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Summary. Our objective is to describe solidification phenomena in alloy systems.
In the classical approach, balance equations in the phases are coupled to conditions
on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-
Thomson condition ensures that the evolution is consistent with thermodynamics.
We present a derivation of that condition by defining the motion via a localized
gradient flow of the entropy. Another general framework for modelling solidification
of alloys with multiple phases and components is based on the phase field approach.
The phase boundary motion is then given by a system of Allen-Cahn type equations
for order parameters. In the sharp interface limit, i.e., if the smallest length scale δ
related to the thickness of the diffuse phase boundaries converges to zero, a model
with moving boundaries is recovered. In the case of two phases it can even be shown
that the approximation of the sharp interface model by the phase field model is of
second order in δ. Nowadays it is not possible to simulate the microstructure evolu-
tion in a whole workpiece. We present a two-scale model derived by homogenization
methods including a mathematical justification by an estimate of the model error.

1 Introduction

Solidification of alloys based on iron, aluminum, copper, zinc, nickel, and
other materials which are of importance in industrial applications involves the
occurrence of structures on an intermediate length scale of some µm between
the atomic scale of the crystal lattice and the typical size of the workpiece.
This so-called microstructure consists of regions (in the following labelled
phases) differing in the crystalline structure, in the composition or only in the
orientation of the crystal lattice, and it is responsible for a broad range of
material properties and, hence, for the quality and durability of the material.

Being a result of the solidification process the microstructure is not in
thermodynamic equilibrium. Its formation is classically modelled using mov-
ing hypersurfaces for the phase boundaries. The Gibbs-Thomson condition
couples the form and the motion of the interface to its surface energy and
to the local thermodynamic potentials of the adjacent phases. In addition,
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balance equations for the internal energy and the concentrations of the com-
ponents have to be taken into account. This leads to diffusion equations in
the phases and jump conditions on the moving phase boundaries.

In the last years, the phase field approach has emerged as a powerful tool
to simulate microstructure formation. Phase field variables are introduced
standing for the presence of related phases. Instead of jumping across the
phase boundaries, the phase field variables and all the thermodynamic quan-
tities change smoothly but rapidly within a narrow transition layer. It scales
with a new length scale δ smaller than the typical scale of the microstructure
to be described. This leads to the notion of a diffuse interface in contrast to the
sharp interface model with the moving phase boundaries. The Gibbs-Thomson
condition is replaced by a diffuse version which can be viewed as a gradient
flow of an appropriate Ginzburg-Landau energy. The balance equations for
the conserved quantities are reformulated in terms of the new variables where
the jump conditions enter in a natural way. As a main advantage, numeri-
cally simulating microstructure formation is restricted to solving a system of
parabolic differential equations, and explicit tracking of the phase boundaries
in the sharp interface model is avoided.

The limit of vanishing diffuse interface thickness, i.e., the limit as δ ց 0,
is of particular interest. The first question is whether a related sharp interface
model is obtained in the following sense: given solutions to the diffuse interface
model for every δ, is there a limit of the solutions, and which equations do
the limiting fields fulfill? This question is related to the calibrations problem
when quantitatively investigating a certain alloy. Usually, material parame-
ters such as latent heats, surface tensions, and several mobility and diffusion
coefficients entering the sharp interface model are measured in experiments,
and the question is how they should enter the diffuse interface model.

Problems involving multiple length scales not only result from the mod-
elling approach but are also inherent in the physical problems itself. Diffusion
of the temperature is much faster than mass diffusion. Because of the bound-
ary conditions – solidifying workpieces are usually cooled from outside – and
the release of latent heat the temperature field is expected to suffer changes
over a scale proportional to the size of the the workpiece. On the other hand,
the concentrations of the components should exhibit strong gradients only
near the solidification front. The available numerical techniques and compu-
tational power only allow for the simulation of small domains in acceptable
computation time, the direct computation of the microstructure of a whole
workpiece is not feasible. For the latter purpose, macroscopic models involv-
ing heuristic assumptions on the distribution of the solidified parts and the
released latent heat have been in use. Newer mathematical methods are based
on a two-scale approach and allow for effective, homogenized equations for
the temperature distribution but also for taking the microstructure evolution
into account.

The structure of the present article is as follows. The first section is dedi-
cated to models for alloy solidification. First, the governing equations from the
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classical approach for modelling alloy solidification are presented. In particu-
lar, the Gibbs-Thomson condition is derived by locally varying the entropy.
After, the phase field approach is presented. In the second section, the rela-
tion between the sharp and the diffuse approaches is elucidated. Comments
on the calibration problem are given including appropriate potentials for the
phase field model with good calibration properties. Exemplary, a model for
a binary alloy is derived. In the third section, a mathematically rigorous ap-
proach to the derivation of homogenized models for phase transitions with
equiaxed dendritic microstructure is given. Asymptotic expansions are used
to derive a macroscopic heat equation coupled to microscopic cell problems
for the dendritic growth. A mathematical justification is carried out, i.e., an
estimate is established comparing the solution to the two-scale model with
that to the original model.

Acknowlegdments. This work has been supported by the German Research
Foundation (DFG) through the Priority Program 1095 “Analysis, Modeling
and Simulation of Multiscale Problems”. We thank Britta Nestler and Frank
Wendler for the inspiring discussions, mainly emerging from numerical simu-
lations based on the presented phase field model (see also their contribution
on page 113).

2 Models for alloy solidification

The production of certain microstructural morphologies is often achieved by
imposing appropriate conditions before and during the solidification process.
In order to get a deeper understanding of the process, the scientific challenge
is to describe the microstructure formation with a mathematical model where
the imposed conditions enter the equations governing the evolution as initial
and boundary values or as additional forces and parameters.

A framework for continuum modelling of alloy solidification can be derived
from thermodynamic principles for irreversible processes (cf. [Mu01]). Balanc-
ing the conserved quantities energy and mass respectively concentrations of
the components yields diffusion equations in the bulk phases as well as con-
tinuity and jump conditions on the moving phase boundaries. A coupling of
the phase boundary motion to the thermodynamic quantities of the adjacent
phases, the Gibbs-Thomson condition, is derived by localizing an appropriate
gradient flow of the entropy. The balance equations and the Gibbs-Thomson
condition, together with certain angle conditions in junctions where several
phases meet and which are due to local force balance, enable to show that the
local entropy production is non-negative and to prove an entropy inequality.

An entropy functional involving bulk and surface contributions plays a cen-
tral role also in non-equilibrium thermodynamics. In the phase field approach,
the interfacial entropy (or energy) is modelled with the help of a Ginzburg-
Landau type functional. Evolution equations for the phase fields can then be
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derived as gradient flows (see [FP90]) or within the theory of rational thermo-
dynamics (see [AP96, Ha06]). A small length scale is involved which is related
to the thickness of the interfacial layers.

We proceed as follows. First, the classical approach to model alloy solid-
ification, namely with moving phase boundaries, is presented. In the second
subsection, the Gibbs-Thomson condition is derived. After, the phase field
variables are defined, and the phase field approach is presented. As an ex-
ample, a model for non-isothermal solidification of a binary alloy involving
two phases is derived. Finally we briefly comment on the solvability of the
differential equations of the phase field model.

For general informations on the theory and models of phase transitions
we refer to the books [BS96, Vi96]. In this section, partial derivatives some-
times are denoted by subscripts after a comma. For example, s,e is the partial
derivative of the function s = s(e, ĉ) with respect to the variable e.

2.1 Classical approach with moving hypersurfaces

An alloy of N ∈ N components occupying an open domain Ω ∈ R
d, d = 1, 2, 3,

during some time interval IT = (0, T ) is considered. Changes in volume or
pressure are neglected (cf. [Ha94], Sect. 5.1). Moreover, the mass density is
assumed to be constant (only concentrations will be considered). The only
transport mechanism is diffusion, and there are no forces present leading to
flows or deformations. Such effects can strongly influence the growing struc-
tures (cf. [Da01]). The applicability of the model presented in the following is
therefore restricted to cases where such effects can be neglected.

Let M ∈ N be the number of possible phases. The domain Ω is decomposed
into sub-domains Ω1(t), . . . , ΩM (t), t ∈ IT , which are called phases. The phase
boundaries Γαβ(t) := Ωα(t) ∩ Ωβ(t), 1 ≤ α �= β ≤ M , are supposed to be
piecewise smooth evolving points, curves, or hypersurfaces, depending on the
dimension (cf. Def. A.1 in the Appendix). The unit normal on Γαβ pointing
into phase Ωβ is denoted by ναβ . If d ≥ 2 the intersections of the curves or

hypersurfaces are denoted by Tαβδ(t) := Ωα(t) ∩ Ωβ(t) ∩ Ωδ(t) for pairwise
different α, β, δ ∈ {1, . . . , M}, and the points where the phase boundaries hits
the external boundary by Tαβ,ext(t) := Ωα(t)∩Ωβ(t)∩∂Ω. If d = 2 then Tαβδ

is a set of triple junctions, i.e., piecewise smooth evolving points. If d = 3
triple lines can appear which are piecewise smooth evolving curves.

During evolution, it may happen that one of the phases vanishes, namely
if the adjoining phase boundaries coalesce. It is also possible that a piece of
a phase boundary vanishes so that one of the sets Tαβδ includes a quadruple
point or line. Typically, the latter configuration is not in mechanical equi-
librium and will instantaneously split up forming new phase boundaries (see
[GNS99, BGN06]). It is supposed that such singularities only occur at finitely
many times t ∈ IT during the evolution. This is why only piecewise smooth
evolution is assumed. The evolution equations stated in the following are only
valid for times at which no such singularity occurs.



Multiscale Problems in Solidification Processes 25

Before proceeding let us introduce some notation. For K ∈ N define the
sets

HΣK :=
{

v ∈ R
K :

K∑

i=1

vi = 1
}

, ΣK :=
{

v ∈ HΣK : vi ≥ 0 ∀i
}

. (2.1)

The tangent space on HΣK can be naturally identified in every point v ∈ HΣK

with the subspace

TvHΣK ∼= TΣK :=
{

w ∈ R
K :

K∑

i=1

wi = 0
}

. (2.2)

The map PK : R
K → TΣK is the orthogonal projection given by

PKw =
(

wk − 1

K

K∑

l=1

wl

)K

k=1
=

(

IdK − 1

K
1K ⊗ 1K

)

w

where 1K = (1, . . . , 1) ∈ R
K and IdK is the identity on R

K .
The following bulk fields are considered in the phases Ωα, 1 ≤ α ≤ M :

cα
i : concentration of component i, 1 ≤ i ≤ N,

cα
0 := eα : internal energy density,

fα : (Helmholtz) free energy density,

µα
i : chemical potential of component i, 1 ≤ i ≤ N,

T α : temperature,

sα : entropy density,

uα
0 := −1

T α : inverse negative temperature,

uα
i :=

µα
i

T α : reduced chemical potential difference of component i, 1 ≤ i ≤ N.

On the interfaces Γαβ , 1 ≤ α �= β ≤ M , there are the following surface fields:

ναβ : unit normal pointing into Ωβ ,

σαβ(ναβ) : surface tension,

γαβ(ναβ) : capillarity coefficient,

mαβ(ναβ) : mobility coefficient,

vαβ : normal velocity towards ναβ ,

καβ : curvature.

The concentrations fulfill the constraint ĉα = (cα
1 , . . . , cα

N ) ∈ ΣN . Follow-
ing [Mu01], Sect. 11.2, the evolution in the phases is governed by balance
equations for the conserved quantities, i.e.,
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∂tc
α
i = −∇ · Jα

i = ∇ ·





N∑

j=0

Lα
ij∇uα

j



 , 0 ≤ i ≤ N. (2.3)

Let us briefly comment on the fluxes Jα
i . In thermodynamics of irreversible

processes the relations between the fields are based on the principle of local
thermodynamic equilibrium. In the present situation the entropy density sα

is a function of the conserved quantities. Its derivatives are the inverse tem-
perature and the chemical potential difference reduced by the temperature,
i.e.,

sα = sα(eα, ĉα) and dsα =
1

T α
deα +

−µα

T α
· dĉα = −uα · cα.

