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Abstract. A diffuse interface model for a partial differential equations on a moving surface
is formulated involving a small parameter ε related to the thickness of the interfacial layer.
The coefficient functions degenerate on the boundary of the diffuse interface. In appropriately
weighted Sobolev spaces existence and uniqueness of weak solutions is shown. Using energy
methods the convergence of solutions to the diffuse interface model to the solution to the equation
on the moving surface as ε → 0 is proved.

1. Introduction

Conserved surface quantities subject to advection-diffusion equations on moving hypersurfaces
may arise in many applications ranging from fluid dynamics (surfactants on fluid-fluid interfaces,
[1, 18]) over biological systems (lipids on biomembranes, [19]) to materials science (species dif-
fusion along grain boundaries, [13, 12, 20]). In this paper we consider prescribed motion of a
hypersurface and present and analyse a diffuse interface model to approximate a linear surface
partial differential equation.

Let {Γ(t)}t∈(0,T ) denote a moving oriented hypersurface in R
d that is moving with normal

velocity V (t)ν(t) : Γ(t) → R
d where ν(t) is the unit normal to Γ(t). Clearly, for describing the

purely geometric motion of Γ(t) it is sufficient to prescribe the normal velocity, but we also want
to take advection along the surface into account and therefore allow for tangential contributions
to the velocity field, vτ . We denote by v := V ν + vτ the velocity of material points on the
surface. Let c(t) : Γ(t) → R be a scalar conserved quantity, i.e., on each (material) portion G ⊂ Γ
moving with velocity v and with unit co-normal µ on ∂G it holds that

d

dt

∫

G
c dHd−1

∣
∣
∣
t
= −

∫

∂G(t)
q(t) · µ(t) dHd−1

where q is a tangential dissipative flux (source terms are neglected). We assume that q is minus
the surface gradient of c. This yields the following strong surface pde for c, see [9]:

∂•
t c + c∇Γ · v − ∆Γc = 0. (1)

Here, ∇Γ is the tangential surface gradient accounting for variations along Γ(t), ∆Γ = ∇Γ ·∇Γ

is the surface Laplace operator, and ∂•
t = ∂t + v · ∇ is the material derivative. The latter is the

derivative when following the trajectories given by v which lie on Γ. The above surface pde is
supplied with initial values c(t = 0) = c̄. In this study we will consider closed hypersurfaces.

Our aim is to approximate the above equation (1) in the form of a bulk equation holding in a
layer around Γ of a thickness (almost) proportional to a small length scale ε (we allow for small
deviations). Let {Γε(t)}t∈I denote such a layer to which the velocity field, now denoted by vε, is
extended in a suitable way. In this thin domain we consider the equation

∂t(ρεcε) + vε · ∇(ρεcε) + ρεcε∇ · vε −∇ ·
(
ρε∇cε

)
= 0. (2)
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This means that ρεcε is a bulk conserved quantity involving a dissipative flux of the form
−ρε∇cε. The function ρε is a weight that is positive within the layer but vanishes on its spatial
boundary {∂Γε(t)}t.

To try such a narrow band approach is motivated by modelling and numerics. It may be
useful in more complicated applications where the surface is unknown and phase-field methods
are applied to model the surface motion as, e.g., in [6, 5]. In such models, a phase-field variable,
φ, changes its value across a thin layer from one prescribed value to another, and this layer defines
a diffuse surface. Our approach gives an answer on how to set up an equation, using a suitable
function ρ = ρ(φ), for a surface quantity in such a situation. We remark that such a function
ρ appeared naturally in a phase field model of diffusion induced grain boundary motion [13, 8]
and was applied specifically for approximation purposes by [22, 23] in the context of a stationary
surface. As in [13, 8] and in contrast to [22, 23] , we choose ρǫ to have compact support in the layer
Γε. This has computational advantages in that the equation for cε is solved in a narrow band.
Such approximations arise naturally when the diffuse interface motion is given by the double
obstacle phase field model proposed in [4, 5] for which the diffuse interface is of finite thickness.
Another interesting narrow band approximation method is to choose ρǫ to be the characteristic
function of a layer with thickness order ǫ, [25].

A different approach involving bulk equations is to solve the surface partial differential equation
on all level sets of a prescribed function. This is inherently an Eulerian method and yields
degenerate equations. See [3, 15, 14, 10] for stationary surfaces and [1, 27] for evolving surfaces.
On the other hand an Eulerian approach to transport and diffusion on evolving surfaces was given
in [11]. A narrow band numerical formulation for surface elliptic equations was presented in [7].

