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I. INTRODUCTION

Alloy systems with multiple components are an im-
portant class of materials, in particular for technical ap-
plications and processes. The microstructure formation
of a material plays a central role for a broad range of
mechanical properties and, hence, for the quality and the
durability of the material. Aiming for a continuous op-
timization of materials properties, the study of pattern
formation during alloy solidification has been a focus of
many experimental and, recently, also of computational
work. Since the microstructure characteristics are a re-
sult of the process conditions used during production,
the analysis of the fundamental correlation between the
processing pathway and the microstructure is of funda-
mental importance. Multiple components in alloys are
combined with the appearance of multiple phases lea-
ding to complex phase diagrams, various phase transfor-
mations and different types of solidification. Modelling
and numerical simulations aim to predict microstructure
evolution in multicomponent alloys in order to virtually
design materials. However, the great number of mate-
rial parameters and of physical variables involved in sys-
tems yields a complexity that remains a big challenge
for future work. In particular, the gain of statistically
meaningful data from computations requires simulations
in sufficiently large domains with a tremendous need of
memory and computing time resources. To treat com-
plex systems, high performance computing, paralleliza-
tion and optimized algorithms including adaptive mesh
generators are mandatory.

The phase-field method has become an important tool
for tackling free boundary problems such as grain bound-
ary motion [1, 2], and for simulating crystal growth, so-
lidification and pattern formation phenomena in alloys
[3–15]. The advantage of the phase-field method lies in
the formulation of diffuse interfaces of a finite thickness.
Explicit front tracking is avoided by using smooth contin-

uous variables locating the grain and phase boundaries.
By asymptotic expansions for vanishing interface thick-
ness, it can be shown that classical sharp interface models
including physical laws at interfaces and multiple junc-
tions are recovered [16, 17]. Since phase field models can
be derived on the basis of classical irreversible thermo-
dynamics [18–20], they can be applied to processes close
to thermodynamical equilibrium, i.e. at relatively small
driving forces. Extensions of the phase-field approach
to describe strongly nonequilibrium solidification, solute
trapping and solute drag effects at large driving forces
are discussed in [21, 22]. The scaling problem of quanti-
tatively modelling the low growth rate regime where the
microstructure is typically several orders of magnitude
larger than the microscopic capillary length has been
overcome by considering a so-called thin interface limit
of the phase-field model [23–27].

The purpose of this paper is to extend the advances of
the phase-field approach to model general non-isothermal
multicomponent multiphase solidification in situations
close to local thermodynamical equilibrium and to gener-
alize former models [20, 28]. The underlying general for-
mulation of founded on an entropy functional is given in
Section II. Explicit expressions for the free energy densi-
ties of the bulk phases and of the interfaces are discussed.
A method is described how the artifical appearance of a
foreign phase contributions at a two-phase boundary can
be avoided. Formulations defining the bulk, interdiffu-
sion and interfacial diffusion coefficients as well as dif-
ferent types of surface energies and kinetic anisotropies
are presented. In particular, an expression of crystalline
(facetted) anisotropy is given that can be used for mod-
elling general crystal shapes with an arbitrary number of
edges and corners in three spatial dimensions. The essen-
tial ingredients of the phase-field model are summarized
here, the numerical method for solving the governing
equations is briefly explained and examples of possible
applications to numerically simulate moving grain and
phase boundaries in binary and ternary alloys are given
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in Section III. The simulation results are intended to il-
lustratively show the potential of the phase-field model
in computing and numerically analyzing complex pattern
formations in multicomponent alloys.

II. PHASE-FIELD MODEL OF

MULTICOMPONENT SOLIDIFICATION

The phase-field model is formulated for a general class
of multicomponent and multiphase alloy systems consist-
ing of K components and N different phases in a domain
Ω. It is assumed that the system is in mechanical equilib-
rium and, for simplicity, that pressure and mass density
are constant. The concentrations of the components are
represented by a vector c(~x, t) = (c1(~x, t), . . . , cK(~x, t)).
Similarly, the phase fractions are described by a vector-
valued order parameter φ(~x, t) = (φ1(~x, t), . . . , φN (~x, t)).
The variable φα(~x, t) denotes the local fraction of phase
α. It is required that the concentrations of the compo-
nents and the phase-field variables fulfill the constraints

K
∑

i=1

ci = 1 and

N
∑

α=1

φα = 1.