In the above equation the identity µα = PNµα was used, where µα =
(µα

1 , . . . , µα
N )T . The fluxes are postulated to be linear combinations of the

thermodynamic forces ∇uα
j , 0 ≤ j ≤ N , with coefficients Lα

ij which may
depend on the thermodynamic potentials uα

j or on the conserved quantities
cα
i . This phenomenological theory was already introduced in [On31]. It is as-

sumed that the matrix L = (Lα
ij)

N
i,j=0 is positive semi-definite. To fulfill the

constraint ĉα ∈ ΣN it is required that
∑N

i=1 Lα
ij = 0, 1 ≤ j ≤ N , which also

means that
∑N

i=1 Jα
i = 0.

Onsager’s law of reciprocity states the symmetry of L and can be proven
and experimentally observed if the fluxes and forces are independent (cf.
[KY87], Sect. 3.8). The above fluxes are not independent. But even in the
present case Onsager’s law can be shown to hold by a certain choice of the
coefficients (see [KY87], Sect. 4.2, and the reference therein; there the calcula-
tion is performed for the isothermal case, but another additional independent
force can be taken into account without any problem). We remark that, con-
sidering Ji − JN , the definition of the fluxes as above is equivalent to the
definition in [Mu01], Sect. 11.2.

On the phase boundaries Γαβ the continuity conditions

[ui]
β
α = 0, 0 ≤ i ≤ N, (2.4)

have to be satisfied. Mass and energy balance imply furthermore the jump
conditions

[ci]
β
αvαβ = [Ji]

β
α · ναβ , 0 ≤ i ≤ N. (2.5)

Here, [·]βα denotes the jump of the quantity in brackets across Γαβ , e.g., [e]βα =
eβ − eα.

The matrix of surface tensions (σαβ(ν))α,β is symmetric for every unit
vector ν (the diagonal entries are not of interest and may be set to zero). The
relation between surface tension and capillarity coefficient is given by

γαβ(ναβ) =
σαβ(ναβ)

Tref
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with some reference temperature Tref . The surface tensions are one-homo-
geneous in their argument while the mobility coefficients mαβ(ναβ) are zero-
homogeneous in their argument.

The evolution of the phase boundaries is coupled to the thermodynamic
fields by the Gibbs-Thomson condition

mαβ(ναβ)vαβ = −∇Γ · Dγαβ(ναβ) +
[

− u0f(T, ĉ) +

N∑

i=1

uici

]β

α
(2.6)

which is derived in the following subsection. By ∇Γ · the surface divergence
is denoted. In the case of an isotropic surface entropy, i.e., γαβ(ν) = γαβ |ν|
with some constant γαβ independent of the direction, there is the identity
−∇Γ · Dγαβ(ν) = γαβκαβ where καβ is the mean curvature.

To avoid wetting effects (cf. [Ha94], Sect. 3.4, for a discussion and refer-
ences) the surface tensions are assumed to fulfill the constraints

σαβ + σβδ > σαδ. (2.7)

Capillary forces acting on Γαβ are related to the vectors (cf. [CH74, WM97])

ξαβ(ναβ) := Dσαβ(ναβ) = σαβ(ναβ)ναβ + DSd−1σαβ(ναβ) (2.8)

where DSd−1 is the surface gradient on the sphere Sd−1. The identity D =
DSd−1 +ναβ(ναβ ·D) was used as well as the fact that σαβ is one-homogeneous
implying Dσαβ(ναβ) · ναβ = σαβ(ναβ).

In points x belonging to Tαβδ forces are in equilibrium. In the three-
dimensional case Tαβδ consists of triple lines that can be oriented with a unit
tangent vector ταβδ(x). If the whole space is cut with the plane orthogonal
to ταβδ(x) through x then the picture in Fig. 2.1 is obtained. Due to the sur-
face tension Γαβ exerts a force on x which is given by ξαβ(ναβ(x)) × ταβδ(x),
whence equilibrium of forces means that

0 =
∑

(i,j)∈A

ξij(νij(x)) × ταβδ(x) (2.9)

where A := {(α, β), (β, δ), (δ, α)}. A short calculation shows that in the situ-
ation of Fig. 2.1

ξαβ(ναβ) × ταβδ = (∇σαβ(ναβ) · ταβ)(−ναβ) + σαβ(ναβ)ταβ .

Similarly, if x ∈ Tαβ,ext there is a unit tangent vector ταβ,ext(x), and the force
acting on x is given by ξαβ(ναβ(x))×ταβ,ext(x). Force balance in x implies that
this force is not tangential to ∂Ω. Since it is already orthogonal to ταβ,ext(x)
by definition this is true if and only if

ξαβ(ναβ(x)) · νext(x) = 0. (2.10)
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Ω

Ω

Ω

β

ν

τ

ν
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βδδα
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Γ
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η

η

Fig. 2.1. On the left: triple junction x with orientations of the forming curves;
such a picture is also obtained in the 3D-case by cutting the space with the plane
spanned by ναβ(x), ταβ(x). On the right: local situation around a point x0 on a phase
boundary for the derivation of the Gibbs-Thomson condition; a local deformation is
indicated by the dashed line.

In particular, angle conditions in Tαβδ and Tαβ,ext are due to the above force
balance conditions (2.9) and (2.10).

To obtain a well-posed problem the governing equations (2.3)–(2.6), (2.9),
and (2.10) must be provided with initial conditions for the fields and the mov-
ing boundaries and boundary conditions. If not otherwise stated, the isolated
case

Jα
i · νext = 0 on ∂Ω, 0 ≤ i ≤ N, 1 ≤ α ≤ M, (2.11)

is considered.
The total entropy of the system being given by

S(t) =

M∑

α=1

∫

Ωα(t)

sα(cα)dLd −
M∑

α<β, α,β=1

∫

Γαβ(t)

γαβ(ναβ) dHd−1 (2.12)

it can be shown that the evolution equations (2.3)–(2.11) imply non-negative
entropy production:

Theorem 2.1. The entropy (2.12) satisfies

d

dt
S(t) =

∑

1≤α≤M

∫

Ωα(t)

N∑

i,j=0

∇uα
i · Lα

ij∇uα
j dLd

+
∑

1≤α<β≤M

∫

Γαβ(t)

mαβ(vαβ)2 dHd−1.

The proof can be found in the Appendix of [GNS04].
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2.2 Derivation of the Gibbs-Thomson condition

In this section a physical motivation of the Gibbs-Thomson condition (2.6)
based on thermodynamic principles is given. The idea is to define the mo-
tion of the phase boundaries as a gradient flow of the entropy. On the set of
admissible surfaces the tangent space of a surface is defined by the smooth
real valued functions f on the surface supplied with a weighted L2-product.
A variation of the surface entropy in the direction f is then the rate of change
of the entropy when deforming the surface towards its normal with a strength
given by f . Such a deformation of a phase boundary usually changes the vol-
umes of the adjacent phases. Thanks to this fact the bulk fields can enter the
Gibbs-Thomson condition. But changes in the conserved quantities must be
counterbalanced. Since (2.6) is a local motion law, only local deformations of
an η-ball around a point x0 on a phase boundary are considered. Conservation
of energy and mass is ensured by taking a non-local Lagrange multiplier into
account. In the limit as η → 0 all terms become local after appropriate scaling
so that the desired equation is obtained.

For keeping the presentation simple we do not consider the general situa-
tion as in the previous subsection but the one depicted in Fig. 2.1. There, Γ
is a smooth compactly embedded d − 1-dimensional hypersurface separating
two phases Ω+ and Ω− with unit normal ν pointing into Ω+. Such a surface
respectively configuration is said to be admissible.

Definition 2.2. Let G be the set of the admissible surfaces. The tangent space

is defined by TΓG := C1(Γ, R). A Riemannian structure on TΓ G is defined by

the weighted L2 product

(v, ξ)Γ :=

∫

Γ

m(ν)vξ dHd−1 ∀ v, ξ ∈ TΓG

where m(ν) is a non-negative mobility function.

The bulk fields for energy density and concentrations, here denoted by c0,
are allowed to suffer jump discontinuities across Γ , but the potentials s,c = −u
are supposed to be Lipschitz continuous. Within the phases Ω+ and Ω− all
fields are smooth.

Variations of the entropy are based on local deformations of the domain.
Let x0 ∈ Γ and consider the family of open balls {Uη}η>0 centered in x0 with
radius η. Given arbitrary functions ξη ∈ C1

0 (Uη) it can be shown that that
there are vector fields

ξη ∈ C1
0 (Uη, Rd) with ξη = ξην on Γ η := Γ ∩ Uη. (2.13)

The solution θη : Uη → Uη to

θη(0, y) = y, θη
,δ(δ, y) = ξη(θη(−δ, y)) for δ ∈ [−δη

0 , δη
0 ],
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yields a local deformation of Uη. The restriction of δ is such that Γ η := Uη∩Γ
remains a smooth surface imbedded into Uη, i.e., the sets

Γ η
δ = {θη(δ, x) : x ∈ Γ η}, δ ∈ [−δη

0 , δη
0 ],

define an evolving (d − 1)-dimensional surface in Uη in the sense of Def. A.1.
A short calculation yields the identity

d

dδ
det θη

,x(δ, x) = ∇ · ξη(θη(δ, x)) det θη
,x(δ, x). (2.14)

The functional mapping L1-functions on Uη onto their mean value is denoted
by Mη, i.e.,

Mη : L1(Uη) → R
m, Mη(f) :=

1

|Uη|

∫

Uη

f(x) dx = —

∫

Uη

f(x) dx

where |Uη| = Ld(Uη) with the d-dimensional Lebesgue measure Ld.

Definition 2.3. Under the local deformation θη of Uη the densities of the

conserved quantities are

c(δ, y) := c0(θη(−δ, y)) −Mη
(
c0(θη(−δ, ·)) − c0(·)

)
, y ∈ Uη. (2.15)

The local entropy consists of the bulk part

Sη
B(δ) :=

∫

Uη

s(c(δ, y)) dy (2.16)

and the surface part

Sη
S(δ) := −

∫

Γ η
δ

γ(ν(δ)) dHd−1. (2.17)

The Lagrange multiplier Mη
(
c0(θη(−δ, ·)) − c0(·)

)
in (2.15) ensures that en-

ergy and mass are conserved under the deformation.

Lemma 2.4. The derivative of the bulk entropy with respect to δ in δ = 0 is

d

dδ
Sη

B(0) =

∫

Uη

(

s(c0) + Mη(u) · c0
)

∇ · ξη dx.

Proof. By definition (2.15), the bulk entropy (2.16) is

∫

Uη

s
(

c0(θη(−δ, y)) −Mη
(
c0(θη(−δ, ·)) − c0

))

dy

=

∫

Uη

s
(

c0(x) −Mη
(
c0(θη(−δ, ·)) − c0

))

det θ,x(δ, x) dx
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where the transformation y = θη(δ, x) was used. The equation (2.14) yields
together with θη(0, x) = x and det(θη

,x(0, x)) = det Id = 1

d

dδ

∫

Uη

c0(θη(−(·), z)) dz
∣
∣
∣
δ=0

=
d

dδ

∫

Uη

c0(x) det θη
,x(δ, x) dx

∣
∣
∣
δ=0

=

∫

Uη

c0(x)∇ · ξη(x) dx.

With s,c = −u the desired identity can be shown as follows:

d

dδ
Sη

B(0) =

∫

Uη

s
(

c0(x) −Mη
(
c0(θη(0, ·)) − c0

))

∇ · ξη(x) dx

−
∫

Uη

s,c(c
0(x)) · d

dδ

1

|Uη|

∫

Uη

c0(θη(−(·), z)) dz
∣
∣
∣
δ=0

dx

=

∫

Uη

s(c0(x))∇ · ξη(x) dx +
1

|Uη|

∫

Uη

u(x) dx ·
∫

Uη

c0(x)∇ · ξη(x) dx

=

∫

Uη

(

s(c0) + Mη(u) · c0
)

∇ · ξη(x) dx.

Lemma 2.5. The derivative of the surface entropy with respect to δ in δ = 0
is

d

dδ
Sη

S(0) = −
∫

Γ η

∇Γ · Dγ(ν) ξη dHd−1.

Proof. Interpreting {Γ η
δ }δ as evolving surface, the scalar normal velocity is

ξη and the vectorial normal velocity is ξη = ξην. The scalar curvature is
denoted by κΓ . Applying Th. A.4 from the Appendix yields (observe that
the boundary integrals over ∂Γ η vanish since the velocity ξη has a compact
support in Uη)

d

dδ
Sη

S(0) = −
∫

Γ η

(
∂◦γ(ν) − γ(ν) ξη · κΓ

)
dHd−1

which is using (A.3), (A.2), (A.4), and the one-homogeneity of γ

=

∫

Γ η

(
∇γ(ν) · ∇Γ ξη + ∇γ(ν) · ν κΓ ξη

)
dHd−1.