We also note that direct discretisations of (1) require adaptions of the mesh following the
interface as described, e.g., in [9, 12]. In contrast, the bulk equation may be solved on a fixed
bulk mesh, more precisely at a given time in the mesh points belonging to the thin interfacial
layer. An advantage of the diffuse interface methods is that topological changes of the surface
naturally are captured. Apart from the question of whether continuum mechanical models are
valid around such events, numerical sharp interface methods typically necessitate severe adaptions
of the data structures which is avoided in the diffuse interface approach.

Previous work on the ǫ−limit of semilinear parabolic equations on thin domains has considered
the continuity of dynamics on flat, [16, 17], and curved, [21], domains. Our analysis comprises
the weak solvability of the degenerate equation (2) on an evolving thin domain and then the
sharp interface analysis as ε → 0. We consider a moving closed curve embedded in R

2 that is
smoothly parametrised at all times over the interval (0, 2π) with periodic boundary conditions.
The extension to arbitrary space dimensions d is possible but only requires some more technical
work, cf. [21]. An obvious restriction is that splitting and coalescence events of the moving curve
involving topological changes cannot be handled in this analysis.

Precise assumptions and problem statements are given in section 2. In section 3 existence and
uniqueness of a weak solution to (2) and continuous dependence on the initial values is proved.
To deal with the weight ρε we work on weighted Sobolev spaces as investigated in [2]. Uniform
bounds of the cε are derived so that they converge to a function c which is shown to fulfill (1). This
asymptotic analysis, contained in section 4, follows the lines of [24] but allows to consider moving
surfaces and degenerating weights ρε. Moreover, the formal analysis in [22] now is rigorously
justified in an even more general context. In a concluding section 5 we make some motivating
remarks on the assumptions.

2. Definitions and precise problem statements

2.1. Assumptions and notation.
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2.1.1. Evolution of the surface. Let I = [0, T ) with some T > 0 be a time interval. We consider
smooth closed curves Γ(t) embedded into R

2 that smoothly depend on time. Let Γ = {{t}×Γ(t)}t.
As remarked in the introduction we want to consider advection along the curve for which a smooth
velocity field v : Γ → R

2 is given such that the trajectories lie on Γ.
The evolving curve is parametrised by a smooth function γ : I × (0, 2π) → Γ periodic with

respect to the second variable such that g(t, s) := |∂sγ(t, s)| ≥ 2λ > 0 for all (t, s) ∈ I × (0, 2π)
with a constant λ > 0. Let τ = ∂sγ/|∂sγ| =: (τ1, τ2) denote the associated unit tangential vector
and ν := (τ2,−τ1) = τ

⊥ the unit normal. The normal velocity of the curve given in terms of γ

must be consistent with the velocity field, i.e.,

γ · ν = V = v · ν. (3)

2.1.2. Diffuse interface. We further suppose that a family of functions ρε ∈ C2(I × R
2) is given

that depend continuously on a parameter ε ∈ (0, ε̄) with some ε̄ > 0. The diffuse interface regions
approximating the curves are defined by Γε := {{t} × Γε(t)}t∈I where Γε(t) := {ρε(t) > 0}. The
notion of approximation is that the functions ρε are such that, as ε → 0, the sets Γε(t) converge
to the curves Γ(t) with respect to the Hausdorff distance uniformly in time and linearly in ε.

Let Θ := (0, 2π) × (−1, 1). The parametrisation of the curve leads to a parametrisation of Γε

in the following way:

Γε(t) = {γε(t, s, z) | (s, z) ∈ Θ}, γε(t, s, z) := γ(t, s) + εzq(t, s, z, ε)ν(t, s).

Here, q is a smooth function such that

q − 1 → 0 in C3(I × Θ) as ε → 0. (4)

Hence, also the parametrisation γε is smooth.
We denote by dl = |∂sγ(t, s)|ds the length element of the curve Γ(t). The scalar curvature

κ(t, s) is defined by the formula ∂lτ = κν or ∂lν = −κτ . As a consequence, ∂sν = −|∂sγ|κτ .
Let us state some formulae for the derivatives of γε,

∂sγε = |∂sγ|(1 − εzqκ)τ + εz∂sq ν,

∂zγε = ε(q + z∂zq)ν,

∂tzγε = ε(∂t(q + z∂zq)ν + (q + z∂zq)∂tν). (5)

Moreover,
det(∇(s,z)γε) = εgε with gε = |∂sγ|(1 − εzqκ)(q + z∂zq) (6)

and we suppose that ε̄ is small enough such that gε ≥ λ.
For a function f : Γ → R on the physical space we can now define its counterpart f̃ on the

parameter space via f̃(t, s, z) := f(t,γε(t, s, z)). Observe that

∂tf̃(t, s, z) =
d

dt
f(t,γ(t, s, z)) = ∂tf(t,γ(t, s, z)) + ∂tγ · ∇f(t,γ(t, s, z)).

