a), (28b) redu
es in regions where � is 
onstant, i.e. in thepure phases, to (here K and D are 
onstants)
v�tT = r �KrT = K�T; �t
 = r �Dr
 = D�
:Here 
v is the spe
i�
 heat. These are 
lassi
al linear di�usion equations for temperature(Fourier's law) and 
on
entration (Fi
k's law).3.5. Relation to the Caginalp model. If we further linearize the system it 
an be seenthat our model leads to a generalization of the original phase �eld model [7℄ to the 
aseof alloy solidi�
ation. We 
onsider a three phase system for a binary alloy. We 
hoose thefree energy densityf(T; 
; �) = �� 
2 � 3X�=1 L�1���
T � 
vT (ln(T )� 1)� 3X�=1 L�2��;where L�2 are latent heat 
oeÆ
ients and L�1 and � respe
tively are 
oeÆ
ients enteringthe 
hemi
al potentials. Then we gets = �f;T = ��� 
2 � 3X�=1 L�1���
+ 
v ln(T );e = f + Ts = 
vT �X� L�2��;�T = f;
T = �
�X� L�1��;r�T = f;��T = �L�1 
� L�2T :Choosing the mobility matrix as in the previous subse
tion we obtain�te = �t�
vT �X� L�2��� = r � (KrT );�t
 = r �Dr��
�X� L�1���:For the gradient energy we take the isotropi
 fun
tion a(�;r�) = 12P� jr��j2. Thenthe equations for the phase �eld variables are!"�t�� = "��� � 1"w;��(�) + L�1 
+ L�2T � �;13



where � is the Lagrange multiplier (13). Now we linearize the term 1T in the above equationaround a temperature Tm to obtain!"�t�� = "��� � 1"w;��(�) + L�1 
+ L�2 � 1Tm � 1T 2m (T � Tm)�� �:The equations for (T; 
) are linear and all terms in the equation for � are linear ex
eptfor the term w;��. A 
omplete linearization 
annot be expe
ted be
ause systems withmoving interfa
es 
an never be linear as 
an be seen easily for the sharp interfa
e model.Finally we remark that this simpli�
ation of the model leads to a linearized phasediagram, in parti
ular the magnitude of the jump of the 
on
entration in the sharp interfa
emodel is 
onstant for ea
h of the phase boundaries.3.6. Fields of appli
ation. In this paragraph, we 
omment on the generality of the pre-sented phase-�eld model, on the new features and on the various di�erent appli
ationsto solidi�
ation pro
esses, mi
rostru
ture formation and poly
rystalline grain growth. Bysetting up the phase-�eld model for an arbitary number of alloy 
omponents and phases ina non-isothermal system, the set of governing equations is 
apable to des
ribe the 
oupledheat- and mass di�usion pro
esses as well as the phase transformations in multi-
omponentsystems. Due to the 
exiblity to 
hoose parameters in the gradient and in the potentialfree energy, the model 
onsists of enough degrees of freedom to pres
ribe the physi
s ofea
h phase boundary and interfa
e seperately by de�ning values for appropriate surfa
eenergies ~
�� and for the mobilities ~m��. The model allows for both, kineti
 and surfa
eenergy anisotropies. Di�erent types of anisotropy su
h as smooth and 
rystalline expres-sions 
orresponding to Wul� shapes with a di�erent number of verti
es 
an be realizedin 3D. Considering the appli
ation point of view, the e�e
t of the type and strength ofanisotropy on the growth stru
ture 
an be investigated. Examples of experimentally ob-served anisotropi
 