Applying Th. A.3 to ϕ = ∇γ(ν)ξη (again the boundary integral vanishes) and
again (A.2) on the last term it follows the desired identity:

. . . =

∫

Γ η

(
−∇Γ · ∇γ(ν) ξη − κΓ · ∇γ(ν) ξη + ∇γ(ν) · κΓ ξη

)
dHd−1

= −
∫

Γ η

(
∇Γ · ∇γ(ν) ξη

)
dHd−1.
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As stated at the beginning of this section, the goal is to define the motion
as a localized version of a gradient flow. This is realized in the following
definition. Let |Γ η| := Hd−1(Γ η).

Definition 2.6. The motion of the phase boundary Γ is defined as follows:

In each point x0 ∈ Γ the identity

lim
η→0

1

|Γ η| (v, ξη)Γ = lim
η→0

1

|Γ η|
d

dδ
(Sη

B + Sη
S)(0) (2.18)

holds for all families of functions ξη ∈ C1
0 (Uη) where Sη

B(δ) and Sη
S(δ) are

defined by (2.16) and (2.17) respectively.

Theorem 2.7. The localized gradient flow (2.18) yields the Gibbs-Thomson

condition (2.6).

To prove the theorem the following lemma is useful:

Lemma 2.8. Let g ∈ L∞(Uη) with g ∈ C1(Ω+ ∩ Uη) and g ∈ C1(Ω− ∩ Uη),
and let z ∈ R be given. There is a family of functions {ξη}η>0 ⊂ C1(Uη) with

ξη(x0) = z for all η such that

1

|Γ η|

∫

Uη

g∇ · ξη dx = −—

∫

Γ η

[g]+−ξη dHd−1 − 1

|Γ η|

∫

Uη

∇g · ξη dx

→ −[g(x)]+−z as η → 0

where the functions ξη are uniformly bounded and satisfy condition (2.13). By

g+ the limit of g in x ∈ Γ when approximated from the side Ω+ is denoted.

Analogously g− is defined when approximating x ∈ Γ from Ω−, and [g]+− =
g+ − g− is the difference.

Proof. The first identity follows from the divergence theorem applied to the
two parts Uη ∩Ω+ and Uη ∩Ω− of Uη using that ξη vanishes on the external
boundary ∂Uη. For the limiting behavior consider the functions

ξ̃η :=

{

z on Uη−η2

,

0 on Uη\Uη−η2

.

Let ζ be a smooth function with compact support on the unit ball U1(0) ⊂ R
d

such that
∫

Rd ζ = 1 and define ξη by the convolution of ξ̃η with η−3dζ(·/η3),
i.e.,

ξη(x) :=
(
η−3dζ( ·

η3 ) ∗ ξ̃η
)
(x).

Then for η small enough ξη = z on Γ ∩ Uη−2η2

=: Γ̃ η.
Observe that thanks to the smoothness of Γ the Hd−1-measure of Γ η\Γ̃ η

is of order ηd whence |Γ η\Γ̃ η|/|Γ η| = O(η) as η → 0. By assumption, the
function f = [g]+− is Lipschitz continuous on Γ . Thanks to the special choice
of ξη it can easily be derived that
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—

∫

Γ η

fξη dHd−1 = —

∫

Γ η

fz dHd−1 + —

∫

Γ η

f(ξη − z) dHd−1 → f(x0)z

as η → 0. As moreover the Ld-measure of Uη is of order ηd but the Hd−1-
measure of Γ η is of order ηd−1 and since |∇g · ξη| is bounded in Uη the
assertion follows.

Proof. (Th. 2.7) First, observe that Mη(u) → u(x0) as η → 0 since u is
Lipschitz continuous. Choose some arbitrary z ∈ R and a family of functions
{ξη}η>0 as in Lemma 2.8 and let {ξη}η>0 be the corresponding vector fields.
Then

1

|Γ η|

∫

Uη

Mη(u) · c0(x)∇ · ξη(x) dx = Mη(u) · 1

|Γ η|

∫

Uη

c0(x)∇ · ξη(x) dx

→ u(x0) · [c0(x0)]
+
−z = [u · c0]+−(x0)z.

The limit of the right hand side of (2.18) is, using the Lemmata 2.4, 2.5, and
2.8,

1

|Γ η|
d

dδ
(Sη

B + Sη
S)(0)

=
1

|Γ η|

∫

Uη

(

s(c0) + Mη(u) · c0
)

∇ · ξη dx − —

∫

Γ η

∇Γ · ∇γ(ν) dHd−1

→
(

−[s(c0)]+−(x0) +
[e0

T

]+

−
(x0) +

[−µ · ĉ0

T

]+

−
(x0) −∇Γ · ∇γ(ν(x0))

)

z

=

([
f(T, ĉ0) − µ · ĉ0

T

]+

−

(x0) −∇Γ · ∇γ(ν(x0))

)

z.

For the last two lines the identities c0 = (e0, ĉ0), u0 = − 1
T , (u1, . . . , uN)T = µ

T ,
and the thermodynamic relation e = f + sT were applied. The left hand side
of (2.18) yields in the limit as η → 0

1

|Γ η| (v, ξη)Γ = —

∫

Γ η

m(ν)vξη dHd−1 → m(ν(x0))v(x0)z.

Since z ∈ R can be chosen arbitrarily the condition (2.6) follows in x0.

2.3 Phase field approach

In phase field models, the individual phases are distinguished by phase field
variables. In different phases they attain different values, and interfaces are
modelled by a diffuse interface layer, i.e., the phase fields and all other ther-
modynamic quantities change smoothly on a thin transition layer (the diffuse
interface) instead of suffering discontinuous transitions.

Let φ = (φα)M
α=1 where each variable φα describes the local fraction of a

corresponding phase α. The vector of these phase field variables is required to
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fulfill the constraint φ ∈ ΣM . The interfacial contribution in (2.12) is replaced
by a Ginzburg-Landau type functional (cf. [LG50]) of the form

−
∫

Ω

(

δa(φ,∇φ) +
1

δ
w(φ)

)

dx. (2.19)

The function a : ΣM × (TΣM )d → R is a gradient energy density which is
assumed to be smooth and to satisfy

a(φ, X) ≥ 0 and a(φ, ηX) = η2a(φ, X) ∀(φ, X, η) ∈ ΣM × (TΣM )d × R
+.

The function w : ΣM → R is smooth and has exactly M global minima at
the points eβ = (δαβ)M

α=1, 1 ≤ β ≤ M , with w(eβ) = 0, i.e.,

w(φ) ≥ 0, and w(φ) = 0 ⇔ φ = eβ for some β ∈ {1, . . . , M}.

Possible choices for a and w will be given later. We also refer to the article of
Nestler and Wendler on page 113.

The surface contribution to the entropy is described above. Let us now
comment on the bulk entropy contribution and its dependence on the phase
field variables. The (Helmholtz) free energy of the system can be defined as
an appropriate interpolation of the free energies {fα(T, ĉ)}α of the possible
phases, i.e.,

f(T, ĉ, φ) =
M∑

α=1

fα(T, ĉ)h(φα) (2.20)

with an interpolation function h : [0, 1] → [0, 1] satisfying h(0) = 0 and h(1) =
1. By the thermodynamic relations s = −f,T and e = f +Ts the entropy and
the internal energy can be expressed in terms of (T, ĉ, φ). By appropriate
assumptions on f , inversely, the temperature can be expressed as a function
in (e, ĉ, φ) = (c, φ) whence also the entropy, s(c, φ) = −f,T (T (c, φ), ĉ, φ). Short
calculations taking the change of variables into account yield

s,c(c, φ) = −u(c, φ), s,φ(c, φ) = −f,φ(T (c, φ), ĉ, φ)

T (c, φ)
.

The total entropy of the system is now

S(c, φ) =

∫

Ω

(

s(c, φ) −
(
δa(φ,∇φ) +

1

δ
w(φ)

)
)

dx.

The evolution of the system is determined by a gradient flow of the entropy
for the phase field variables coupled to balance equations for the conserved
variables such that the second law of thermodynamics is fulfilled. To allow
for anisotropy in the mobility of the phase boundaries, again a weighted L2-
product is used. Given a smooth field φ : Ω → ΣM let

(w, v)ω,φ :=

∫

Ω

δ ω(φ,∇φ)w · v dx ∀w, v ∈ C∞(Ω; TΣM ).
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The function ω is supposed to be smooth, positive, and homogeneous of degree
zero in the second variable, i.e.,

ω(φ, X) ≥ 0 and ω(φ, ηX) = ω(φ, X) ∀(φ, X, η) ∈ ΣM × R
d×M × R

+.

The evolution of the system is defined by

(∂tφ, v)ω,φ =
〈δS

δφ
(c, φ), v

〉

∀v ∈ C∞(Ω, TΣM ).

Taking the boundary condition

a,∇φα(φ,∇φ) · νext = 0, 1 ≤ α ≤ M, (2.21)

into account this means that for all α ∈ {1, . . . , M}

δω(φ,∇φ)∂tφα = δ∇·a,∇φα(φ,∇φ)−δa,φα(φ,∇φ)− 1

δ
w,φα(φ)+s,φα(c, φ)−λ

(2.22)
with the Lagrange factor (due to the constraint

∑

α φα = 1)

λ =
1

M

M∑

α=1

(

δ∇ · a,∇φα(φ,∇φ) − δa,φα(φ,∇φ) − 1

δ
w,φα(φ) + s,φα(c, φ)

)

.

It is also possible to consider multi-well potentials of obstacle type (cf. [BE91]).
Then the differential equation (2.22) becomes a variational inequality.

The balance equations for the conserved quantities read

∂tci = −∇ · Ji(c, φ,∇u(c, φ)) = ∇ ·
(

N∑

j=0

Lij(c, φ)∇uj(c, φ)

)

. (2.23)

The fact that the Onsager coefficients Lij(c, φ) can differ in the different
phases may be modelled by interpolating the coefficients {Lα

ij}α of the pure

phases analogously as done for the free energy. The matrix L = (Lij)
N
i,j=0

then remains symmetric and positive semi-definite. Moreover, the condition
∑N

i=1 Lij(c, φ) = 0, 1 ≤ j ≤ N , remains satisfied. In addition to initial condi-
tions boundary conditions are imposed which, in the isolated case, are of the
form

Ji(c, φ,∇u(c, φ)) · νext = 0, 0 ≤ i ≤ N. (2.24)

In [GNS04] the following entropy inequality is shown:

Theorem 2.9. If the system under consideration evolves following (2.22) and

(2.23) then it holds that

d

dt
s(c, φ) ≥ −∇ ·

( N∑

i=0

(−ui)Ji − δ

M∑

α=1

a,∇φα∂tφα

)

.

If the boundary conditions (2.21) and (2.24) hold then d
dtS(c, φ) ≥ 0.
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2.4 Example for calibration: binary alloy, two phases

The framework for phase field modelling of alloy solidification presented in
the previous subsection generalizes earlier models that have successfully been
applied to describe phenomena like dendritic and eutectic growth. By pos-
tulating appropriate free energies f , surface terms a and w, Onsager coeffi-
cients Lij , and a kinetic mobility function ω, for example, the models used in
[Ca89, PF90, WMB92] can be derived (see [GNS04, St05b]). In the following
we will exemplify the choices to model non-isothermal solidification of a binary
alloy involving a solid and as liquid phase. For more complex cases of multiple
phases and components we refer to the article of Nestler and Wendler.

Let M = 2 and N = 2. According to the model of an ideal solution, the
free energy density of the liquid phase is defined by

f (l)(T, ĉ) :=

2∑

i=1

−Li

2

T − Ti

Ti
ci +

Rg

vm
T

2∑

i=1

ci log(ci) − cpT log(
T

Tref
),

and the free energy of the solid phase by

f (s)(T, ĉ) :=

2∑

i=1

Li

2

T − Ti

Ti
ci +

Rg

vm
T

2∑

i=1

ci log(ci) − cpT log(
T

Tref
).