To transform spatial derivatives we need the derivatives of the coordinates (s, z) ∈ Θ considered
as functions of x ∈ Γε(t). By the inverse function theorem

∇
(

s
z

)

= (∇(s,z)γε)
−1 =

1

εgε

(
ε(q + z∂zq)τ

⊥

g(1 − εzqκ)ν⊥ − εz∂sqτ
⊥

)

.

Hence, ∇f = ∂sf̃∇s + ∂z f̃∇z where

∇s =
1

g(1 − εzqκ)
τ , ∇z =

1

ε

1

q + z∂zq
ν − z∂sq

gε
τ ,

Furthermore, if f is a function on the moving curve Γ then
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∇Γf = τ
∂sf̃

|∂sγ|
= τ

∂sf̃

g
.

In the following, with a slight abuse of notation the tilde on functions like f will be dropped
for convenience.

Next, we assume that there is a function ρ̄ : (−1, 1) → R and there are constants C2 ≥ C1 > 0
such that

sup
(t,s,z)

|ρε(t, s, z) − ρ̄(z)| → 0 and sup
(t,s,z)

|∂tρε| → 0 as ε → 0, (7)

C2ρ̄(z) ≤ ρε(t, s, z) ≤ C1ρ̄(z) and |∂tρε(t, s, z)|, |∂ttρε(t, s, z)| ≤ C2ρ̄(z) ∀t, s, z, ε. (8)

The function ρ̄ is a nonnegative differentiable weight function bounded by a positive constant
with ρ̄(z) > 0 if z ∈ (−1, 1) but which vanishes if |z| = 1. We also assume that it is normalised
in the sense that

∫ 1

−1
ρ̄(z)dz = 1. (9)

We assume that there is a smooth extension of v to a field vε : Γ → R
2 such that for a constant

C > 0

|vε(t, s, z) − v(t, s)| ≤ Cε, |∂tvε(t, s, z) − ∂tv(t, s)| ≤ Cε ∀t, s, z, ε. (10)

Observe that then thanks to the consistency assumption (3)

ν · (vε − ∂tγε) = ν · (vε − v) + ν · (v − ∂tγ − εz∂t(qν)) = O(ε). (11)

For the initial data we assume that c̄ ∈ H1
per((0, 2π)).

2.2. Weighted Sobolev spaces. Since ρ̄(±1) = 0, the coefficients in (2) degenerate towards
the boundary of the interfacial layer. To overcome this problem weighted Sobolev spaces can be
used. Consider the Borel measure

ωρ̄(A) :=

∫

A
ρ̄(s, z)dzds

on Lebesgue-measurable sets A ⊂ Θ. The space

L2(Θ, ωρ̄) :=
{

f : Θ → R

∣
∣
∣ f ωρ̄-measurable, ‖f‖L2(Θ,ωρ̄) < ∞

}

where ‖f‖L2(Θ,ωρ̄) :=
( ∫

Θ
ρ̄|f |2dzds

)1/2

is complete and a Hilbert space with the scalar product

(f, g)L2(Θ,ωρ̄) :=

∫

Θ
fgdωρ̄ =

∫

Θ
ρ̄fgdzds.

Since 1/ρ̄ ∈ L1
loc(Θ) we have that L2(Θ, ωρ̄) ⊂ L1

loc(Θ) (see Prop. 2.1 in [2] or the references
therein). For a function f ∈ L2(Θ, ωρ̄) we therefore can define a derivative in a distributional
sense. The ρ̄-weighted Sobolev space H1(Θ, ωρ̄) is defined to be the set of all functions f ∈
L2(Θ, ωρ̄) such that the distributional derivatives ∂sf, ∂zf belong to L2(Θ, ωρ̄) again, i.e., are
weak derivatives. It is a Hilbert space with the scalar product

(f, g)H1(Θ,ωρ̄) :=

∫

Θ
ρ̄
(
fg + ∇(s,z)f · ∇(s,z)g

)
dzds.
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On every set A ⊂ R
2 such that Ā ⊂ Θ the function ρ̄ is bounded from below by a positive

constant. Hence, L2(A,ωρ̄) coincides with the usual Lebesque space L2(A). Thanks to this, one
can show that the smooth functions are dense in L2(Θ, ωρ̄) and H1(Θ, ωρ̄). A similar argument
is also used in the following lemma, which was shown in [2] but is repeated here for convenience.

Lemma 2.1. The embedding H1(Θ, ωρ̄) →֒ L2(Θ, ωρ̄) is compact.

Proof. Let {fn}n∈N be a bounded series in H1(Θ, ωρ̄), w.l.o.g. bounded by 1, and let δ > 0 be an

arbitrary small real number. Define Θδ := {(s, z) ∈ Θ | z ∈ (−1 + δ, 1 − δ)} and

f δ
n(s, z) :=

{

fn(s, z) if (s, z) ∈ Θδ

0 else.