hara
teristi
s in eute
ti
 systems are tilted or spiral phase formationsand the growth of neighbouring eute
ti
 grains.The phase-�eld variables �� 
an represent di�erent phases and di�erent grains of orien-tational variants at the same time. Therefore, phenomena su
h as eute
ti
 grain formationinvolving di�erent length s
ales (grains on the larger s
ale and a eute
ti
 stru
ture on asmaller s
ale) and interpretations of the non-
onserved order parameters 
an be des
ribedusing the new model. A main fo
us of appli
ation in future development is the two andthree dimensional numeri
al simulation of solidi�
ation in multi-
omponent alloy systemswith arbitrary phase diagrams. By 
hoosing the spe
i�
 thermodynami
al quantities - thelatent heats of fusion L�i and the melting temperatures T �i - and by inserting these data asinput parameters for the numeri
al simulations, di�erent types of phase transformationssu
h as perite
ti
s, eute
ti
s and monote
ti
s are modelled. In parti
ular, the stability ofternary eute
ti
 lamellae with phase arrays of di�erent period length and phase permuta-tions will be investigated by phase-�eld simulations in a forth
oming paper. The resultsof 
omputed stru
tures are 
ompared with a generalization of the 
lassi
al Ja
kson-Hunttheory for ternary eute
ti
s. The o

uran
e of a ternary phase impurity leads to the for-mation of eute
ti
 
olonies. The resulting 
omplex stru
ture is of multi-s
ale type and 
analso be modelled with the new approa
h.4. Relating the models by asymptoti
 expansionsBy mat
hed asymptoti
 expansions we want to establish the relation between the phase�eld model and the sharp interfa
e model that were both des
ribed in Se
tion 2. We are14



going to generalize methods developed by Caginalp, Fife [8℄, Bronsard, Gar
ke, Stoth [6℄,Gar
ke, Novi
k-Cohen [20℄, and Gar
ke, Nestler, Stoth [17℄. We restri
t ourselves to twospa
e dimensions, i.e. d = 2, but generalizations are possible.Sin
e the quantities (T; ��) are 
ontinuous a
ross a phase boundary it will be 
onvenientto use them in the asymptoti
 expansions. More pre
isely we will use the variables � andu = (�1T ; ��1T ; : : : ; ��NT ). Sin
e f(T; �; �) is stri
tly 
onvex and f(�; 
; �) is stri
tly 
on
ave weobtain that the mappings(T; 
; �) 7! (u; �) and (e; 
; �) 7! (u; �)are both invertible and a 
hange of variables between these quantities is possible.We will use the variables (u; �) in the asymptoti
s but the equations 
an always bereinterpreted with respe
t to the variables (T; 
; �) or (e; 
; �). We write the 
onservationlaws as �t
i(u; �) = r � NXj=0 Lij(u; �)ruj; 0 � i � N;where we have set 
0 = e.The phase �eld equations are!"�t� = PMh"�r � a;X(�;r�)� a;�(�;r�)�� 1"w;�(�) + u0f;�(T (u; �); 
(u; �); �)i;We assume that the matrix L = (Lij)Ni;j=0 is stri
tly positive de�nite for all argumentson the spa
e HN := nd = (di)Ni=0 2 RN+1 : NXi=1 di = 0o = R� T�N :In addition we will frequently make use of the fa
t that a is 2-homogeneous in the variableX. In parti
ular we have (
f. [17℄)a;X(�; �X) : X = 2�a(�;X); (29a)a;�(�; �X) : X = �2a;�(�;X); (29b)a(�; 0) = 0; (29
)a;X(�; 0) = 0: (29d)4.1. Outer expansion. We expe
t, e.g. based on experien
es from numeri
al simulations,that several phases arise whi
h are separated by di�use interfa
es whose thi
kness is of order". We will see that these phases 
orrespond to the M minima of the potential w. In su
ha phase, away from an interfa
e to another phase, we 
onsider an outer expansion in thebulk region. For a fun
tion b in (t; x) we make the ansatzbout(t; x) = 1XK=0 "KbKout(t; x): (30)In this way we expand the variables uj and ��, 0 � j � N , 1 � � � M . For the
onstraints � 2 �M and u 2 HN to be satis�ed we assume�0out 2 �M ; �Kout 2 T�M ; K � 1;uKout 2 HN ; K � 0:15