The quantities LA and LB are the latent heats of the pure substances A = 1
and B = 2, TA and TB are the melting temperatures, Rg is the gas constant,
vm the molar volume (supposed to be constant), cp the specific heat, and Tref

some reference temperature, e.g., the mean value of the melting temperatures.
In the following, the entropy differences sA and sB between the phases will
appear. They are defined by si := Li/Ti, i = A, B. Moreover let R := Rg/vm.
For simplicity assume that LA = sATA = LB = sBTB =: 2L.

To simplify the presentation further we now consider dimensionless equa-
tions. Whenever thermodynamic quantities appear in the following, we will
use the same letters but they are thought to be appropriately rescaled. In par-
ticular we are able to set cp = 1 and Tref = 1. Interpolating the free energies
of the pure phases with the interpolation function h(φ) = φ in the sense of
(2.20) yields

f(T, c, φ) :=
(

c1
sA

2
(TA − T ) + c2

sB

2
(TB − T )

)

(φ1 − φ2)

+ RT

2∑

i=1

ci log(ci) − T log(T ).

Since φ1 + φ2 = 1 and c1 + c2 = 1 it is sufficient to consider Φ = φ1 − φ2

and C = c1 in order to distinguish the phases and to describe the alloy
composition. We then have Φ = 1 in the liquid phase, Φ = −1 in the solid
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phase, and C is the concentration of component A. The free energy density
can then be written in the form

f̃(T, C, Φ) := f(T, C, 1 − C, 1+Φ
2 , 1−Φ

2 )

= 1
2

(
CsA(TA − T ) + (1 − C)sB(TB − T )

)
Φ

+ RT
(
C log(C) + (1 − C) log(1 − C)

)
− T log(T ) (2.25)

resulting in the internal energy density

ẽ(T, C, Φ) = 1
2

(
CLA + (1 − C)LB

)
Φ + T =: LΦ + T.

Setting L0i = Li0 := 0 for i = 1, 2 and L00 := K(Φ)T 2 the energy flux
becomes

−L00∇u0 = −K(Φ)T 2∇−1

T
= −K(Φ)∇T

whence the balance equation for the energy reads

∂tẽ = ∂tT + L∂tΦ = ∇ ·
(
K(Φ)∇T

)
. (2.26)

Since µ1 = f,c1
− 1

2 (f,c1
+ f,c2

) = 1
2 (f,c1

− f,c2
) = 1

2 f̃,C we have

−u2 = u1 =
µ1

T
=

1

2

sB − sA

2
Φ +

R

2

(
log(C) − log(1 − C)

)

whence

−∇u2 = ∇u1 =
1

2

(sB − sA

2
∇Φ + R

1

C(1 − C)
∇C

)

.

Choosing D̃(Φ)C(1 − C) =: L11 = −L12 = −L21 = L22 with some diffusivity
coefficient D̃(Φ) a short calculation gives

−∂tc2 = ∂tc1 = ∂tC = ∇ ·
(
D̃(Φ)R∇C

)

+ ∇ ·
(

D̃(Φ)C(1 − C)
sB − sA

2
∇Φ

)

.
(2.27)

Subtracting the equations for the two phase field variables φ1 and φ2 yields

δ2ω∂tΦ = δ2
(
∇·(a,∇φ1

−a,∇φ2
)−(a,φ1

−a,φ2
)
)
−(w,φ1

−w,φ2
)− δ

T
(f,φ1

−f,φ2
).

The standard double-well potential w(φ) := 9γφ2
1φ

2
2 for some γ > 0 related to

the surface tension (see below) gives

(w,φ1
− w,φ2

)
(

1+Φ
2 , 1−Φ

2

)
= 9

4γp′(Φ) where p(Φ) = 1
2 (Φ2 − 1)2.

Moreover it holds that

− δ
T (f,φ1

− f,φ2
) = − δ

T 2f̃,Φ = − δ
T

(
CsA(TA − T ) + (1 − C)sB(TB − T )

)
.
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The surface gradient term is set to a(φ,∇φ) := γ|φ1∇φ2 − φ2∇φ2|2 =
γ|14∇Φ|2. Short calculations give

a,φ1
− a,φ2

= 0, a,∇φ1
− a,∇φ2

= 2γ(φ1∇φ2 − φ2∇φ2)(φ1 − φ2) = γ∇Φ.

Finally, let ξ := 2
3δ, α := ω

γ , and replace the surface energy Tγ =: σ

by a temperature independent constant (i.e., replace T in that term by some
reference temperature Tref and assume that variations of σ in the temperature
can be neglected). Then the evolution of the phase field variable is governed
by

ξ2α∂tΦ = ξ2∆Φ − p′(Φ) − 2ξ

3σ

(
CsA(TA − T ) + (1 − C)sB(TB − T )

)
. (2.28)

The model consisting of equations (2.26)–(2.28) and some additional con-
ditions will be used in the following section to sketch the method of relating a
phase field model to a sharp interface model and in the last section to describe
dendritic solidification.

2.5 Some remarks on the solvability of the phase field model

The reduced grand canonical potential is defined to be the Legendre transform
of the negative entropy with respect to the conserved quantities,

ψ(u, φ) = (−s)∗(c(u, φ), φ).

With its help it is possible to reformulate the differential equations using (u, φ)
as variables (cf. [St05b]). The parabolic system then has the structure

∂tψ,ui(u, φ) = ∇ ·
(

N∑

j=0

Lij(ψ,u(u, φ), φ)∇uj

)

,

ω(φ,∇φ)∂tφα = ∇ · a,∇φα(φ,∇φ) − a,φα(φ,∇φ) − w,φα(φ) + ψ,φα(u, φ) − λ

where 0 ≤ i ≤ N , 1 ≤ α ≤ M . When rigorously analyzing these equations the
main difficulties arise from the growth properties of ψ in u and the nonlinear-
ities involving ∇φ.

An ideal solution formulation of the free energy density has the structure

f(T, c) = T log(T ) + T
∑

i

ci log(ci) + . . .

As a result, in ψ a term − log(−u0) appears. In particular, when solving
the differential equations it must be shown that u0 < 0 almost everywhere.
Moreover, ψ is only of at most linear growth in the ui, 1 ≤ i ≤ N . A control
of terms involving ψ,u obtained by standard estimates for parabolic equations
do not provide much information of u itself any more. These difficulties have
been independently tackled in [AP92] and [LV83] respectively.
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Based on those results, the above system including the phase field vari-
ables is analyzed in [St05b] by approximating ψ with a perturbed potential
of quadratic growth in u. The main task is to derive suitable estimates and,
based on the estimates, to develop and apply appropriate compactness argu-
ments in order to go to the limit as the perturbation vanishes. It is assumed
that the matrix of Onsager coefficients L = (Lij)ij is positive (on a certain
subspace) uniformly in their arguments. If a degenerating coefficient matrix
is considered as in the previous subsection it may be better to switch to (T, ĉ)
or (e, ĉ) as variables, e.g. cf. [Ec04a].

Managing the phase field variables is kept simple in [St05b] by appropriate
assumptions on a, w, and ω. The interesting case of a involving the terms
φα∇φβ − φβ∇φα (which give a good approximation of the direction of ναβ)
is still open. Non-local models have been considered by multiple authors (for
instance, we refer to [BS96, SZ03, KRS05]). There, the energy is the only
conserved quantity, and the difficulties with the logarithmic term in u0 are
tackled by performing a Moser type iteration to get L∞-bounds for u0 and
1/u0.

3 Relation between the approaches and calibration

The relation between the phase field model and the free boundary problem
presented in the previous chapter can be established using the method of
matched asymptotic expansions. Generalizing methods developed in [CF88,
Ca89, BGS98, GNS98] this has been done in [GNS04]. The procedure is as fol-
lows: It is assumed that the solution to the phase field model can be expanded
in δ-series in the bulk regions occupied by the phases (outer expansions) and,
using rescaled coordinates, in the interfacial regions (inner expansion). Given
suitable relations between the functions and parameters of the phase field
model on the one hand and the parameters in the free boundary problem on
the other hand the functions to leading order of the δ-series solve the gov-
erning equations of the free boundary problem. It should be remarked that
this procedure is a formal method in the sense that it is not rigorously shown
that the assumed expansions in fact exist and converge. But in some cases
this ansatz could be verified (cf. [DS95, St96, CC98, Di04]).

If the phase field model is considered as an approximation of the free
boundary problem fast convergence with respect to δ is desired. An improve-
ment of the approximation was obtained in [KR98] in the context of thin
interface asymptotics. The analysis led to a positive correction term in the ki-
netic coefficient of the phase field equation balancing undesired terms of order
δ in the Gibbs-Thomson condition and raising the stability bound of explicit
numerical methods. Besides, the better approximation allows for larger values
of δ and, therefore, for coarser grids. In particular, it is possible to consider
the limit of vanishing kinetic undercooling which is important in applications.
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Numerical simulations of appropriate test problems reveal an enormous gain
in efficiency thanks to a better approximation.

In [Al99] the analysis was extended to the case of different diffusivities in
the phases and both classical and thin interface asymptotics were discussed.
By choosing different interpolation functions for the free energy density and
the internal energy density (the function h in (2.20)) an approximation of
second order could still be achieved but the gradient structure of the model
and thermodynamic consistency were lost. Based on those ideas it was shown
in [An02] that even an approximation of third order is possible by using high
order polynomials for the interpolation. In [MWA00] an approach based on
an energy and an entropy functional was used providing more degrees of free-
dom to tackle the difficulties with unequal diffusivities in the phases while
avoiding the loss of the thermodynamic consistency. Both classical and thin
asymptotics are discussed in that article as well as the limit of vanishing ki-
netic undercooling. In a more recent analysis in [RB*04], a binary alloy also
involving different diffusivities in the phases was considered and a better ap-
proximation was obtained by adding a small additional term to the mass flux
(anti-trapping mass current, the ideas stem from [Ka01]).

We have shown in [GS06] that, for two-phase multi-component systems
with arbitrary phase diagrams, there is a correction term to the kinetic coeffi-
cient such that the model with moving boundaries is approximated to second
order in the small parameter δ. A new feature compared to the existing results
is that, in general, this correction term depends on temperature and chemical
potentials. Indeed, up to some numerical constants, the latent heat appears in
the correction term obtained by Karma and Rappel [KR98]. Analogously, the
equilibrium jump in the concentrations enters the correction term when in-
vestigating an isothermal binary alloy. But from realistic phase diagrams it is
obvious that this jump depends on the temperature leading to a temperature
dependent correction term in the non-isothermal case.

In this chapter, the procedure to get an second order approximation will be
sketched for a simple model describing solidification of a pure substance. The
model is based on the model in Sect. 2.4. There, the small quantity ξ = 2

3δ
was introduced and will be used instead of δ. In addition to the free boundary
problem which appears as problem to leading order a correction problem to
the next order is derived by continuing the asymptotic analysis. The goal is
to obtain that fields identically zero solve the correction problem. It turns out
that the above mentioned correction term to the kinetic coefficient is neces-
sary to allow for this solution. The model equations including assumptions,
asymptotic expansions, and matching conditions are listed in the following
subsection. After, the asymptotic analysis is performed. Finally, the leading
order problem and the correction problem are stated. In [GS06], numerical
tests have been performed to show that a better approximation of the free
boundary problem thanks to the kinetic correction term is really obtained.
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3.1 The simplified model and assumptions

In order to present the main ideas to obtain a second order approximation a
simple model for solidification of a pure substance is considered, namely, the
model in Sect. 2.4 where we set C ≡ 1. In the definition of the free energy
density (2.25) Φ is replaced by a term h(Φ) with an interpolation function
h : [−1, 1] → [0, 1] which is symmetric, i.e., h(−Φ) = −h(Φ), and fulfills
h′(±1) = 0. For sA we simply write s, and TA is replaced by Tm. The kinetic
coefficient splits into a main part and a positive correction term of order ξ,
i.e., α = α0 + ξα1. The correction term will later be determined and turn out
to be crucial to get a higher order approximation of the related free boundary
problem. The heat diffusivity K is assumed to be independent of the phase
field variable. The governing equations then have the form

ξ2(α0 + ξα1)∂tΦ = ξ2∆Φ − p′(Φ) − 2ξ

3σ

(
s(Tm − T )

)
h′(Φ), (3.1)

∂tT + L∂th(Φ) = K∆T. (3.2)

To obtain a well-posed problem initial and boundary conditions have to be
imposed. Consider a domain Ω ⊂ R

2 and a time interval IT := (0, T ). For
ξ > 0 let (T (t, x; ξ), Φ(t, x; ξ)), x ∈ Ω, t ∈ IT , denote smooth solutions to
(3.1)–(3.2) given the same initial and boundary conditions. We suppose that,
for all times, there exist two phases separated by a diffuse interfacial layer
which is bounded away from the boundary of the domain Ω. Here, we do not
carry out the asymptotic analysis for the initial and boundary conditions but
only give some remarks. That analysis is carried out in [St05b], Sect. 3.2, and
[GS06].