Since the fn are bounded in L2(Θ, ωρ̄) as well we have for the error of this cut-off that
∫

Θ
ρ̄|fn − f δ

n|2dzds =

∫

Θ\Θδ

|fn|2 ≤ Vol(Θ\Θδ) ‖fn‖2
L2(Θ,ωρ̄) <

δ2

4
(12)

for all n if δ is small enough, which is assumed for the following.
On Θδ the function ρ̄ is bounded from below by a constant ρ̄δ

0 > 0, hence

‖f δ
n‖2

H1(Θ) ≤
1

ρ̄δ
0

‖f δ
n‖2

H1(Θ,ωρ̄) ≤
1

ρ̄δ
0

.

Let R ∈ R denote an upper bound of ρ̄. Since the embedding H1(Θ) → L2(Θ) is compact
there is a Nδ ∈ N and there are Nδ functions gi ∈ L2(Θ), i = 1, . . . ,Nδ, such that for all n ∈ N

there is an index i with ‖f δ
n − gi‖L2(Θ) < 1√

R
δ
2 . Therefore

‖f δ
n − gi‖L2(Θ,ωρ̄) ≤

(∫

Θ
R|f δ

n − gi|2dzds
)1/2

<
δ

2
.

Together with (12) this means that for every n ∈ N there is an index i ∈ {1, . . . ,Nδ} such that
‖fn − gi‖L2(Θ,ωρ̄) < δ.

�

We introduce the spaces

X := {f ∈ H1(Θ, ωρ̄) | f periodic in s}, B := {f ∈ L2(Θ, ωρ̄) | f periodic in s}
and will consider the spaces L2(I;X) and L2(I;B) with the generic norms

‖f‖L2(I;X) :=
( ∫ T

0
‖f(t)‖2

X

)1/2
, ‖f‖L2(I;B) :=

(∫ T

0
‖f(t)‖2

B

)1/2

2.3. Problem formulations.

2.3.1. Equation on the evolving curve. We multiply (1) by a test function χ and integrate, first
over Γ(t) and then with respect to time. After, we partially integrate with respect to space (recall
that the curves are closed) and transform to the space I × (0, 2π):

0 =

∫ T

0

∫

Γ(t)

(
∂•

t c + c∇Γ · v − ∆Γc
)
χdH1dt

=

∫ T

0

∫

Γ(t)

(

∂tcχ + ∇c · ∂tγχ + ∇c · (v − ∂tγ)
︸ ︷︷ ︸

=∇Γc·(v−∂tγ) by (3)

χ

+ cχ∇Γ · (v − ∂tγ) + cχ∇Γ · ∂tγ + ∇Γc · ∇Γχ
)

dH1dt
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=

∫ T

0

∫

Γ(t)

(

(∂tc + ∂tγ · ∇c)χ − c∇Γχ · (v − ∂tγ)

+ cχ∇Γ · ∂tγ + ∇Γc · ∇Γχ
)

dH1dt

=

∫ T

0

∫ 2π

0

(
∂tc̃χ̃g + ∂sc̃χ̃τ · (ṽ − ∂tγ) + c̃χ̃τ · ∂sṽ + ∂sc̃∂sχ̃

1

g

)
dsdt.

We perform a partial integration with respect to time in the first term and arrive at

Problem 2.1. Find c ∈ L2(I;H1
per((0, 2π))) such that

0 =

∫ 2π

0
c̄χ(0)g(0)ds −

∫ T

0

∫ 2π

0
c∂t(χg)dsdt

+

∫ T

0

∫ 2π

0

(

− c∂sχτ · (v − ∂tγ) + cχ τ · ∂stγ + ∂sc∂sχ
1

g

)

dsdt (13)

for all χ ∈ L2(I;H1
per((0, 2π))) with ∂tχ ∈ L2(I;L2

per((0, 2π))) and χ(T ) = 0.

2.3.2. Diffuse interface approximation. The procedure is similar in the diffuse interface setting.
Boundary terms do not occur during the partial integration since ρε vanishes there.

0 =

∫ T

0

∫

Γε(t)

(

∂•
t (ρεcε) + ρεcε∇ · vε −∇ · (ρε∇cε)

)

χdxdt

=

∫ T

0

∫

Γε(t)

(

∂t(ρεcε)χ + ∇(ρεcε) · ∂tγεχ + ∇(ρεcε) · (vε − ∂tγε)χ

+ ρεcεχ∇ · (vε − ∂tγε) + ρεcεχ∇ · ∂tγε + ρε∇cε · ∇χ
)

dxdt

=

∫ T

0

∫

Γε(t)

((
∂t(ρεcε) + ∂tγε · ∇(ρεcε)

)
χ − ρεcε∇χ · (vε − ∂tγε)

+ ρεcεχ∇ · ∂tγε + ρε∇cε · ∇χ
)

dxdt

=

∫ T

0

∫

Θ

(

∂t(ρεcε)χgε + ρεcε

(
∂sχ∇s + ∂zχ∇z

)
· (vε − ∂tγε)gε

+ ρεcεχ
(
∇s · ∂s∂tγε + ∇z · ∂z∂tγε

)
gε

+ ρε

(
∂scε∇s + ∂zcε∇z

)
·
(
∂sχ∇s + ∂zχ∇z

)
gε

)

ε dzdsdt.

