
June 12, 2007 10:55 WSPC/INSTRUCTION FILE GNWS07

Mathematical Models and Methods in Applied Sciences
c© World Scientific Publishing Company

Allen-Cahn systems with volume constraints

HARALD GARCKE

NWF I - Mathematik, Universität Regensburg

D–93040 Regensburg, Germany

harald.garcke@mathematik.uni-regensburg.de

BRITTA NESTLER

Fachbereich Informatik, HS Karlsruhe

Moltkestr. 30, 76133 Karlsruhe

britta.nestler@hs-karlsruhe.de
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We consider the evolution of a multi-phase system where the motion of the interfaces
is driven by anisotropic curvature and some of the phases are subject to volume con-
straints. The dynamics of the phase boundaries is modeled by a system of Allen-Cahn

type equations for phase field variables resulting from a gradient flow of an appropri-
ate Ginzburg-Landau type energy. Several ideas are presented in order to guarantee the
additional volume constraints. Numerical algorithms based on explicit finite difference
methods are developed, and simulations are performed in order to study local minima

of the system energy. Wulff shapes can be recovered, i.e., energy minimizing forms for
anisotropic surface energies enclosing a given volume. Further applications range from
foam structures or bubble clusters to tessellation problems in two and three space di-

mensions.
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1. Introduction

Evolution laws decreasing the interfacial energy of a multi-phase system appear

frequently in physics and materials science. In this article, we study cases in which

some of the phases fulfill volume constraints. Such a situation occurs, e.g., in shape

evolution of crystals with surface attachment limited kinetics4 where the material

is rearranged in order to decrease the crystalline surface energy. Another example

is the determination of foam structures by prescribing the area or volume (in two

or three space dimensions respectively) of the foam bubbles and minimizing the

length or area of the separating lines or hypersurfaces. A related problem is the

famous honeycomb conjecture19. Let us more precisely state the situations we want

to investigate.

Consider a domain in the two or three dimensional space that is subdivided into

M ∈ N sub-domains. The sub-domains, denoted by Ωα, α = 1, . . . ,M , need not to

be connected and will be interpreted as different phases throughout this paper. The

interfaces separating the phases are assumed to be smooth hypersurfaces. Given

two indices α 6= β the interfaces between the corresponding phases are denoted by

Γαβ . We postulate a system energy of the form

FSI =
∑

α<β

∫

Γαβ

γαβ(ναβ)dHd−1. (1.1)

Here, the vector ναβ denotes the unit normal on Γαβ pointing into Ωβ . The surface

energy densities γαβ are positive functions of the unit normal and, therefore, allow

to take anisotropy on the phase interfaces into account. Finally, dHd−1 stands for

the integration with respect to a (d − 1)-dimensional surface measure.

Minimizers of the system energy (1.1) and the evolution according to an L2

gradient flow of the above energy are of interest where, in addition, the phases

1, . . . , A for some number A ∈ {1, . . . ,M} are due to additional volume constraints

|Ωα| := volume(Ωα) = Mα, α = 1, . . . , A, (1.2)

with appropriate numbers Mα ∈ (0, |Ω|). As we will see in the following section,

the gradient flow leads to a weighted mean curvature flow in the sense of Ref. 17

with additional forcing terms ensuring the volume conditions for the phases. This

motion is coupled to angle conditions for the interfaces in triple points or lines, i.e.,

in points where three phase interfaces meet.

In this article we present a model for such a system which is based on the phase

field approach. To every phase we assign a phase field variable φα(x), α = 1, . . . ,M ,

representing the presence of the corresponding phase in some point x ∈ Ω. This

means that the variables fulfill φα(x) ∈ [0, 1] and sum up to give 1, i.e., the vector

of the phase fields is demanded to lie on the Gibbs simplex ΣM ,

φ(x) ∈ ΣM :=
{

ζ = (ζ1, . . . , ζM ) ∈ R
M
∣
∣
∣

M∑

α=1

ζα = 1, ζα ≥ 0, α = 1, . . . ,M
}

.