First we 
onsider the equation for the phase �eld variables. We expand PMw;�(�),PMw;�(�) = PMw;�(�0out) + "(PMw;�);�(�0out) � �1out +O("2):To leading order O("�1) the equation (12) be
omes0 = PMw;�(�0out) = w;�(�0out)� 1M  MX�=1 w;��(�0out)! 1: (31)As we are sear
hing for stable solutions for this equation, �0out is one of the base ve
torsfe�g1���M . We 
an 
on
lude that to leading order the whole domain 
 is partitioned intophases whi
h are 
hara
terized by the M possible values of �0out.The O(1)-equations for the 
onserved variables are (0 � i � N)�t
i(u0out; �0out) = r � NXj=0 Lij(u0out; �0out)ru0j;out: (32)Boundary 
onditions for these equations will be obtained by mat
hing with the innerexpansion. One should remark that we have expanded the 
oeÆ
ients Lij in (u0out; �0out)in the same way as PMw;� in �0out. In phase �, i.e. at points where �0out = e�, we writeL�ij(u) = Lij(u; e�). Then the O(1)-equations be
ome�t
i(u0out; e�) = r � NXj=0 L�ij(u0out)ru0j;out:Sin
e 
0 = e, u0 = � 1T and uj = �jT we obtain the equations (15) and (16). We remarkthat an upper index in (15) and (16) refers to the phase whereas an upper index in thisse
tion refers to the order in the expansion.4.2. Inner expansion. Now we 
onsider an interfa
ial region where two phases meet.Without loss of generality we assume that �0out = e1 in one of the outer regions, denotedby 
1, and �0out = e2 in the other one, denoted by 
2. We assume that these two regionsare separated by a family f�tgt of evolving smooth 
urves. Let  be a smooth fun
tionsu
h that s 7!  (t; s) is an ar
-length parametrization of �t. The unit tangential ve
tor�(t; x) on �t in x =  (t; s) is given by �(t; x) = �s (t; s), the unit normal �(t; x) on �tin x =  (t; s) is su
h that (�; �) is positively oriented. We 
hoose the orientation in theparametrization  su
h that � points into 
1.Sin
e the parametrization is smooth, it is possible to introdu
e new spa
e 
oordinates(z(t; x); s(t; x)) in a strip S around �t in the following way. We de�ne r(t; x) = d(x;�t) tobe the signed distan
e between a point x and �t, i.e. r is positive in 
1 and negative in
2. Then the variable z is de�ned by z(t; x) = 1"r(t; x). Let Pt be the proje
tion of S onto�t. Then by the smoothness of �t one 
an use the strip S narrow enough su
h that thereis exa
tly one s(t; x) for every x 2 S su
h that Pt(x) =  t(s). It holdsrxz(t; x) = 1"�(t; Pt(x));rxs(t; x) = �(t; Pt(x)) +O("):In the new variables (t; z; s) we make for some real fun
tion b in (t; x) the ansatzbin(t; x) = 1XK=0 "KbKin(t; z(t; x); s(t; x)): (33)16