Using the formulae for ∇s and ∇z, multiplying with 1/ε, partially integrating with respect to
time in the first term and defining the coefficient functions

a0 :=
ρε

ρ̄
gε,

a1 :=

√
ρεgε√

ρ̄g(1 − εzqκ)
,

a2 :=
ρεgε

ρ̄(q + z∂zq)
,

b0 :=
∂tρεgε

ρ̄
+

(q + z∂zq)ρε

ρ̄
τ · ∂stγε +

(g(1 − εzqκ)ρε

ρ̄

1

ε
ν − z∂sqτ

)
· ∂ztγε
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b1 := −(q + z∂zq)ρε

ρ̄
τ · (vε − ∂tγε)

b2 :=
(

− g(1 − εzqκ)ρε

ρ̄

1

ε
ν +

z∂sqρε

ρ̄
τ

)

· (vε − ∂tγε)

b3 :=
z∂sq

√
ρε√

ρ̄gε
.

we finally obtain

Problem 2.2. Find cε ∈ L2(I;X) such that

0 =

∫

Θ
ρ̄c̄χ(0)a0(0)dzds −

∫ T

0

∫

Θ
ρ̄cε∂t(χa0) dzdsdt

+

∫ T

0

∫

Θ
ρ̄
(

b0cεχ + b1cε∂sχ + b2cε∂zχ

+ (a1∂scε − b3∂zcε)(a1∂sχ − b3∂zχ) +
1

ε2
a2∂zcε∂zχ

)

dzdsdt (14)

for all χ ∈ L2(I;X) with ∂tχ ∈ L2(I;B) and χ(T ) = 0.

3. Analysis of the ε problem

The linear Problem 2.2 can be solved by proceeding as in the case without weight. In fact,
the essential detail is the compactness of the embedding X →֒ B which has been provided in
Lemma 2.1. Before presenting and existence and uniqueness result let us first briefly discuss the
coefficient functions in (14).

By the smoothness of γ and γε, the quantities τ , ν, gε, and κ are smooth also. By (5), (10) and
its consequence (11) the terms 1

εν ·∂ztγε and 1
εν · (vε −∂tγε) as well as their time derivatives are

of order O(ε0). Hence, thanks to the assumptions (8), (7), and (10) all the coefficient functions
ai, bj and their time derivatives are uniformly bounded and continuous. The assumption (8),
the positivity of gε as assumed below (6), and (4) furthermore imply that the coefficients ai

are uniformly bounded from below by positive constants. We stress that all these constants are
independent of ε, which will turn out to be useful in the next section.

Theorem 3.1. Under the assumptions stated in Section 2 and if ε is small enough there is a

unique solution cε ∈ L2(I;X) ∩ H1(I;B) to Problem 2.2 which satisfies the estimates

sup
t∈I

∫

Θ
ρ̄|cε(t)|2dzds + ‖∂scε‖2

L2(I;B) +
1

ε2
‖∂zcε‖2

L2(I;B) ≤ C

∫ 2π

0
c̄2ds, (15)

sup
t∈I

∫

Θ
ρ̄
(

|∂scε(t)|2 +
1

ε2
|∂zcε(t)|2

)

dzds + ‖∂tcε‖2
L2(I;B) ≤ C (16)

with a positive constant C independent of ε.

Proof. In the following, the Ci, i = 1, 2, . . . , denote positive constants independent of (t, s, z, ε).
One may argue with a time discretisation. For a number N ∈ N let τ = T/2N and tNn := nτ ,
n = 0, . . . , 2N . Set cN

0 := c̄, aN
0,n := a0(t

N
n ) and similarly for the other coefficient functions. Now,

consider the subsequent problems for n = 1, . . . , 2N : find cN
n ∈ X such that

0 =

∫

Θ
ρ̄
(
aN

0,n

cN
n − cN

n−1

τ
χ + bN

0,ncN
n χ + bN

1,ncN
n ∂sχ + bN

2,ncN
n ∂zχ

+ (aN
1,n∂sc

N
n − bN

3,n∂zc
N
n )(aN

1,n∂sχ − bN
3,n∂zχ) +

1

ε2
aN

2,n∂zc
N
n ∂zχ

)

dzds (17)
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for all χ ∈ X. The Lax-Milgram theorem can be applied to show that (17) has a unique
solution. To obtain a coercive operator it may be necessary to reduce τ and ε, but the properties
of the coefficient functions allow to find appropriate values independently of n and N .