The following procedure of matching asymptotic expansions is outlined
with great care in [FP95, DW05]. Here, only the main ideas for the two-
dimensional case are sketched. The family

Γ (t; ξ) :=
{
x ∈ Ω : Φ(t, x; ξ) = 0

}
, ξ > 0, t ∈ IT , (3.3)

is supposed to be a set of smooth curves in Ω. They are demanded to be
uniformly bounded away from ∂Ω and to depend smoothly on (ξ, t) such that,
if ξ ց 0, some limiting curve Γ (t; 0) is obtained. With Ωl(t; ξ) and Ωs(t; ξ)
we denote the regions occupied by the liquid phase (where Φ(t, x; ξ) > 0) and
the solid phase (where Φ(t, x; ξ) < 0) respectively.

Let γ(t, s; 0) be a parameterization of Γ (t; 0) by arc-length s for every
t ∈ IT . The vector ν(t, s; 0) denotes the unit normal on Γ (t; 0) pointing into
Ωl(t; 0), and τ(t, s; 0) := ∂sγ(t, s; 0) denotes the unit tangential vector. For ξ
small enough the curves Γ (t; ξ) can be parametrized over Γ (t; 0) using some
distance function d(t, s; ξ),

γ(t, s; ξ) := γ(t, s; 0) + d(t, s; ξ)ν(t, s; 0).

Close to ξ = 0 we assume that there is the expansion d(t, s; ξ) = ξ1d1(t, s) +
ξ2d2(t, s)+O(ξ3). Also the curvature κ(t, s; ξ) and the normal velocity v(t, s; ξ)
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of Γ (t; ξ) are smooth and can be expanded in ξ-series (cf. the Appendix of
[GS06]):

κ(t, s; ξ) = κ(t, s; 0) + ξ
(
κ(t, s; 0)2d1(t, s) + ∂ssd1(t, s)

)
+ O(ξ2), (3.4)

v(t, s; ξ) = ∂tγ(t, s; ξ) · ν(t, s; ξ) = v(t, s; 0) + ξ ∂◦d1(t, s) + O(ξ2). (3.5)

Here, ∂◦ denotes the normal time derivative, see (A.1) for a definition.
We suppose that in each domain E ⊂ R

2 such that E ⊂ Ω\Γ (t; 0) the
solution can be expanded in a series close to ξ = 0 (outer expansion):

T (t, x; ξ) =

K∑

k=0

ξkθk(t, x) + O(ξK+1),

Φ(t, x; ξ) =

K∑

k=0

ξkϕk(t, x) + O(ξK+1).

(3.6)

Let z be the 1
ξ -scaled signed distance of x from Γ (t; 0). Hence, in a neigh-

borhood of Γ (t; 0) we can write for z �= 0

T̂ (t, s, z; ξ) := T (t, x(t, s, z); ξ), Φ̂(t, s, z; ξ) := Φ(t, x(t, s, z); ξ).

An essential assumption is now that T̂ and Φ̂ can be expanded in these
new variables (inner expansion),

T̂ (t, s, z; ξ) =
K∑

k=0

ξkTk(t, s, z) + O(ξK+1), (3.7)

Φ̂(t, s, z; ξ) =
K∑

k=0

ξkΦk(t, s, z) + O(ξK+1), (3.8)

and that these expansions are valid for z ∈ R. The notion is that, since the
interfacial thickness scales with ξ, one can expect a meaningful convergence
behavior when rescaling the space with 1/ξ in the normal direction.

Given x �∈ Γ (t; 0) clearly z(t, x) = dist(x, Γ (t; 0))/ξ → ±∞ as ξ ց 0.
On the other hand, in that limit x is located in one of the two phases, and
the closer it lies to the interface Γ (t; 0) the better the series of the functions
θk(t, x) approximates the value of the temperature on the interface. These
facts are reflected by the following matching conditions relating the outer and
inner expansions (see [St05b], Sect. 3.1, and [GS06] for the derivation): As
z → ±∞

T0(z) ∼ θ0(0
±), (3.9)

T1(z) ∼ θ1(0
±) + (∇θ0(0

±) · ν)z, (3.10)

∂zT1(z) ∼ ∇θ0(0
±) · ν, (3.11)

∂zT2(z) ∼ ∇θ1(0
±) · ν +

(
(ν · ∇)(ν · ∇)θ0(0

±)
)
z (3.12)
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and analogously for Φ. Here, for a function g(t, x) = ĝ(t, s, r) with the signed
distance r = dist(x, Γ (t; 0))

g(0+) := lim
rց0

ĝ(t, s, r), g(0−) := lim
rր0

ĝ(t, s, r).

3.2 Outer solutions

Away from Γ (t; 0), i.e., in domains E ⊂ R
2 with E ⊂ Ω\Γ (t; 0), the expan-

sions (3.6) are plugged into the differential equations. All terms are expanded
in ξ-series.

To leading order ξ0 equation (3.1) yields the identity 0 = −p′(ϕ0). The only
stable solutions are the minima of p, hence ϕ0 ≡ ±1. These values distinguish
the two phases because, since the result is independent of ξ, necessarily ϕ0 = 1
in Ωl and ϕ0 = −1 in Ωs.

To the next order ξ1 the identity

0 = −p′′(ϕ0)ϕ1 −
2

3σ
s(Tm − θ0)h

′(ϕ0)

follows. By h′(±1) = 0 and p′′(±1) = 4 we obtain ϕ1 ≡ 0 as the only solution.
The energy balance equation (3.2) yields the heat equation, to leading

order for θ0 and to the next order for θ1:

∂tθk = K∆θk, k = 0, 1.

Observe that it is possible to replace θ0 by the internal energies e(l)(θ0) =
θ0 + L of the liquid phase or e(s) = θ0 − L of the solid phase.

The initial conditions and boundary conditions on ∂Ω are independent of
ξ and, hence, only enter θ0 and ϕ0 respectively. The higher order corrections
fulfill homogeneous initial and boundary conditions. Boundary conditions on
Γ (t; 0) will be obtained by matching the expansions with the expansions in
the interfacial region.

3.3 Inner solutions

Derivatives with respect to (t, x) transform into derivatives with respect to
(t, s, z) as follows:

d

dt
= − 1

ξ v∂z + ∂◦ − (∂◦d1)∂z + O(ξ),

∆x = 1
ξ2 ∂zz − 1

ξ κ∂z

+ (∂sd1)
2∂zz − 2∂sd1∂sz − (κ2(z + d1) − ∂ssd1)∂z + ∂ss + O(ξ).

The phase field equation first yields

0 = ∂zzΦ0 − p′(Φ0). (3.13)
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By (3.3) and the assumption that (3.8) holds true for ξ = 0 we have Φ0(z =
0) = 0. The matching conditions (3.9) imply

Φ0(t, s, z) → ϕ0(t, s; 0
±) = ±1 as z → ±∞.

Hence, the solution to (3.13) is Φ0(t, s, z) = tanh(z) and only depends on z.
For the conserved variable we get 0 = K∂zzT0 to order ξ−2. By the match-

ing conditions (3.9) T0 has to be bounded as z → ±∞, hence we see that T0

must be constant with respect to z which means T0 = T0(t, s). The matching
condition (3.9) furthermore implies that T0(t, s) is exactly the value of θ0 in
the point γ(t, s; 0) ∈ Γ (t; 0) from both sides of the interface. In particular,

θ0 is continuous across the interface Γ (t; 0).

To order ξ1 equation (3.1) yields

−α0v∂zΦ0 = ∂zzΦ1 − κ∂zΦ0 − p′′(Φ0)Φ1 −
2

3σ
s(Tm − T0)h

′(Φ0). (3.14)

From the outer solutions we have ϕ1(t, s, 0
±) = 0 and ∇ϕ0(t, s, 0

±) · ν = 0.
Due to the matching condition (3.10) we conclude Φ1(t, s, z) → 0 as z → ±∞.
The operator L(Φ0) = ∂zz −w′′(Φ0) is self-adjoint. Differentiating (3.13) with
respect to z we obtain that ∂zΦ0 lies in the kernel of L(Φ0). Since Φ0(−z) =
−Φ0(z), ∂zΦ0 and h′(Φ0) are even, (3.14) allows for an even solution. In the
following we will assume that Φ1 indeed is even.

A solvability condition can be deduced by multiplying the equation with
∂zΦ0 and integrating over R with respect to z:

0 =

∫

R

(

(κ − α0v)(∂zΦ0(z))2 +
2

3σ
s(Tm − T0)h

′(Φ0(z))∂zΦ0(z)

)

dz

=
4

3
(κ − α0v) +

4

3σ
s(Tm − θ0) (3.15)

where we used that
∫

R
(∂zΦ0)

2dz = 4
3 . Up to the factor 4

3 this is the Gibbs-
Thomson condition (2.6).

The system (3.2) becomes to the order ξ−1

−v∂z(T0 + Lh(Φ0)) = K∂zzT1.

Integrating two times with respect to z furnishes

T1 = − 1

K

(

vL

∫ z

0

h(Φ0)dz′ + (vT0 − A)z
)

+ τ̄ (3.16)

∼ − 1

K

(

(v(T0 + L) − A)z − vLH
)

+ τ̄ as z → ∞

∼ − 1

K

(

(v(T0 − L) − A)z − vLH
)

+ τ̄ as z → −∞
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where A and τ̄ are integration constants and

H :=

∫ ∞

0

(1 − h(Φ0(z
′)))dz′ =

∫ 0

−∞

(1 + h(Φ0(z
′)))dz′.

Here, we used the fact that Φ0 converges to constants exponentially fast, so
that the integral

∫ z

0 has been replaced by
∫∞

0 while the linear terms remain.
By (3.10)

θ1(0
±) = τ̄ +

v

K
LH (3.17)

which means, in particular, that

θ1 is continuous across Γ (t; 0). (3.18)

With (3.11) and T0 = θ0(0
±) the following jump condition is obtained on

Γ (t; 0):

[−K∇θ0]
l
s · ν =

(
v(T0 + L) − A

)
−

(
v(T0 − L) − A

)
= v[e(θ0(0))]ls. (3.19)

Since Φ0 only depends on z the phase field equation to order ξ2 gives

− α0v∂zΦ1 − α1v∂zΦ0 − α0(∂
◦d1)∂zΦ0

= ∂zzΦ2 − p′′(Φ0)Φ2 + (∂sd1)
2∂zzΦ0 − (κ2(z + d1) + ∂ssd1)∂zΦ0

− κ∂zΦ1 −
1

2
p′′′(Φ0)(Φ1)

2 +
2

3σ
s(Tm − T0)h

′′(Φ0)Φ1 +
2

3σ
sT1h

′(Φ0).

To guarantee that Φ2 exists there is again a solvability condition which is
obtained by multiplying with ∂zΦ0 and integrating over R with respect to
z. The terms involving Φ1 vanish. For this purpose, equation (3.14) and the
assumption that Φ1 is even is used. Let

J : =

∫ ∞

0

∂z(h ◦ Φ0)(z)

∫ z

0

(1 − (h ◦ Φ0)(z
′))dz′dz

=

∫ 0

−∞

∂z(h ◦ Φ0)(z)

∫ 0

z

(1 + (h ◦ Φ0)(z
′))dz′dz.

Using (3.16) to replace T1 and, after, (3.17) to replace τ̄ a short calculation
shows that the solvability condition becomes (remember that 2L = sTm)

0 = σ(−α0∂
◦ + ∂ss + κ2)d1 − sθ1

+ v
(

− σα1 + (H + J)
1

K
Tms2

)

. (3.20)

We remark that ∂◦d1 and (∂ss+κ2)d1 are the first order corrections of the nor-
mal velocity and the curvature of Γ (t, s; ξ) (see (3.5) and (3.4) respectively).
Indeed, when inserting the expansions for T = θ0 +ξθ1 + . . . and the interface
distance d = ξd1+. . . into the Gibbs-Thomson condition σαv = σκ+s(Tm−T )
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then, to leading order, we get (3.15), and the first line of (3.20) is the equation
to first order in ξ.