Introdu
ing the notation �(Pt(x)) = �(t; s(t; x)) and similarly for �(Pt(x)) = �(t; s(t; x))we obtainrxbin(t; z(t; x); s(t; x)) = 1" [�zbin(t; z; s)℄�(t; s) + [�sbin(t; z; s)℄�(t; s) +O(");and for some ve
tor �eld ~b we haverx �~b(t; z(t; x); s(t; x)) = 1"(�z~b(t; z; s)) � �(t; s) + (�s~b(t; z; s)) � �(t; s) +O("):Moreover it holds �tz(t; x) = �t 1"d(x;�t) = �1"v(Pt(x));�ts(t; x) = �v� (Pt(x)) +O(")where v is the normal velo
ity and v� the tangential velo
ity. We remark that v� dependson the parametrization whereas v is an intrinsi
 quantity. This leads toddtbKin(t; z(t; x); s(t; x)) = �tbKin(t; z; s)� 1"v�zbKin(t; z; s)� v��sbKin(t; z; s) +O("):Now we expand � and u in the variables (t; z; s) and we assume�0in 2 �M ; �Kin 2 T�M ; K � 1;uKin 2 HN ; K � 1;to ensure that the 
onstraints on � and u are satis�ed. Taking a Taylor expansion of Lijaround (u0in; �0in) and writing L0;inij = Lij(u0in; �0in) we obtain from the 
onservation laws formass and energy to lowest order, i.e. O("�2):0 = ddz  NXj=0 L0;inij �zu0j;in! ; 0 � i � N (34)where we used that �z� = 0. Integrating yieldsL�zu0in = k (35)for some ve
tor k 2 RN+1. Later the mat
hing with the outer solution will give k = 0.We have �z� = 0; �z� = 0; �s� = ��; �s� = ���;where � is the 
urvature of �t. Con
erning the sign of the 
urvature we remark that fora 
ir
le of radius r whose normal is outward oriented (with our orientation the tangent isthen running 
ounter
lo
kwise) the 
urvature is �1=r.Hen
e the O("�1)-equations of the 
onserved quantities are�v�z
i(u0in; �0in) =� � NXj=0 L0;inij �zu0j;in!+ ddz  NXj=0 L0;inij �zu1j;in!+ ddz  NXj=0((Lij)0;in;u � u1j;in + (Lij)0;in;� � �1in)�zu0j;in! : (36)These equations will further simplify when an expression for u0in has been derived.17



Now we 
onsider the equations for the phase �eld variables. As done in [17℄ we expandthe a-terms in (�0in; �z�0in 
 �), the w-term in �0in and the f -term in (u0in; �0in). To leadingorder O("�1) we then obtain the equation0 = ddz �PMa;X(�0in; �z�0in 
 �)� � � PMa;�(�0in; �z�0in 
 �)� PMw;�(�0in): (37a)Multiplying this equation with �z�0in 2 T�M gives0 = ddz �a;X(�0in; �z�0in 
 �) : (�z�0in 
 �)� a(�0in; �z�0in 
 �)� w(�0in)� : (37b)The equation of order O(1) is�!v�z�0in = ddz �(PMa;X);� � �1in + (PMa;X);X : (�s�0in 
 � + �z�1in 
 �)� � + dds(PMa;X)�� (PMa;�);� � �1in � (PMa;�);X : (�s�0in 
 � + �z�1in 
 �)� (PMw;�);� � �1in + PMu00;inf;�(T (u0in; �0in); 
(u0in; �0in); �0in) (38)where w and all its derivatives are evaluated in �0in and a and its derivatives in (�0in; �z�0in
�).4.3. Mat
hing and resulting jump 
onditions. For some quantity b(t; x) we gave by(30) and (33) expansions in bulk regions respe
tively in a strip around an interfa
e betweensu
h regions. Now we want to mat
h these expansions in an overlap domain. We will needthe mat
hing 
onditions of order zero and one. For the outer expansions in 
1 and 
2 wewill use the subs
ripts bout1 and bout2.We observe that near �t we 
an express the fun
tions bKout(t; x) in the variables (t; z; s).By expanding in power series in (0; s(t; x)) whi
h 
orresponds to the boundary point t(s(t; x)) 2 �t (remember that z(t; x) = 1"r(t; x) and �r = � � rx) we obtain:bKout(t; x) = bKout(t; r(t; x); s(t; x))= bKout(t; 0; s(t; x)) + r�r(bKout)(t; 0; s(t; x)) +O(r2)= bKout(t; 0; s(t; x)) + "z(rxbKout(t; 0; s(t; x)) � �(t; 0; s(t; x))) +O("2)where bKout(t; 0; s) and rxbKout(t; 0; s) mean the evaluation in (t; Pt(x)). We getbout(t; x) = b0out(t; 0; s) + " �z(rxb0out(t; 0; s) � �(t; s)) + b1out(t; 0; s)�+O("2):Now we 
onsider an intermediate variable z" = �(")z for some z > 0 where �(") is somefun
tion in " in the overlap domain of validity of the two expansions (whi
h we suppose toexist), i.e. � = o(1) and " = o(�). Be
ause of z = r=" we have z" ! �1 as "! 0.We substitute the variable z in our expansions by this intermediate variable z" and
onsider their di�eren
e; the expansions of u mat
h if, in the limit as "! 0, the terms ofevery order "K vanish. For the O(1)-terms this means0 != lim"&0 �b0out1(t; 0; s)� b0in(t; z"; s)� = limz"!1 �b0out1(t; 0; s)� b0in(t; z"; s)� ;0 != lim"%0 �b0out2(t; 0; s)� b0in(t; z"; s)� = limz"!�1 �b0out2(t; 0; s)� b0in(t; z"; s)� ;18