We may insert χ = cN
n in (17), multiply with τ and sum up for n = 1, . . . , n̄ with some n̄ ≤ 2N .

Observe that the first term gives

n̄∑

n=1

τ

∫

Θ
ρ̄aN

0,n

cN
n − cN

n−1

τ
cN
n

≥
n̄∑

n=1

(1

2

∫

Θ
ρ̄aN

0,n(cN
n )2 − 1

2

∫

Θ
ρ̄aN

0,n(cN
n−1)

2
)

=
1

2

∫

Θ
ρ̄aN

0,n̄(cN
n̄ )2 − 1

2

∫

Θ
ρ̄aN

0,0(c
N
0 )2 +

n̄∑

n=1

τ

∫

Θ
ρ̄
aN

0,n−1 − aN
0,n

2τ
(cN

n−1)
2

≥C1‖cN
n̄ ‖2

B − C2‖c̄‖2
B − C3

n̄−1∑

n=0

τ‖cN
n ‖2

B

thanks to the properties of a0, in particular its positivity. Together with the other terms in
(17) one can derive

‖cN
n̄ ‖2

B +

n̄∑

n=1

τ
(

‖∂sc
N
n ‖2

B +
1

ε2
‖∂zc

N
n ‖2

B

)

≤ C4‖c̄‖2
B + C5

n̄−1∑

n=0

τ‖cN
n ‖2

B .

A Gronwall argument yields

sup
n∈{1,...,2N}

‖cN
n ‖2

B +

2N
∑

n=1

τ
(

‖∂sc
N
n ‖2

B +
1

ε2
‖∂zc

N
n ‖2

B

)

≤ C6‖c̄‖2
B . (18)

In order to obtain an estimate for time shifts we may furthermore test (17) with (cN
n −cN

n−1)/τ .
Clearly for the first term

n̄∑

n=1

τ

∫

Θ
ρ̄aN

0,n

∣
∣
∣
cN
n − cN

n−1

τ

∣
∣
∣

2
≥ C7

n̄∑

n=1

τ
∥
∥
∥
cN
n − cN

n−1

τ

∥
∥
∥

2

B
. (19)

Next we observe that

n̄∑

n=1

τ

∫

Θ
ρ̄aN

2,n∂zc
N
n ∂z

cN
n − cN

n−1

τ

≥
n̄∑

n=1

1

2

∫

Θ
ρ̄
(
aN

2,n|∂zc
N
n |2 − aN

2,n|∂zc
N
n−1|2

)

=

∫

Θ
ρ̄aN

2,n̄|∂zc
N
n̄ |2 −

∫

Θ
ρ̄aN

2,0|∂zc
N
0 |2 +

n̄∑

n=1

τ

∫

Θ
ρ̄
aN

2,n−1 − aN
2,n

2τ
|∂zc

N
n−1|2

≥C8‖∂zc
N
n̄ ‖2

B − C9‖ ∂z c̄
︸︷︷︸

=0

‖2
B − C10

n̄∑

n=1

τ‖∂zc
N
n ‖2

B . (20)

The last term can be estimated by (18). Furthermore, we have that
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n̄∑

n=1

τ

∫

Θ
ρ̄bN

2,ncN
n ∂z

cN
n − cN

n−1

τ

=
n̄∑

n=1

∫

Θ
ρ̄
(
bN
2,ncN

n ∂zc
N
n − bN

2,n−1c
N
n−1∂zc

N
n−1 + (bN

2,n−1c
N
n−1 − bN

2,ncN
n )∂zc

N
n−1

)

=

∫

Θ
ρ̄
(
bN
2,n̄cN

n̄ ∂zc
N
n̄ − bN

2,0c
N
0 ∂zc

N
0

︸ ︷︷ ︸

=∂z c̄=0

)

+
n̄∑

n=1

τ

∫

Θ
ρ̄
(

bN
2,n

cN
n−1 − cN

n

τ
+

bN
2,n−1 − bN

2,n

τ
cN
n−1

)

∂zc
N
n−1

≥ − δ

∫

Θ
ρ̄|∂zc

N
n̄ |2 − C11

∫

Θ
ρ̄|cN

n̄ |2

− δ

n̄∑

n=1

τ

∫

Θ
ρ̄
∣
∣
∣
cN
n − cN

n−1

τ

∣
∣2 − C12

n̄∑

n=1

τ

∫

Θ
ρ̄
(
|∂zc

N
n−1|2 + |cN

n |2
)

where δ > 0 is so small such that C7 − δ > 0 and C8 − δ > 0 (eventually even smaller, taking
further terms into account). The remaining terms can be handled similarly and finally we see
that

n̄∑

n=1

τ
∥
∥
∥

cN
n − cN

n−1

τ

∥
∥
∥

2

B
+ ‖∂sc

N
n̄ ‖2

B +
1

ε2
‖∂zc

N
n̄ ‖2

B

≤ C13 + C14

n̄∑

n=1

τ
(
‖cN

n ‖2
B + ‖∂zc

N
n ‖2

B + ‖∂sc
N
n ‖2

B

)
.