The goal is to obtain that θ1 ≡ 0 and d1 ≡ 0 are solutions to the equations
they have to fulfill. For this purpose, the second line of (3.20) must vanish.
But by suitable choice of the additional correction term α1 in the kinetic
coefficient, namely

α1 = (H + J)
σ

K
Tms2, (3.21)

this in indeed ensured.
Analogously to the above correction to the Gibbs-Thomson condition we

are interested in deriving a first order correction to the jump condition (3.19).
The equation (3.2) yields to order ξ0

− v∂z(T1 + Lh′(Φ0)Φ1) + (∂◦ − (∂◦d1)∂z)(T0 + Lh(Φ0))

= K (∂zzT2 − κ∂zT1 + ∂ssT0) .

Integrating once with respect to z leads to

− K∂zT2 = v(T1 + Lh′(Φ0)Φ1) − B
︸ ︷︷ ︸

(i)

+

∫ z

0

(−∂◦ + (∂◦d1)∂z)(T0 + Lh(Φ0))dz′

︸ ︷︷ ︸

(ii)

− κKT1
︸ ︷︷ ︸

(iii)

+K∂ssT0z

where B is an integration constant. We need to collect the terms contributing
to ∇θ1 · ν. In view of (3.12) this means that the terms linear in z are not of
interest. Applying (3.10) to Φ1, T1 and by the assumption h′(0) = h′(1) = 0
it holds that

(i) ∼ vθ1 − B + (. . . )z as z → ±∞.

Furthermore, since ∂◦Φ0 = 0,

(ii) = −∂◦(T0 ± L)z + (∂◦d1)L(h(Φ0))
∣
∣
z

0

∼ −∂◦e(l) + (∂◦d1)L as z → ∞,

∼ −∂◦e(l) − (∂◦d1)L as z → −∞.

By (3.10) and (3.18) we get (iii) = κKθ1 + (. . . )z as z → ±∞. Finally, the
first order correction of the jump condition (3.19) at the interface is

[−K∇θ1]
l
s · ν = vθ1 + 2L(∂◦d1).
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3.4 Summary of assumptions and stated problems

Let us now collect the equations. First, the problem to leading order is stated:

(LOP) Find a function θ0 : IT × Ω → R and a family of curves
{Γ (t; 0)}t∈IT separating Ω into two domains Ωl(t; 0) and Ωs(t; 0) such
that

∂te
(p)(θ0) = K∆θ0, in Ωp(t; 0), t ∈ IT , p = s, l,

and such that on Γ (t; 0) there holds for all t ∈ IT :

θ0 is continuous,

[−K∇θ0]
l
s · ν = v[e(θ0)]

l
s,

σα0v = σκ + s(Tm − θ0).

If we define α1 as in (3.21) then the correction problem reads as follows:

(CP) Let (θ0, {Γ (t; 0)}t) be a solution to (LOP). Let l(t) be the length
of Γ (t; 0) and set SIT := {(t, s) : t ∈ IT , s ∈ [0, l(t))}. Then find
functions θ1 : IT × Ω → R and d1 : SIT → R such that

∂tθ1 = K∆θ1, in Ωp(t; 0), t ∈ IT , p = s, l,

and such that on Γ (t; 0) there holds for all t ∈ IT :

θ1 is continuous,

[−K∇θ1]
l
s · ν = vθ1 + (∂◦d1) [e(θ0)]

l
s

σα0 ∂◦d1 = σ(∂ss + κ2)d1 − sθ1.

Obviously, (θ1, d1) ≡ 0 is a solution to the correction problem (as previously
remarked, the boundary conditions on ∂Ω are homogeneous). If this solution
is unique then the leading order problem is approximated to second order
in ξ by the phase field model. Problem (CP) is in fact the linearization of
(LOP), i.e., the problem resulting from (LOP) when inserting the expansions
T = θ0+ξθ1+ . . . and d = ξd1+ . . . . We point out again that the choice (3.21)
is crucial in order to guarantee that the undesired terms in (3.20) vanish.

3.5 Numerical example

In [GS06] several numerical tests have been performed revealing that the
free boundary problem can indeed be better approximated by the phase field
model with the correction term. Fig. 3.1 shows the results for an undercooled
binary alloy (the potentials, physical parameters, and initial values are pre-
cisely stated in [GS06], Sect. 4.3). A planar solid-liquid front moves into the
liquid phase. On the right the figure shows the profiles of the concentration
of one component during the solidification. The position of the interface, i.e,



48 C. Eck, H. Garcke, B. Stinner

0.1414 0.2 0.2828 0.4
12.15

12.2

12.25

12.3

12.35

12.4

Behavior of the interface position in ξ

ξ

in
te

rf
a

c
e

 p
o

s
it
io

n

without correction term
with correction term

0 200 400 600 800 1000
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
Profiles of c at t = 0, 6, 12, 18, 24, 30, 36

I = [0.0, 28.0], h = 0.025

c

Fig. 3.1. Numerical test of the correction term. On the left: the position of the
interface depicted over ξ. On the right: profiles of the concentration c during evolu-
tion.

the point where Φ(t, x; ξ) = 0, is depicted on the left for several values of ξ,
the other parameters being fixed.

Simulating with the correction term (3.21) in the phase field equation and
varying ξ the changes in the interface position turned out to be of about 10−3

which is smaller than the grid spacing ∆x = 0.02. In contrast, if the correction
term was not taken into account changes of several grid points were observed.
This behavior in ξ indicates that the approximation of the sharp interface
solution is improved thanks to the correction term.

3.6 Remarks on the multi-phase case

When multiple phases are present the asymptotic analysis leads to a leading
order problem consisting of the equations (2.3)–(2.6), (2.9), and (2.10) (cf.
[GNS98, GNS04]). Indeed, the procedure presented in the previous subsec-
tions yields the equations (2.3)–(2.6). To obtain the force balance (2.9) (and,
analogously, (2.10)) it is assumed that, away from the triple junction on a
diffuse phase boundary, the situation is just as in the case of two phases.

Aiming for a second order approximation of the force balance we observed
that, in general, in the interfacial regions not only the phase field variables of
the adjacent phases are present but also phase fields corresponding to other
phases appear. It turned out that these artificial third phase contributions do
not trouble the first order asymptotic analysis but a second order analysis.
As a first step we therefore developed and analyzed suitable multi-well poten-
tials w that avoid the third phase contributions (cf. [St05a, GHS06]), smooth
potentials as well as potentials of obstacle type.

As an additional feature, the calibration of the phase field model with
respect to given surface energies σαβ(ν) and mobility coefficients mαβ(ν) be-
comes much simpler. It is shown in [BBR05] that the Γ–limit of (2.19) as δ → 0
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has the form of the surface contribution in (2.12), and a relation between the
σαβ and the functions a and w is derived. Using matched asymptotic expan-
sions, [St91] for the isotropic case and [GNS98] for the general case proposed
the simpler relation

σαβ(ν) = inf
p

{∫ 1

−1

√

w(p)a(p, p′ ⊗ ν)dy,

p ∈ C0,1([−1, 1]; ΣM), p(−1) = eα, p(1) = eβ

}

. (3.22)

Using numerical simulations they got evidence that this formula seems to hold
true for a large class of anisotropies.

The new potentials w are such that solutions to (3.22) exist with pi �≡ 0
only if i = α, β. Moreover, it is possible to adapt coefficients in w and cali-
bration functions in a such that the integral in (3.22) becomes a given surface
energy. Similarly, the relation between the mαβ(ν) and ω(φ,∇φ) becomes
much simpler thanks to the new potentials.

4 A homogenized two-scale model for a binary mixture

In this section we apply the theory of homogenization to a simplified physical
situation with periodic equiaxed dendritic microstructure which is described
by a phase field model for a binary alloy. The resulting model will be a two-

scale model that consists of a macroscopic heat equation and of microscopic
cell problems that describe the evolution of the phases and the microscopic
solute transport at each point of the macroscopic domain. In order to justify
the formal asymptotic expansion, an estimate is established that compares
the solution of the two-scale model to that of the original model.

The phase transition problem to be considered is given by equations (2.26)–
(2.28), i.e.,

∂tT + L∂tΦ −∇ · (K(Φ)∇T ) = 0, (4.1)

∂tC −∇ · (D1(Φ)∇C) −∇ · (D2(C, Φ)∇Φ) = 0, (4.2)

αξ2∂tΦ − ξ2∆Φ + p′(Φ) + q(T, C, Φ) = 0, (4.3)

to be solved in the time-space cylinder QT Ω := IT × Ω with time interval
IT := [0, T ] and domain Ω ⊂ R

d. The diffusion tensors are assumed to be
Lipschitz-functions of the phase field Φ, they shall be symmetric, Kij = Kji,
D1,ij = D1,ji for i, j = 1, . . . , d, as well as elliptic and bounded,

k0|z|2 ≤ Kijzizj ≤ k1|z|2, d0|z|2 ≤ D1,ijzizj ≤ d1|z|2 (4.4)

for all z ∈ R
d with positive constants k0 ≤ k1 and d0 ≤ d1 independent of

Φ. Here and in the sequel, the sum convention is used. The function D2 :
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Fig. 4.1. Periodic microstructure

R
2 → R

d,d is Lipschitz and bounded. The function p represents the double-

well potential p(Φ) = 1
2

(
Φ2 − 1

)2
, and q : R

3 → R is a Lipschitz function.
The differential equations are supplemented by Dirichlet conditions for the
temperature and homogeneous Neumann conditions for concentration and
phase field,

T = Tibc,
(
D1(Φ)∇C + D2(C, Φ)∇Φ

)
· νext = 0, ∇Φ · νext = 0 (4.5)

on ST Ω := IT × ∂Ω, and by initial conditions

T (0, ·) = Tibc, C(0, ·) = Cic and Φ(0, ·) = Φic (4.6)

on Ω. For simplicity of the notation the Dirichlet condition and the initial
condition of the temperature are given by the same function Tibc that is defined
on QT Ω.

Let us introduce some notation for function spaces. Spaces of functions
with continuous derivatives of order β are denoted by Cβ(Q), Lr(Q) is the
Lebesgue space of functions whose r-th power has an integral, W k

r (Q) is the
Sobolev space of functions with derivatives of order k whose r-th power is
integrable, and Hβ(Q) = W β

2 (Q). In anisotropic spaces of the type Ck,ℓ(I×Q)
or W k,ℓ

r (I × Q) with time interval I, the index k refers to the time variable
and ℓ to the space variables.

4.1 Asymptotic expansion and the two-scale model

To construct a model that is suitable for a very small scale of the evolving
dendritic structures, we consider a sequence of problems of varying scale ε > 0,
study the limit ε → 0 of their solutions, and construct a limit problem that
is valid for the limit of these solutions. This limit problem may be used as an
approximation for situations with small but non-vanishing scale ε.

This procedure is done for an idealized equiaxed dendritic microstructure
that consists of equiaxed crystals growing at the nodes of a uniform grid with
edge length given by the scale parameter ε, see Fig. 4.1. This situation is
generated by the initial data

T
(ε)
ibc (x) = T

(0)
ibc (x), C

(ε)
ic (x) = C

(0)
ic

(
x, x

ε

)
and Φ

(ε)
ic (x) = Φ

(0)
ic

(
x, x

ε

)
(4.7)
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with functions T
(0)
ibc ∈ L2(Ω), C

(0)
ic , Φ

(0)
ic ∈ L2

(
Ω; C#(Y )

)
. The domain Y is a

unit cell, by definition this is a bounded, simply connected Lipschitz domain
with the property that R

d can be represented as union of shifted copies of Y
with no intersection of their interiors. For simplicity of the presentation, the
volume of the unit cell is scaled to one. The standard example for Y is the unit
cube Y = [0, 1]d. The set C#(Y ) contains all periodic continuous functions
in R

d with periodicity cell Y , the subscript # indicates periodic boundary
conditions with respect to y ∈ Y . Condition (4.7) describes instantaneous
nucleation at time t = 0 of a periodic distribution of nuclei. In order to obtain
a well-defined asymptotic limit for ε → 0, it is necessary to scale some given
data in dependence of ε. Here it is assumed

ξ = εξ0, α = ε−2α0, and Dℓ = ε2D
(0)
ℓ , ℓ = 1, 2. (4.8)

The scaling of ξ is obvious: if the size of a solid crystal is proportional to
ε, and if we model this crystal by a diffuse interface model, then the width
of the diffuse interface must be bounded by const · ε with a constant that
is small compared to the size of the crystal. Hence ξ0 is a small phase field
parameter that is fixed in the asymptotic expansion. The relaxation parameter
α is scaled such that the total relaxation factor αξ2 in the phase field equation
remains constant. The scaling of the solute diffusivity is motivated by the fact
that dendritic structures are created by a competition between a diffusional
instability and surface energy. At least one of the diffusivities K or D1, D2

has to be scaled in dependence of ε. Since solute diffusivity is usually smaller
than heat conductivity, it is natural to scale D1 and D2. The fact that Dℓ and
ξ are both scaled proportional to ε2 does not indicate that they are of similar

size: in fact we expect D
(0)
ℓ to be of the size 1 and ξ0 to be small compared

to D
(0)
ℓ , but the relation Dℓ/ξ is kept fixed.