The physical effects occuring during solidification such
as heat and mass transfer, the release of latent heat, the
Gibbs-Thomson relation and interface kinetics are ob-
tained on the basis of an entropy functional S(e, c,φ) of
the form

S(e, c,φ) =

∫

Ω

(

s(e, c,φ)−
(

εa(φ,∇φ) +
1

ε
w(φ)

)

)

dx,

depending on the internal energy e, the concentrations
ci, i = 1, . . . ,K and the phase fields φα, α = 1, . . . , N .
The first term in the entropy functional s(e, c,φ) is a
bulk entropy density. The second and third summands
a(φ,∇φ) and w(φ) model surface entropy densities ta-
king into account the thermodynamics of the interfaces.
As typical in diffuse interface models, ε is a small length
scale parameter related to the thickness of the diffuse
interface.

Knowing the free energy densities of the pure phases
fα(T, c), the total free energy f(T, c,φ) is obtained as
a suitable interpolation of the fα. The Gibbs relation
reads (observe that due to the assumptions the Gibbs
free energy and the Helmholtz free energy coincide up to
a constant)

df = f,T dT +
∑

i

f,cidci +
∑

α

f,φαdφα

= −sdT +
∑

i

µidci +
∑

α

rαdφα,

where T is the temperature, s = −f,T is the entropy den-
sity, µi = f,ci are the chemical potentials and rα = f,φα
are potentials due to the appearance of different phases.
Here, f,X denotes the partial derivative of the free energy

f with respect to X. The internal energy density is given
by the e = f + sT . From this relation it can be derived
that s,e =

1
T

and s,ci =
−µi
T

.
Through the free energies fα, a general class of phase

diagrams for multiphase multicomponent alloy systems
can be incorporated into the phase-field model. The
model allows for systems with general free energies
fα(T, c) being convex in c and concave in T . Choos-
ing the liquid phase to be the last component φN of the
phase-field vector φ, an ideal solution formulation of the
bulk free energy density fid(T, c,φ) reads

fid(T, c,φ) :=
N
∑

α=1

K
∑

i=1

(

ciL
α
i

T − Tαi
Tαi

h(φα)

)

+

K
∑

i=1

(

Rg

vm
Tci ln(ci)

)

− cvT ln(
T

TM
),

with LNi = 0 and Lαi , i = 1, . . . ,K, α = 1, . . . , N − 1, be-
ing the latent heat per unit volume of the phase transition
from phase α to the liquid phase and of pure component
i. Furthermore, Tαi , i = 1, . . . ,K, α = 1, . . . , N−1 is the
melting temperature of the i-th component in phase α,
TM is a reference temperature. cv, the specific heat and
vm, the molar volume are assumed to be constant, Rg is
the gas constant. With a suitable choice of the function
h(φ) satisfying h(0) = 0 and h(1) = 1, e.g. h(φα) = φα
or h(φα) = φ2α(3 − 2φα), the free energy density f is an
interpolation of the individual free energy densities fα. A
more general expression for alloys is the Redlich-Kister-
Muggianu model of subregular solution

fsr = fid +
K
∑

i=1

K
∑

j=1

cicj

M
∑

ν=0

M
(ν)
ij (ci − cj)

ν ,

with binary interaction coefficients M
(ν)
ij depending on

the parameter ν. For M = 0, the Redlich-Kister-
Muggianu ansatz takes the form of a regular solution
model. In most applications, in particular to metallic
systems, M takes a maximum value of two. A ternary
term∼ cicjck can be added to describe excess free energy.