In view of (18) we infer that

2N
∑

n=1

τ
∥
∥
∥

cN
n − cN

n−1

τ

∥
∥
∥

2

B
+ sup

n∈{1,...,2N}

(

‖∂sc
N
n ‖2

B +
1

ε2
‖∂zc

N
n ‖2

B

)

≤ C15. (21)

Define now the functions cN , ĉN ∈ L2(I;X) by

cN (t) :=
t − tNn−1

τ
cN
n +

tNn − t

τ
cN
n−1, cN+(t) := cN

n , if t ∈ (tNn−1, t
N
n ].

We will now use test functions χN ∈ XN ⊂ L2(I;X) of the form χN (t) = χN
n ∈ X for all

t ∈ (tNn−1, t
N
n ]. Observe that XM ⊂ XN for M ≤ N . Analogously, the functions aN

i and bN
j are

defined. It follows directly from (17) that

0 =
2N
∑

n=1

∫

Θ
ρ̄
(
aN

0 ∂tc
NχM + bN

0 cN+χM + bN
1 cN+∂sχ

M + bN
2 cN+∂zχ

M

+ (aN
1 ∂sc

N+ − bN
3 ∂zc

N+)(aN
1 ∂sχ

M − bN
3 ∂zχ

M ) +
1

ε2
aN

2 ∂zc
N+∂zχ

M
)

dzds. (22)

for all χM ∈ XM with M ≤ N .
By the estimates (18) and (21) there is a function c ∈ L∞(I;X) ∩ H1(I;B) (→֒ C0(I;B)

compact, see [26], Cor. 4) such that
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cN , cN+ ∗
⇀ c in L∞(I;X),

cN → c in C0(I;B),

∂tc
N ⇀ ∂tc in L2(I;B),

for a subsequence as N → ∞. From (18) and (21) we also see that the estimates (15) and
(16) are fulfilled. The approximations of the coefficients functions converge in C0(I ×Θ). Going
to the limit in (22) therefore yields (14) for all χM ∈ XM , M ∈ N. With a density argument and
after partial integration with respect to time we see that c indeed fulfills (14).

The uniqueness follows directly from estimate (15).
�

4. Asymptotic analysis

For the following convergence theorem so-called energy methods are applied.

Theorem 4.1. As ε → 0, the solutions cε to Problem 2.2 converge in C0(I;B) to a function c
with the following properties:

(1) ∂zc = 0, hence c = c(t, s) can be considered as a function on I × (0, 2π),
(2) c ∈ L2(I;H1

per((0, 2π))) solves Problem 2.1.

Proof. By [26], Cor. 4, the embedding L2(I;X) ∩ H1(I;B) →֒ C0(I;B) is compact. The key
estimates (15) and (16) imply that there is a function c ∈ L2(I;X) ∩ H1(I;B) such that

cε ⇀ c in L2(I;X),

∂tcε ⇀ ∂tc in L2(I;B),

cε → c in C0(I;B) and almost everywhere

for a subsequence as ε → 0. Since by (15) 1
ε∂zcε is bounded in L2(I;B) we additionally have

that ∂zcε → 0 in L2(I;B), whence ∂zc = 0. This means that c = c(t, s) ∈ L2(I;H1
per((0, 2π))) ∩

H1(I;L2
per((0, 2π))).

Concerning the coefficients in (14) we immediately deduce the following convergence as ε → 0:
a0 → g, a1 → 1/

√
g, a2 → g, b1 → −τ · (v − ∂tγ), and b3 → 0 in C0([0, T ];C0(Θ)). The first

term in b0 converges to zero thanks to (7), which also implies that ∂ta0 → ∂tg. For the last one
observe that by (5) 1

εν · ∂tzγε = ∂tq + z∂tzq → 0 so that altogether b0 → τ · ∂stγ.