In order to study the limit ε → 0, the existence of an asymptotic expansion

uε(t, x) = u0

(
t, x, x

ε

)
+ε u1

(
t, x, x

ε

)
+ε2u2

(
t, x, x

ε

)
+ · · · for u = T, C, Φ (4.9)

is assumed. The existence of such an asymptotic expansion is not guaranteed.
The result of the calculation will be justified in the next section. The gra-
dient of a function x → u(x, x

ε ) is given by ∇u = ∇xu + 1
ε∇yu, where ∇x

and ∇y denote the gradients with respect to the first and second variables
of u, respectively. The asymptotic expansions (4.9) and the formal relation
∇ = ∇x + 1

ε∇y are used in the differential equations (4.1)–(4.3). Then the
coefficients of different powers of ε are compared, starting from the lowest
order. For the Φ-dependent conductivities we use a Taylor expansion that is
abbreviated by Kε = K0 +εK1 +ε2K2 + · · · with K0 = K(Φ0) and analogous

expansions for D
(0)
1 (Φ), D

(0)
2 (C, Φ). The validity of these expansions with a re-

mainder of order εβ requires K, D
(0)
1 ∈ Cβ

(
R; Rd,d

)
and D

(0)
2 ∈ Cβ

(
R

2; Rd,d
)
.

The problem of 1st order consists of the terms of order ε−2 in the heat
equation (4.1); these are
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−∇y ·
(
K0∇yT0) = 0 in QT ΩY := IT × Ω × Y,

T0 is Y -periodic with respect to y.

The solutions of this problem are constant with respect to y, hence T0(t, x, y) =
T0(t, x) is independent of y.

The problem of 2nd order is given by the terms of order ε−1 in the
heat equation,

−∇y ·
(
K0(∇yT1 + ∇xT0)

)
= 0 in QT ΩY ,

T1 is Y -periodic with respect to y.

This is a linear elliptic equation for T1 with right hand side defined in terms
of T0. Its solution can be represented by

T1(t, x, y) =

d∑

j=1

Hj(t, x, y) ∂xj T0(t, x)

with the solutions Hj of the local cell problem

−∇y ·
(
K0∇yHj

)
= ∇y ·

(
K0 ej

)
, Hj is Y -periodic,

where ej is the j-th unit vector of R
d. Both K0 and Hj depend on Φ0.

The problem of 3rd order consists of the terms of order ε0 in the heat
equation, the diffusion equation and the phase field equation,

∂tT0 + L∂tΦ0 −∇y ·
(
K0(∇yT2 + ∇xT1) + K1(∇yT1 + ∇xT0)

)

−∇x ·
(
K0(∇yT1 + ∇xT0)

)
= 0,

(4.10)

∂tC0 −∇y ·
(
D

(0)
1 (Φ0)∇yC0

)
−∇y ·

(
D

(0)
2 (C0, Φ0)∇yΦ0

)
= 0, (4.11)

α0ξ
2
0∂tΦ0 − ξ2

0∆yΦ0 + p′(Φ0) + q(T0, C0, Φ0) = 0 (4.12)

on QT ΩY , supplemented by periodic boundary conditions on ∂Y for T2, C0

and Φ0. Equations (4.11) and (4.12) do not contain any derivatives with re-
spect to x. Hence they can be interpreted as a set of differential equations
defined on QT Y := IT × Y for every parameter x ∈ Ω. Equation (4.10) is
transformed into a macroscopic equation for T0 = T0(t, x) by integration with
respect to y ∈ Y . Due to the periodic boundary conditions the ∇y·-term
disappears and the homogenized heat equation is obtained,

∂tT0 + L∂tΦ0 −∇ ·
(
K∗(Φ0)∇T0

)
= 0

with solid volume fraction Φ0(t, x) :=
∫

Y
Φ0(t, x, y) dy and the effective heat

conductivity

K∗
ij(Φ0) :=

∫

Y

(

Kij(Φ0) +

d∑

k=1

Kik(Φ0)∂yk
Hj(Φ0)

)

dy.
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The effective heat conductivity K∗
ij is symmetric, elliptic and bounded with

the same constants k0 and k1 as the original matrix K, see e.g. [JKO94] or
[Ho97].

Let us sum up the obtained two-scale model. It consists of

• The macroscopic heat equation

∂t

(
T0 + LΦ0

)
−∇ ·

(
K∗(Φ0)∇T0

)
= 0 in QT Ω = IT × Ω (4.13)

with boundary conditions and initial conditions

T0 = T
(0)
ibc on ST Ω = IT × ∂Ω and T0(0, ·) = T

(0)
ibc in Ω.

• The definition of the averaged phase field Φ0(t, x) =
∫

Y Φ0(t, x, y) dy and
the effective heat conductivity

K∗
ij(Φ0) =

∫

Y

Kik(Φ0)
(
δjk + ∂yk

Hj(Φ0)
)
dy (4.14)

with the Kronecker symbol δjk via the solutions Hj = Hj(Φ0) of the local
cell problems

−∇y ·
(
K(Φ0)(∇yHj + ej)

)
= 0 in Y (4.15)

with periodic boundary conditions.
• The microscopic problems

∂tC0 −∇y ·
(
D

(0)
1 (Φ0)∇yC0

)
−∇y ·

(
D

(0)
2 (C0, Φ0)∇yΦ0

)
= 0, (4.16)

α0ξ
2
0∂tΦ0 − ξ2

0∆yΦ0 + p′(Φ0) + q(T0, C0, Φ0) = 0 (4.17)

in QT Y = IT × Y with periodic boundary conditions and initial data

C0(0, x, y) = C
(0)
ic (x, y), Φ0(0, x, y) = Φ

(0)
ic (x, y) for y ∈ Y.

These equations must be solved for every point x ∈ Ω of the macroscopic
domain.

4.2 Analysis of the two-scale model

The existence of weak solutions to the two-scale model is proved in [Ec04c],
Theorem 3.3, by a fixed point approach. Uniqueness of the solution is also
proved in [Ec04c], Theorems 3.4 and 3.5. The results can be summed up as:

Theorem 4.1. Let Ω ⊂ R
d be a C2-smooth domain of dimension d = 2 or

d = 3, Y ⊂ R
d be a unit cell, let K, D1 : R → R

d,d be Lipschitz, symmetric

and satisfy the condition (4.4), let Tibc ∈ W 1,2
r (QT Ω) ∩ H1

(
IT ; W 1

s (Ω)
)

with

r > d, s > 1 for d = 2 and s > 6/5 for d = 3, Cic, Φic ∈ L∞

(
Ω; W

2−2/ℓ
ℓ# (Y )

)
∩

W 1
r

(
Ω; L2(Y )

)
with ℓ > 1 + d/2, 0 ≤ Cic ≤ 1, suppose D2 ∈ C0,1

(
R

2; Rd,d
)

with D2(C, Φ) = 0 for C /∈ [0, 1], p(Φ) = 1
2

(
Φ2 − 1

)2
, q : R

3 → R is Lipschitz

and satisfies the growth condition |q(T, C, Φ)| ≤ const(1 + |T | + |C| + |Φ|),
and let L, ξ, α be positive constants. Then there exists a unique weak solution

(T, C, Φ) of the two-scale model (4.13)–(4.17).
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An estimate for the model error is derived in [Ec04b] under appropriate
assumptions concerning the regularity of the solutions for both the original
model and the two-scale model. Let (Tε, Cε, Φε) denote the solutions of the
original model (4.1)–(4.3), (4.5), (4.7) with the scaling (4.8) of the parameters
and (T0, C0, Φ0) be the solutions of the two-scale model (4.13)–(4.17) with

initial data T
(0)
ibc , C

(0)
ic , Φ

(0)
ic . The error estimate is done in terms of macroscopic

reconstructions of scale ε for the solutions of the two-scale model:

uε
0(t, x) := u0(t, x, x/ε) for u ∈ {T, C, Φ}.

The required regularity for the solutions of the original model is

‖Tε‖H1/2,1(QT Ω) + ‖Tε‖L∞(IT ;L2(Ω)) + ε‖Cε‖H1/2,1(QT Ω)

+ ε‖Φε‖H1/2,1(QT Ω) + ‖Cε‖L∞(QT Ω) + ‖Φε‖L∞(QT Ω) ≤ const1
(4.18)

with a constant const1 independent of ε. The solution of the two-scale model
is supposed to satisfy

T0 ∈ W 1,2
r (QT Ω) ∩ H1/2+β

(
IT ; H1(Ω)

)
,

C0, Φ0 ∈ L∞

(
Ω; C1,2(QT Y )

)
, ∇xC0,∇xΦ0 ∈ L∞

(
Ω; W 1,2

s (QT Y )
) (4.19)

with parameters r > d + 2, s > d and β > 0.

Theorem 4.2. Let Ω ⊂ R
d be a bounded Lipschitz domain and Y be a unit

cell, let K, D
(0)
1 ∈ C2

(
R; Rd,d

)
be bounded and elliptic as described in (4.4),

D
(0)
2 ∈ C0,1

(
R

2; Rd,d
)

be bounded, q : R
3 → R be globally Lipschitz and p(Φ) =

1
2

(
Φ2−1

)2
. The solutions of the original model and the two-scale model satisfy

the regularity properties (4.18) and (4.19). Let

T ε
1 (t, x) := T0(t, x) + εHj

(
t, x, x

ε

)
∂xj T0(t, x)

be the first order term in the asymptotic expansion for the temperature. Then

‖Tε − T0‖L∞(IT ;L2(Ω)) + ‖Cε − Cε
0‖L∞(IT ;L2(Ω)) + ‖Φε − Φε

0‖L∞(IT ;L2(Ω))

+ ‖Tε − T ε
1 ‖L2(IT ;H1(Ω)) ≤ const ε1/2

with const independent of ε.

This theorem guarantees the order of approximation ε1/2 for the two-scale
model. The exponent of ε is limited to 1/2, because the two-scale model
does not approximate the original model of scale ε close to the boundary of
the domain. It must be expected that the domain of an equiaxed dendritic
crystal growing close to the boundary is not a full shifted copy of εY , but
a subdomain obtained by intersecting with Ω. This generates an additional
error of order ε1/2.
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0.5

2

Fig. 4.2. Macroscopic domain of the numerical example

4.3 Numerical example

In order to illustrate the two-scale model we present the results of numeri-
cal computations for two space dimensions. The computations are done with
constant heat conductivity K = 1 – hence no elliptic cell problem must be
solved, – constant solute diffusivity D1(Φ) = 1, D2(C, Φ) = −0.05 and latent
heat 2L = 1. The function q in the phase field model is given by

q(∇yΦ, T, c, Φ) =
(
1 − Φ2

)
· 1.2 · arctan

(
ξ

1.2·σ(∇yΦ)

(
T + 10 · C − 1

2Φ − 2
))

.

The quantity σ here is correlated with the surface tension for the sharp in-
terface limit ξ → 0. Its dependence on ∇yΦ is introduced in order to describe
the dependence of the surface tension on the orientation of the surface. The
problem can be reformulated in terms of the function µ = 10 · C − 1

2Φ − 2
that plays the role of a chemical potential; the diffusion equation then takes
the form

∂t

(
µ + 1

2Φ
)
− ∆yµ = 0,

and the constitutive function q in the phase field equation is

q(∇yΦ, T, µ, Φ) =
(
1 − Φ2

)
· 1.2 · arctan

(
ξ

1.2·σ(∇yΦ) (µ + T )
)
.