The gradient entropies a(φ,∇φ) can be expressed in
terms of a generalized antisymmetric gradient vector
qαβ = φα∇φβ − φβ∇φα by

a(φ,∇φ) =
∑

α<β

Aαβ(qαβ)

=
∑

α<β

γαβ
mαβ

(aαβ(qαβ))
2|qαβ |

2,

where γαβ represent surface entropy densities and mαβ

are mobility coefficients. The formulation using the ge-
neralized gradient vector qαβ allows to distinguish the
physics of each phase (or grain) boundary by providing
enough degrees of freedom. Anisotropy of the surface en-
tropy density is modelled by the factor (aαβ(qαβ))

2 de-
pending on the orientation of the interface. The factors
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are homogeneous of degree zero and hence Aαβ(qαβ) is
two-homogeneous. Phase boundaries with isotropic sur-
face entropies are realized by aαβ(qαβ) = 1. Weakly
anisotropic crystals with an underlying cubic symmetry
can be modelled by the expression

aαβ(qαβ) = 1− δαβ

(

3∓ 4
|qαβ |

4
4

|qαβ |4

)

(1)

with |q|44 =
∑d

i=1(q
4
i ) and |q|4 =

(

∑d
i=1(q

2
i )
)2

. The

strength of the anisotropy of an α/β phase or grain
boundary is given by the parameter δαβ . For a strongly
anisotropic crystal of facetted type, we define

aαβ(qαβ) = max
1≤k≤nαβ

{ qαβ
|qαβ |

· ηkαβ

}

, (2)

where ηkαβ , k = 1, . . . , nαβ are the nαβ corners of the

Wulff shape of the α-β transition. Eqn. (2) allows to
model arbitrary crystal shapes with nαβ corners.

The interfacial free entropy density w(φ) might be of
multi well type wst(φ) or of a multi obstacle type wob(φ).
Suitable expressions of these potentials can be formulated
as extensions of the double well or obstacle potential for
solid-liquid phase-field models

wst(φ) = 9
∑

α<β

mαβγαβφ
2
αφ

2
β ,

wob(φ) =
16

π2

∑

α<β

mαβγαβφαφβ .

In the obstacle case, we set wob(φ) =∞ if φ is not on the

Gibbs simplex G = {φ ∈ IRN :
∑

α φα = 1, φα ≥ 0}.
From a computational point of view, an advantage of
using obstacle type potentials for numerical simulations
is that the partial differential equations for the phase
fields φα, α = 1, . . . , N only need to be solved in a finite
region of the diffuse interface layer.

The relation between the surface entropy γ̄αβ(ν) of an
α-β-phase boundary with orientation ν and the interface
terms is given by

γ̄αβ(ν) = 2 inf
p

∫ 1

−1

√

a(p, p′ ⊗ ν)w(p)dy

where the infimum is taken over all Lipschitz continuous
functions p : [−1, 1] → G with p(−1) = eα, p(1) = eβ
(see [2] for the details). The calibration properties of the
phase-field parameters γαβ with respect to experimen-
tally given data is optimal if γ̄αβ = γαβ . But in general
the minimizer is difficult to determine, because it does
not follow the edge of the Gibbs simplex G which results
in the presence of phase fields different from φα and φβ
in the transition region. To avoid such third phase con-
tributions at a two phase interface, additional terms of
third order ∼ φαφβφδ can be added to the multi obstacle
potential, i.e.

w̃ob(φ) = wob(φ) +
∑

α<β<δ

γαβδφαφβφδ. (3)

A sufficient condition for choosing the parameter γαβδ in
order to optimize the calibration properties is

γαβδ ≥
96γijmij

π2
, for all (i, j) ∈ {(α, β), (β, δ), (δ, α)}.

Alternatively smooth multi-well potentials of the form

w(φ) = wst(φ) + 72
∑

α<β

(

γαβmαβφ
2
αφ

2
β

∑

δ 6=α,β

φδ

)

so far yield very promising results to avoid the appear-
ance of artificial third phase contributions. In spite of the
fifth order terms, the multi-well structure is attained on
the Gibbs simplex G, but, because of numerical errors in
the simulations, additional terms outside of G must be
added so that the potential is bounded from below by
zero. The above potentials will be studied in more detail
in a forthcoming paper ([29]). For further approaches we
refer to [30] and [32] (which is based on ideas of [31]).