Consider now test functions χ ∈ L2(I;X)∩H1(I;B) with ∂zχ = 0 and χ(T ) = 0 in (14). The
above convergence statements yield

0 =

∫

Θ
ρ̄c̄χ(0)a0(0)dzds −

∫ T

0

∫

Θ
ρ̄
(
cε∂tχa0 + cεχ∂ta0

)
dzdsdt

+

∫ T

0

∫

Θ
ρ̄
(

b0cεχ + b1cε∂sχ + (a1∂scε − b3∂zcε)a1∂sχ
)

dzdsdt

→
∫

Θ
ρ̄c̄χ(0)g(0)dzds −

∫ T

0

∫

Θ
ρ̄c∂t(χg)dzdsdt

+

∫ T

0

∫

Θ
ρ̄
(

τ · ∂stγ cχ − τ · (v − ∂tγ) c∂sχ +
1

g
∂sc∂sχ

)

dzdsdt.

Apart from ρ̄ all terms appearing in the last two lines do not depend on z any more. By
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∫

Θ
ρ̄(z)c̄(s)χ(0, s)g(0, s)dzds =

∫ 1

−1
ρ̄(z)dz

︸ ︷︷ ︸

=1

∫ 2π

0
c̄(s)χ(0, s)g(0, s)ds

and proceeding analogously with the other terms we see that c indeed solves Problem 2.1. In [9]
it is shown that there is a unique weak solution to Problem 2.1. As a consequence, the whole set
of function {cε}ε converges to c a stated above.

�

5. Discussion and remarks

We have shown the existence and uniqueness of a weak solution to (2) by transforming the
moving domain Γε to a fixed (in time) parameter space and using a suitably weighted Sobolev
space to deal with the function ρε. Further we have proved that these solutions cε converge to a
weak solution to (1) as ε → 0. The estimate on 1

ε∂zcε is essential to obtain a limiting function
fulfilling ∂zc = 0 which means that variations in direction normal to the hypersurface vanish in
the limit. We conclude with several remarks.

5.1. Possible extensions of the results. In the case of open curves one has to prescribe
boundary conditions for c on ∂Γ to close (1). The parametrisation then must reflect the fact that
the boundary points move with velocity v, hence ∂tγ(t, s) = v(t, s) for s ∈ {0, 2π}. An extension
to hypersurfaces of higher dimension is possible, too. Parameterising Γ over a reference manifold
M the derivatives with respect to s become weighted surface gradients ∇M, cf. [21]. In all these
cases the set up in normal direction and the form of γε are not affected.

5.2. Choice of the profile. In the phase field approach with double-obstacle potentials to
describe the moving surface [4, 5], to leading order the phase field variable φ has a sinusoidal
profile in the normal direction to the interface. For ρ, of particular interest is a profile of the form
1 − φ2,

ρ̄(z) =
2

π
(1 − sin(z))(1 + sin(z)).

This function grows like the squared distance to ±1 close to the boundary (0, 2π)×{±1} ⊂ ∂Θ.
Our hope is that the degeneracy of ρ̄ turns out to be helpful in numerical simulations. It keeps
the mass of the surface quantity in the diffuse interfacial region independently of the extension
of the velocity field away from the sharp interface. To see this, we integrate (2) over Γε(t) for
general ρǫ and apply a transport identity. Recall that the motion field for t 7→ ∂Γε(t) is ∂tγε

rather than vε.

0 =

∫

Γε(t)

(

∂t(ρεcε) + vε · ∇(ρεcε) + ρεcε∇ · vε −∇ · (ρε∇cε)
)

dHd−1

=

∫

Γε(t)

(
∂t(ρεcε) + ∂tγε · ∇(ρεcε) + ρεcε∇ · ∂tγε

+ ∇ ·
(
ρεcε(vε − ∂tγε) − ρε∇cε

))

dHd−1

=
d

dt

( ∫

Γε

ρεcεdHd−1
)∣
∣
∣
t
+

∫

∂Γε(t)
ρε

(
cε(vε − ∂tγε) −∇cε

)
· ν∂Γε(t)dHd−2.

Since 1
ε

∫

Γε
ρεcε →

∫

Γ c̄ it is desirable that d
dt(

∫

Γε
ρεcε) = 0. Choosing a uniformly positive ρ̄

one needs other requirements in order that the flux over the boundary vanishes. In more complex
applications the diffuse interfacial domain Γε as well as the velocity field vε may be unknown
and subject to other pdes so that, in general, vε − ∂tγε 6= 0 on ∂Γε(t). Consequently, there is
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a Neumann boundary condition for cε which may be difficult to implement in simulations. The
degenerating ρε elegantly circumvents this condition.

5.3. Initial conditions. We simply extended c̄ constantly in z, which is natural in view of the
fact that the diffusivity in z direction is fast, scaling with 1/ε2. Choosing another extension

results in the function c : s 7→
∫ 1
−1 ρ̄(z)c̄(s, z)dz replacing c̄ in the first term of (13) from the

asymptotic analysis. A requirement to approximate the originating problem then clearly is that
c = c̄.
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