while for the O("1)-terms the mat
hing 
ondition is0 != limz"!1 �z"rxb0out1(t; 0; s) � �(t; s) + b1out1(t; 0; s)� b1in(t; z"; s)� ;0 != limz"!�1 �z"rxb0out2(t; 0; s) � �(t; s) + b1out2(t; 0; s)� b1in(t; z"; s)� :First we apply the mat
hing 
onditions on the fun
tions u0j;in, 0 � j � N , solving thedi�erential equations (35). The assumption on L yields�zu0in = L�1k:By the mat
hing 
onditions of order zero u0in must be bounded if jzj ! 1. Then theassumption on L gives ne
essarily k = 0 so that u0in is 
onstant.Sin
e u0in is 
onstant, we obtain that u0out1(t; 0; s) = u0out2(t; 0; s) and hen
e u and there-fore the temperature and the 
hemi
al potential di�eren
es are in the sharp interfa
e limit
ontinuous a
ross an interfa
e.Now, due to �zu0j;in = 0 the O("�1)-equations (36) for the 
onserved variables simplifyto �v�z
i(u0in; �0in) = ddz  NXj=0 Lij(u0in; �0in)�zu1j;in! :Integrating with respe
t to z from �1 to 1 (or, more 
orre
tly, integrating from �R toR and then 
onsidering the limit as R!1) and using that v(t; s) is independent of z weobtain v �
i(u0in; �0in)�z%1z&�1 = �" NXj=0 Lij(u0in; �0in)�zu1j;in#z%1z&�1 :As has been shown in [8, 6℄ the mat
hing 
onditions of order one for the b1j;in yield�zb1j;in !rxb0j;out1 � � for z !1and �zb1j;in !rxb0j;out2 � � for z ! �1where the right hand sides are evaluated in (t; x) = (t;  t(s)) or, in the other 
oordinates,in (t; r; s) = (t; 0; s(t; x)). In fa
t, these are the boundary values of rxu0j;out� ��, � 2 f1; 2g,on �t. After mat
hing for the phase �eld variables � we obtainv[
i℄12 = v�
i(u0out1; �0out1)� 
i(u0out2; �0out2)�(t; x)= v �
i(u0in; �0in)�z%1z&�1= �� NXj=0 L0;out1ij rxu0j;out1 � L0;out2ij rxu0j;out2�(t; x) � �(t; x)= �Ji(u0out1; �0out1)� Ji(u0out2; �0out2)�(t; x) � �(t; x)= [Ji℄12 � �We will refer to this fa
t to be the jump 
ondition for the inner energy density e = 
0 andthe 
on
entrations 
i, 1 � i � N . 19