The precise form of σ(∇Φ) is

σ(∇Φ) = σ0

(
1 − (m2 − 1)σ1 cos(m(Θ(∇Φ) − Θ0))

)
,

where σ0 describes the average value, σ1 is the strength of the anisotropy, m
describes the symmetry pattern of the dendrites, Θ(∇Φ) is the angle between
∇Φ and the x1-axis and Θ0 is an offset angle. The special choice of q involving
the arctan function is chosen in order to ensure that the minima of the po-
tential for fixed T, µ,∇yΦ are kept at Φ = ±1, even for large deviations from
the equilibrium melting point; following the proposition of Kobayashi [Ko93].

Both the global heat equation and the microscopic problems are discretized
by bilinear finite elements on uniform rectangular grids. The equations are
decoupled by the time discretization in the following way: first a partially
linearized version of the phase field equation is solved with temperature, con-
centration and ∇yΦ taken from the previous time step, then the diffusion
equation is solved. This is done for every grid point of the macroscopic grid,
then the global heat equation is solved. The decoupled linear equations are
discretized with respect to time by the Crank-Nicolson scheme. This gives



56 C. Eck, H. Garcke, B. Stinner

Fig. 4.3. Evolution of left and right crystal for Θ0 = 0
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Fig. 4.4. Evolution of specific data for Θ0 = 0

a semi-implicit time-discretization of the two-scale model, with an implicit
discretization of the main parts of the differential operators.

The examples to be presented are computed for σ0 = 0.0002, m = 4,
ξ = 0.005, α = 5 and σ1 = 0.05. The initial conditions are T = −0.1 and
µ(T, c, Φ) = −0.1, this adds up to a total initial undercooling of −0.2. The
unit cell for the microscopic problem is Y = [0, 1]2, the initial solid nucleus is a
sphere of radius r = 0.05 located at the midpoint (0.5, 0.5) of Y . The boundary
conditions are periodic boundary conditions for the microscopic problems and
given heat fluxes for the macroscopic equations. The macroscopic domain is
Ω = [0, 2] × [0, 0.5]; we prescribe homogeneous heat fluxes ∇T · νext = 0 on
[0, 2]×{0}, {2}× [0, 0.5] and [0, 2]×{0.5}, on the remaining part {0}× [0, 0.5]
of the boundary we prescribe the heat flux ∇T · νext = −1. The macroscopic
equation is discretized by a uniform rectangular grid with 19×1 elements; it is
essentially one-dimensional, the crystals evolving at the same x1-position are
equal. The microscopic problems are solved with uniform rectangular grids
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Fig. 4.5. Evolution of left and right crystal for Θ0 = 0.4
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Fig. 4.6. Evolution of specific data for Θ0 = 0.4

of 300 × 300 elements. The time step is ∆t = 2 · 10−5, the final time of all
computations is t = 0.2.

The figures show the results for three different orientations Θ0 = 0, Θ0 =
0.4 and Θ0 = π/4 for the anisotropy of the surface tension. Figures 4.3, 4.5 and
4.7 show the evolution of the left and right crystals from the initial time t = 0
to t = 0.2 in twenty steps. The left crystal is that growing at x1 = 0, the right
that at x1 = 2. Due to the boundary cooling at x1 = 0 the left crystal grows
quickly, whereas the right one evolves rather slowly; its driving force is limited
to the initial undercooling. For the left crystal, the offset angle Θ0 = 0 leads
to shorter dendrites than the other angles, here the interaction of neighboring
crystals happens earlier than in the cases Θ0 = 0.4 and Θ0 = π/4. This effect
is not visible for the right crystals which are in an early stage of their evolution.
In Fig. 4.4, 4.6 and 4.8 the evolution of the specific data (specific volume and
specific surface) is depicted for selected crystals in a row in x1-direction, the
number corresponds to the position of the crystal, starting with position 1 at
x1 = 0. Further examples are presented in [Ec04a] and [Ec04b].
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Fig. 4.7. Evolution of left and right crystal for Θ0 = π/4
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Fig. 4.8. Evolution of specific data for Θ0 = π/4

4.4 Some remarks on the numerical analysis

Error estimates for simple finite element discretizations of both the origi-
nal model for scale ε and the two-scale model are derived and compared in
[Ec02]. For linear or bilinear finite elements on a grid with mesh size h and
a discretization with respect to time by an implicit Euler scheme with time
step ∆t, the error for the original model of scale ε is

const1

((
h

ε

)2

+ ∆t

)

.

This estimate reveals the typical convergence properties of the chosen dis-
cretization for parabolic equations: convergence of second order with respect
to the space variables and of first order with respect to time. The factor 1/ε
of the mesh size h accounts for the obvious fact that the microstructure starts
to be properly resolved for h ≪ ε only. The discretization of the two-scale
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model uses a global grid for the macroscopic heat equation defined on Ω, at
each node of this global grid the local cell problem defined on Y is solved with
a local grid for Y . The mesh size of both grids is related to h0, the time step
is again ∆t. Then the error estimate for the two-scale model is

const2
(
h2

0 + ∆t
)
.

Obviously no dependence on ε is present here. In order to have comparable
computational complexity, the mesh sizes h0 for the two-scale model and h
for the original model should scale according to h0 ∼

√
h. Respecting also

the model error of order ε1/2 for the two-scale model we conclude that the
two-scale model is superior, if the mesh size used for the original model is
larger than the threshold hε = const3ε

5/4 with a suitable const3.

4.5 Conclusion

The presented two-scale model is an approximate model for a problem with
scale ε of the microstructure, with increasing accuracy for decreasing ε. Nu-
merical computations with this model are valid for a whole range of microscale
parameters ε ∈ (0, ε0] with the appropriate diffusivities. The model is suit-
able for material with fast heat diffusion and slow solute diffusion, where the
temperature is assumed to be essentially constant on the microscopic scale,
while the solute transport is neglected on the macroscopic scale.

Extensions of the presented two-scale model may be possible for more com-
plex physical phenomena, for example phase transitions with convection, and
physically more realistic situations, in particular for non-periodic microstruc-
tures. The extension to models with convection is probably possible by the
application of techniques similar to those presented here to available phase
field models that include convection, see e.g. [AMW00], [BD*99], [NW*00].
For phase transitions with density differences between solid and liquid – where
convection cannot be avoided – it may be necessary to use a unit cell that
is fixed in Lagrangian coordinates but moves and deforms with the flow in
an Eulerian description. Non-periodic microstructures can be described by a
probabilistic description of the initial conditions, then it is possible to ap-
ply techniques of random homogenization of the type described in [JKO94].
A corresponding stochastic version of the two-scale model can be found in
[Ec04a].

A Facts on evolving surfaces and transport identities

Let IT = (0, T ) ⊂ R be a time interval and let m, d ∈ N with m ≤ d.

Definition A.1. (Σt)t∈IT is an evolving m-dimensional surface in R
d if

1. for each t ∈ IT , the surface Σt can be parameterized over a fixed smooth

orientable submanifold U ⊂ R
m+1,
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2. the set Σ′ := {x′ = (t, x) : t ∈ IT , x ∈ Σt} ⊂ R × R
d is a smooth

m + 1-dimensional surface,

3. the tangent space Tx′Σ′ is nowhere purely spatial, i.e., Tx′Σ′ �= {0} × V
with V ∼= R

m.

The spatial tangent space of dimension m in x ∈ Σt is denoted by TxΣt,
the spatial normal space of dimension d − m by NxΣt := (TxΣt)

⊥. There
is a unique vector field vΣ : Σ′ → R

d+1 such that (1,vΣ(t, x)) ∈ Tx′Σ′

and vΣ(t, x) ∈ NxΣt; vΣ(t, x) is the vectorial normal velocity of the evolving
surface. It can be verified that

Tx′Σ′ = {(s, svΣ(x′)) + (0, τ) : s ∈ R, τ ∈ TxΣt},
Nx′Σ′ = {(−vΣ(x′) · ν, ν) : ν ∈ NxΣt}.

Let ϕ be a smooth scalar field on Σ′. The derivative

∂◦ϕ(x′) := ∂(1,vΣ(x′))ϕ(x′) in x′ = (t, x) ∈ Σ′, (A.1)

is the normal time derivative of ϕ in x′ and describes the variation of ϕ
when following the curve δ → c(δ) ∈ Σt+δ defined by c(0) = x and ∂δc(δ) =
vΣ(t + δ, c(δ)), δ ∈ (t − δ0, t + δ0) with some small δ0 > 0.

Let (τk(t, x))m
k=1 be an orthonormal basis of TxΣt. By ∂τk

ϕ(x) the dif-
ferential of ϕ into direction (0, τk) ∈ Tx′Σ′ is denoted. The surface gradient
of ϕ in x′ is defined by ∇Σϕ(x′) :=

∑m
k=1 ∂τk

ϕ(x′)τk ∈ TxΣt. Let ϕ be a
smooth vector field on Σ′. The surface divergence of ϕ in x′ is defined by
∇Σ · ϕ(x′) :=

∑m
k=1 ∂τk

ϕ(x′) · τk.
If m = d − 1 the normal space NxΣt has dimension one, and Σ′ is ori-

entable. Then there is a smooth vector field νΣ of unit normals, νΣ(x′) ∈
NxΣt, |νΣ(x′)|2 = 1. The (scalar) curvature and the curvature vector then
are defined by

κΣ := −∇Σ · νΣ , κΣ := κΣνΣ. (A.2)

Moreover, the (scalar) normal velocity then is defined by

vΣ = vΣ · νΣ, (A.3)

and the following relation, derived in [Gu00], Chapter 15b, holds:

∂◦νΣ = −∇ΣvΣ . (A.4)

Definition A.2. Γ ′ := (Γt)t is an evolving m-dimensional subsurface of Σ′

if

1. the set Γt is a relatively open connected subset of Σt for each t ∈ IT ,

2. the boundary ∂Γ ′ := (∂Γt)t consists of a finite number of evolving m− 1-
dimensional surfaces such that, locally for each t ∈ IT , ∂Γt is the graph

of a Lipschitz continuous map.
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A vectorial normal velocity v∂Γ can be assigned to the pieces of ∂Γ ′ while Γ ′

obviously has the same vectorial normal velocity as Σ′, namely vΣ .
In some point x ∈ ∂Γt the tangent cone on Γt is denoted by TxΓt. If x is

in the interior of one of the pieces the cone is a half-space of TxΣt. Besides
then the boundary of TxΓt in TxΣt coincides with the tangent space of the
boundary ∂Γt, i.e., ∂TxΓt = Tx∂Γt. In such points x there is a unique unit
vector τΓ ∈ TxΣt ∩ Nx∂Γt with τΓ · τ̃ ≤ 0 for all τ̃ ∈ TxΓt. This vector τΓ is
said to be the external unit normal of Γt with respect to Σt.

Let m = d−1 and d ≤ 3. First, a divergence theorem is stated for a smooth
surface with piecewise smooth Lipschitz boundary like Γt as in Definition A.2:

Theorem A.3. ([Be86], Corollary 4 ) In the above situation there is the

following identity:
∫

Γt

(∇Σ · ϕ + κΣ · ϕ) dHm(x) =

∫

∂Γt

ϕ · τΓ dHm−1.

If ϕ is a tangent vector field then κΣ · ϕ = 0 so that one gets the usual
divergence theorem on surfaces. It should be remarked that the proof in [Be86]
is performed for smooth ∂Γt but there is a brief note on the above case of
a piecewise smooth boundary at the end of Sect. II(2). Finally, a transport
identity is stated:

Theorem A.4. ([Be86], Theorem 1) In the above situation it holds for every

t ∈ IT that

d

dt

(∫

Γt

ϕdHm

) ∣
∣
∣
∣
t

=

∫

Γt

(∂◦ϕ − ϕvΣ · κΣ) dHm +

∫

∂Γt

(ϕv∂Γ · τΓ ) dHm−1.

Remark A.5. If vΣ = 0 and κΣ = 0 then Γt is flat, ∂◦ reduces to ∂t and v∂Γ

is tangential. Altogether, the Reynold’s transport theorem is obtained.
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