The governing set of equations follows from conserva-
tion laws for the internal energy e and the concentrations
ci, i = 1, . . . ,K coupled to a gradient flow for the non-
conserved phase-field variables φα, α = 1, . . . , N . The
equations are derived by variational differentiation of the
entropy functional S(e, c,φ) ensuring energy and mass
conservation and the increase of total entropy. They read

∂e

∂t
= −∇ ·

(

L00∇
1

T
+

K
∑

j=1

L0j∇
(−µj
T

)

)

, (4)

∂ci
∂t

= −∇ ·
(

Li0∇
1

T
+

K
∑

j=1

Lij∇
(−µj
T

)

)

, (5)

τε
∂φα
∂t

= ε
(

∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ)
)

−
w,φα(φ)

ε
−
f,φα(T, c,φ)

T
− λ (6)

where∇·(. . .) denotes the divergence of the term in the
brackets. a,φα , w,φα , f,φα and a,∇φα are the derivatives
of the energy contributions with respect to φα and ∇φα,
respectively. The parameter λ in Eqn. (6) is a Lagrange

multiplier garantueeing that the constraint
∑N

α=1 φα = 1
is preserved, i.e.

λ =
1

N

N
∑

α=1

[

ε (∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ))

−
w,φα(φ)

ε
−
f,φα(T, c,φ)

T

]

.

In refering to nonequilibrium thermodynamics, we pos-
tulate the fluxes for the conserved quantities to be lin-
ear combinations of the thermodynamical driving forces
∇ δS

δe
= ∇ 1

T
and ∇ δS

δci
= ∇−µi

T
.

To fulfill the constraint
∑K

i=1 ci = 1 during the evo-

lution, it is required that
∑K

i=1 Lij = 0, j = 0, . . . ,K.
Further, it is assumed that the matrix L = (Lij)i,j is
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positive semi-definite and symmetric according to the
Onsager relations. It can be shown that this condi-
tion leads to a local entropy inequality ensuring non-
negative local entropy production. The mobility coef-
ficients (Lij)i,j=0,,...,K are allowed to depend on T , c
and φ. Given some heat and mass diffusion coefficients,
k = k(T, c,φ) and Di = Di(T, c,φ), the Lij can be re-
lated to them by

Lji = Lij =
vm
Rg

Dici

(

δij −
Djcj

∑K
k=1Dkck

)

(7)

for i, j = 1, . . . ,K and then recursively

L0j = −
vm
Rg

N
∑

α=1

K
∑

i=1

Ljih(φα)L
α
i , (8)

L00 = kT 2 +
vm
Rg

N,N
∑

α,β

K,K
∑

i,j

h(φα)L
α
i Ljih(φβ)L

β
j , (9)

where δij denotes the Kronecker delta and Lαi are the
latent heats of fusion. The formulation in Eqns. (7)-(9)
takes bulk diffusion effects including interdiffusion coeffi-
cients into account. The dependence of the mass and heat
diffusion coefficients on φ can be realized by e.g. linear
expansions. To also consider enhanced diffusion in the in-
terfacial region of phase or grain boundaries, additional
terms proportional to φαφβ with interfacial diffusion co-

efficients Dαβ
i (T, c, qαβ) need to be added. Altogether,

we suggest

Di =

N
∑

α=1

Dα
i (T, c)φα +

1

ε

∑

α<β

Dαβ
i (T, c, qαβ)φαφβ ,

i.e. in particular that the diffusion coefficients in Eqn.
(7) can be anisotropic. The quantity τ = τ(φ,∇φ) in
Eqn. (6) models an anisotropic kinetic coefficient of the
form

τ(φ,∇φ) = τ0 +
∑

α<β

Bαβ(qαβ)

with Bαβ(qαβ) = 0 if qαβ = 0. Possible choices are

Bαβ = τ0αβ

(

1 + ζαβ

(

3± 4
|qαβ |

4
4

|qαβ |4

)

)

− τ0 or (10)

Bαβ = τ0αβ max
1≤k≤rαβ

{ qαβ
|qαβ |

· ξkαβ

}

− τ0, (11)

if qαβ 6= 0 for weakly cubic (Eqn. (10)) or strongly
facetted (Eqn. (11)) kinetic anisotropies with rαβ cor-
ners ξkαβ . ζαβ determines the strength of the kinetic

anisotropy similar to δαβ in Eqn. (1) for the surface
energy anisotropy. Systems with isotropic kinetics are
realized by setting ζαβ = 0.