4.4. Mat
hing and the Gibbs-Thomson relation. In the bulk regions we have �0out� =e�, � 2 f1; 2g. Hen
e for ea
h s, we have to solve equation (37a) of se
ond order in z withrespe
t to the boundary 
onditions e1 for z !1 and e2 for z ! �1.By integrating (37b) and using (29
), (29d) and w(e1) = w(e2) = 0 we obtain0 = a;X(�0in; �z�0in 
 �) : (�z�0in 
 �)� a(�0in; �z�0in 
 �)� w(�0in):Using (29a) we dedu
e a(�0in; �z�0in 
 �) = w(�0in) (39)whi
h is known as equipartition of energy. We setC0;1�� ([�1; 1℄;�M) = �p : [�1; 1℄! �M j p Lips
hitz 
ont., p(�1) = e� and p(1) = e�	(40a)and de�ne the surfa
e entropy for some e 2 Rn to be
��(e) = inf �2 Z 1�1pw(p)pa(p; p0 
 e)(y)dy j p 2 C0;1��	: (40b)As shown in [40, 17℄, if a minimizer exists for e = �(t; s) then a reparametrization of theminimizer ful�lls (37a) and in addition
2;1(�) = Z 1�1 �a(�0in; �z�0in 
 �) + w(�0in)� dz: (41)Now we want to dedu
e the Gibbs-Thomson law. We multiply the equation (37a) for �0inby �z�1in 2 T�M and the equation (38) for �1in by �z�0in 2 T�M . Observe that we 
an dropthe proje
tions PM . Then we sum up the two equations and integrate from �1 to1 withrespe
t to z. Some straightforward 
al
ulations together with the mat
hing 
onditions forthe boundary values yield the following solvability 
ondition for equation (38):�!v Z 1�1(�z�0in(z; s))2 = dds �Z 1�1 a;X(�0in(z; s); �z�0in(z; s)
 �(s)) � �z�0in(z; s)dz� �(s)+ Z 1�1 u00;inf;�(T (u0in; �0in)
(u0in; �0in); �) � �z�0indz: (42)Using that u00;in and �u0in = (u01;in; :::; u0N;in) are independent of z the last term on the r.h.s.of (42) yields Z 1�1 u00;inf;�(T 0in; 
0in; �0in) � �z�0indz= Z 1�1� ddz �u00;inf(T 0in; 
0in; �0in)�� u00;inf;
(T 0in; 
0in; �0in) � �z
0in� dz= Z 1�1� ddz �u00;inf(T 0in; 
0in; �0in)�+ �u0in � �z
0in� dz= �u00;inf(T 0in; 
0in; �0in) + �u0in � 
0in�z%1z&�1=: �u00 �f(T 0; 
0; �0)� f;
(T 0; 
0; �0) � 
0� �12:20