III. SIMULATIONS OF SOLIDIFYING

GROWTH STRUCTURES IN BINARY AND

TERNARY SYSTEMS

To compute microstructure formation, a 3D parallel
simulator has been developed to numerically solve the
set of equations for the internal energy, the concentra-
tions and the phase fields (Eqns. (4)-(6)). The solving
method is based on an explicit finite difference discretiza-
tion on a rectangular mesh. The following strategies to
optimize the efficiency of the numerical algorithm with
respect to computation time and memory usage are ap-
plied: An obstacle type potential w(φ) as in the Eqn.
(3) is used in the computations providing the advantage
of solving the phase-field equations only in the region of
the phase or grain boundaries, i.e. in the finite diffuse in-
terface region of a width of approximately 10 numerical
cells. This reduces the computational effort with respect
to the phase field equations by one spatial dimension.
Three different time steps are chosen to solve the three
types of equations (Eqns. (4)-(6)). Similarly, three dif-
ferent spatial meshes are used to determine the internal
energy, the concentration and the phase-field equations.
The values at intermediate grid points are interpolated
from the coarsener mesh. Furthermore, a parallelization
of the numerical algorithm is realized dividing the 3D
computational domain into partial sublayers. The subdo-
mains are computed on a Linux cluster using a combina-
tion of MPI concepts for distributed memory sytems and
OpenMP concepts for shared memory (multi-processor)
systems.

In the following, microstructure simulations of binary
and ternary phase transformation processes are shown
to illustrate the wide variety of realistic growth struc-
tures and morphologies in multicomponent multiphase
systems that can be described and investigated by the
new phase-field model. Fields of applications are eutec-
tic grain boundary formations and structure evolutions in
ternary systems [33] as well as eutectic colony growth in-
volving ternary impurity effects [34] which will be shown
by the following examples, but also multicomponent den-
dritic and eutectic crystal growth can be simulated.

To perform the simulations in Figs. 1-4, we considered
a ternary eutectic model alloy system of three compo-
nents A, B and C (i = 1, . . . , 3), three solid phases α, β,
γ (α = 1, . . . , 3) and one liquid phase L (α = 4). We non-
dimensionalized the model equations (Eqns. (4-6)) and,
for initialization of the computations, we chose the follow-
ing parameter set: Equal grid spacings for the two/three
coordinates at a value ∆x = 0.01, mobility coefficients
mαβ = 0.1, a diffusive interface thickness ε = 0.05, sur-
face entropy densities γαβ = 0.001, an isotropic kinetic
coefficient τ = 0.2, zero diffusion in the solid phases

Dα,β,γ
i=1,...,3 = 0.0 and diffusion coefficients in the liquid

DL
i=1,...,3 = 0.01. Further, we constructed a completely

symmetric phase diagram with dimensionless data for the
latent heats of fusion Lαi and for the melting tempera-
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tures Tαi :

(Lαi ) i=1,...,3
α=1,...,4

=





1.47 1.00 1.00 0.00
1.00 1.47 1.00 0.00
1.00 1.00 1.47 0.00



 ,

(Tαi ) i=1,...,3
α=1,...,4

=





1.50 0.50 0.50 0.00
0.50 1.50 0.50 0.00
0.50 0.50 1.50 0.00



 ,

where α = 4 is assumed to be the liquid phase L. As
a result, the phase fractions of the three solid phases at
the ternary eutectic temperature are equal. Further, we
considered the solidification process under the condition
of isothermally undercooled melts.

FIG. 1: Growth of two eutectic grains (white/black and
light/dark-grey) of a binary A-B alloy with different crystal
orientations into an isothermally undercooled melt (continu-
ous grey scale) at four time steps.