Here we use the abbreviation T 0in = T (u0in; �0in), 
0in = 
(u0in; �0in), T 0 = T (u0; �0) and
0 = 
(u0; �0). Finally as [
0℄ 2 T�N we obtainZ 1�1 u00;inf;�(T 0in; 
0in; �0in) � �z�0indz = �� [f 0℄12 � �0 � [
0℄12T 0 � (t; x):Cal
ulating the total derivative of 
2;1 whi
h be
omes with (41)D
2;1(�) = Z 1�1 a;X � �z�0indzand setting m(�) = ! Z 1�1(�z�0in)2dzthe solvability 
ondition redu
es to (writing rs � g = (�sg) � � for the surfa
e divergen
e ofsome ve
tor �eld g on �t)m(�)v = �rs �D
2;1(�) + [f 0℄12 � �0 � [
0℄12T 0 :Considering � and 
 as fun
tion in an angle � 2 [0; 2�), i.e. setting �(�) = (
os(�); sin(�))and 
̂(�) = 
(�(�)) one 
an derive (see [17℄)rs �D
2;1(�) = �(
̂2;1(�) + 
̂002;1(�))�with the 
urvature � = �rs � � whi
h may be inserted into the solvability 
ondition toyield m(�)v = (
̂2;1(�) + 
̂002;1(�))�+ [f 0℄12 � �0 � [
0℄12T 0 :Finally, the for
e balan
e at triple jun
tions (24) 
an be derived as in [17℄. Therefore, allequations de�ning the sharp interfa
e model have been derived by asymptoti
 expansions.5. AppendixIn this Appendix we want to show that for the sharp interfa
e model des
ribed in Se
tion2 the entropy does not de
rease in time. We 
onsider a situation where a bounded domain
 is partitioned intoM phases 
1(t); : : : ;
M(t) whi
h are separated by smooth boundaries���(t) = 
� \ 
� \ 
. For simpli
ity we restri
t ourselves to two spa
e dimensions, butthe 
al
ulations 
an also be done in higher dimensions.Given some domainR(t) � 
 with smooth boundary �R(t) and a smooth evolving 
urve�(t) � 
 with normal velo
ity v we will make use of the following transport identities:ddt �Z�(t) 
 dH1� ���t=t0 = � Z�(t0) 
�v dH1 + Xendpoints _p � � andddt �ZR(t) u dx� ���t=t0 = ZR(t0) �tu dx+ Z�R(t0) uv dH1(x)for some smooth fun
tion u = u(t; x) and some 
onstant 
; � is the 
urvature of theinterfa
e � and � is the unit normal. By _p we denote the velo
ity of the endpoints of �and � is the exterior tangent ve
tor to �(t) at the endpoints.Let the evolution in ea
h phase be given by�teq = �r � Jq0 ; �t
qi = �r � Jqi ; 1 � i � N; 1 � q � M:21



with the 
uxes given in (15) and (16). We assume that the fun
tions are smooth intheir domain 
q and that the 
uxes vanish at the external boundary of 
. Observe that��t
 = r � J 2 T�N . Thenddt �Z
(t) s(e; 
) dx� ���t=t0 =X� Z
�(t0) �ts(e; 
) dx�X�<� Z���(t0)[s℄��v dH1=X� Z
�(t0) �s;e�te+Xi s;
i�t
i� dx�X�<� Z���(t0)[s℄��v dH1= �X� Z
�(t0) 1Tr � J0 +Xi ���iT r � Ji! dx�X�<� Z���(t0)[s℄��v dH1=X� Z
�(t0)r 1T � J0 +Xi r���iT � Ji dx+X�<� Z���(t0) h 1T J0 +Xi ���iT Jii�� � � � [s℄��v! dH1:The fa
t that L is positive semi-de�nite leads tor 1T � J0 +Xi r���iT � Ji � 0:Besides we make use of the 
ontinuity 
onditions (17), (18) and the jump 
onditions (19),(20) to obtainddt �Z
(t) s(e; 
) dx� ���t=t0 �X�<� Z���(t0) � 1T [e℄��v +Xi ���iT [
i℄��v � [Ts℄��T v� dH1=X�<� Z���(t0) [f ℄�� �Pi �i[
i℄��T v dH1:Furthermore we haveddt  � Z���(t) 
�� dH1! ���t=t0 = Z���(t0) 
���v dH1 � Xendpoints _p � ���
��so that we get ddtS���t=t0 = ddt  Z
(t) s(e; 
) dx�X�<� Z���(t) 
�� dH1!���t=t0�X�<� Z���(t0)� [f ℄�� �Pi �i[
i℄��T + 
���� v dH1=X�<� Z���(t0)m(�)v2 dH1 � 0:22



In the last equality we used the Gibbs-Thomson relation (21), the fa
t that the mobility
oeÆ
ient m is supposed to be positive, the for
e balan
e at triple jun
tions (24) and thefa
t that in a 
losed system the interfa
es interse
t the exterior boundary by a 90Æ angle
ondition (
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