In Fig. 1, the formation of two eutectic grains in
the binary A − B ”edge” system of initial composition
(cA, cB , cC) = (0.5, 0.5, 0.0) has been simulated in a 2D
domain of 270×540 grid points. The simulation involves
pattern formation on different length scales. On a larger
scale, grains with different orientations due to anisotropy
of the surface entropy densities γαβ grow and form a eu-
tectic grain boundary. To include anisotropic effects, we
used the facetted formulation of Eqn. (2) for a cubic
crystal symmetry and defined two sets of four corners
for the upper and for the lower grain, whereas the cor-
ners of the lower grain are rotated by 10◦ with respect
to the growth direction. On a smaller scale, a lamellar
eutectic substructure solidifies: Below a critical eutectic
temperature Te (here Te = 1.0), a parent liquid phase
L transforms into two solid phases α and β in a binary
eutectic reaction: L → α + β. The white and light grey
colored regions as well as the black and dark grey colored
regions represent the same solid phases, namely α and β,
with just a different orientation. The result illustrates the
capability of the model to distinguish several phases and
grains at the same time. The images visualize the phase
evolution and the concentration profile of the alloy com-
ponent B in the liquid ahead of the growing solid phases
at different time steps. Concentration depleted zones oc-
cur in dark grey and concentration enriched zones appear
in light grey.

Depending on the position in the phase diagram,
ternary alloy solidification may involve phase changes of
four different phases and diffusion of three alloy compo-
nents A, B and C. At the ternary eutectic composition,

a) b)

FIG. 2: a) Concentration fields cA, cB and cC of a ternary
eutectic lamellar solidification front with a solid phase config-
uration (α|β|α|γ| . . .). b) Concentration field cC for a phase
sequence (α|β|γ| . . .).

three solid phases grow into an undercooled melt via the
reaction L→ α+ β + γ. While simultaneously growing,
the solid phases mutually enhance each other’s growth
conditions as they reject opposite components of the al-
loy into the liquid. We have set an equal initial composi-
tion vector of (cA, cB , cC) = (0.3, 0.3, 0.3). For isotropic
phases, this leads to very regular lamellar structures as
those in Fig. 2 a) and b). The three images in a) display
the concentration fields of the three components A, B
and C in front of the growing eutectic lamellae with a
phase sequence of α|β|α|γ|α| . . . at the same intermedi-
ate time step. It can be observed that the white α phase
consumes component A from the melt and pushes com-
ponents B and C into the melt. The respective process
happens for the two other solids β and γ. For compari-
son of the diffusion fields, Fig. 2 b) shows the concentra-
tion of C for a phase sequence α|β|γ|α| . . . By performing
phase-field simulations, the stability of different phase se-
quences for varying solidification conditions can be inves-
tigated. The diffusion processes of the three components
are illustrated in a 2D domain of size 200× 200.

FIG. 3: Formation of a 3D hexagonal rod-like structure in
a ternary eutectic system with isotropic surface energies and
three different solid phases α, β and γ.

Fig. 3 shows a time sequence of a 3D simulation of
ternary eutectic solidification in a computational domain
60×90×90. The computation was initialized with cubic
crystal shapes. During the evolution, a regular hexagonal
structure of the three isotropic solid phases with 120◦

angles between the solid phases is established as steady
growth configuration in 3D in analogy to the lamellar
structure in 2D. This symmetry breaks if anisotropy is
included.

The simulation in Fig. 4 was conducted with an initial
composition vector of (cA, cB , cC) = (0.47, 0.47, 0.06) so
that the concentration component cC acts as a ternary
impurity of minor amount. As can be seen in the first
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FIG. 4: Simulation of lamellar eutectic growth in a ternary
system with an impurity component cC : The concentration
profile of the main component cA in melt is shown in the
left and centered images for two time steps. The ternary
impurity cC is pushed ahead of the growing eutectic front so
that concentration enriched zones of component cC can be
observed at the solid-liquid interface in the right image.

two images, the solid phase α in white color is formed
by using up the concentration cA whereas solid phase β
rejects A atoms. If a γ solid phase containing cC as its

major composition is introduced, it is instable and im-
mediately dissolves for these concentration proportions.
Neither the α phase nor the β phase engulfs the concen-
tration cC so that it increases all along the solid-liquid
interface. The simulated evolution process recovers the
experimentally observed effect that the impurity becomes
enriched ahead of the solidifying lamellae and builds up.
At larger computational domains, we expect the effect of
cell/colony formation to occur.
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