(1.3)
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Observe that the corners of ΣM precisely are the points where one of the components

equals 1 and the others vanish, i.e., the corners correspond to the pure phases.

The system energy of the diffuse interface approach is defined to be the following

Ginzburg-Landau functional:

FGL(φ) =

∫

Ω

(
εa(φ,∇φ) +

1

ε
w(φ)

)
dx. (1.4)

The function w is a multi-well potential with global minima in the corners of ΣM .

Hence, for a state function φ it is energetically advantageous to take values close to

the minima of w. This leads to a separation of the domain into different phases. But

there may be transition regions where φ changes from one minimum to another.

The potential a penalizes gradients, the simplest choice being a(φ,∇φ) = |∇φ|2.
Therefore, it prevents φ from changing in a too thin transition region. Indeed, it

turns out that the thickness of the transition region is of order ε which is a small

length scale appearing in (1.4). The volume conditions (1.3) now read
∫

Ω

φα = Mα, α = 1, . . . , A. (1.5)

Again we are interested in (local) minimizers of the above energy and consider

the gradient flow of (1.4) with respect to a possibly weighted L2 inner product.

The dynamic problem leads to a system of Allen-Cahn equations for the phase

field variables which corresponds to a diffuse interface version of weighted mean

curvature flow. Non-local terms that can be seen as additional forcing terms enter

the parabolic differential equations and change the speed of the phase interfaces in

such a way that (1.5) is satisfied during the relaxation.

For the case of two phases, i.e., M = 2, the phase field approach to the considered

problem has been discussed in Ref. 16. Using matched asymptotic expansions and

multiple timescales, it is shown that the description with moving hypersurfaces,

i.e., the sharp interface model, comes out in the limit when the diffuse interface

thickness, which scales with ε, converges to zero. In certain situations this limiting

behavior could even be rigorously established3. But effects on the ε-scale that vanish

in the limit can indeed influence the long time behavior of solutions to the diffuse

interface model21.

In contrast to the above references we face arbitrary numbers of phases. We

present several methods to incorporate the non-local terms. The developed algo-

rithms are based on finite difference methods to approximate solutions to the non-

local parabolic equations. For calibration reasons with respect to surface energies7

we are strongly interested in multi-well potentials w of obstacle type, i.e., w is real

valued only on ΣM but set to ∞ if the argument φ does not belong ΣM . One task is

then to ensure that the forcing terms are present only within the interfacial regions.

Moreover, it is a nontrivial task to find the correct strength of the additional forces.

In an ad hoc method we let the phase interfaces move according to the gradient

flow of (1.4) and then, in a second step, compute the change of volume and add

values equilibrating it. The use of the obstacle potential necessitates to iterate the
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equilibration procedure of the second step. Another idea is to apply the Newton

method to compute the necessary forces. Because of the obstacle potential the

function of which the roots are to be found is not differentiable, but it turns out

that it provides enough regularity so that a semi-smooth method in the sense of

Ref. 15 converges. For the analytical results certain regularity assumption on the

gradient energy a are necessary. They are not fulfilled in the case of crystalline

surface energies leading to crystalline curvature flow17. But numerical tests revealed

that the developed methods are still applicable.

The models will precisely be stated in the the following section. In particular, the

decay of energy is analyzed. In the third section the procedures are stated and inves-

tigated. The main result concerns the convergence of the Newton method. Finally,

the last section deals with numerical simulations using the developed algorithms.

Tests and applications concern the evolution of two spheres, clusters of bubbles and

the construction of tessellations on a prescribed periodicity cell.

2. Modeling

Throughout this section, let Ω ⊂ R
d with d ∈ {2, 3} be a connected open set with

piecewise smooth boundary and external unit normal νext on ∂Ω, and let I = (0, T )

with T ∈ (0,∞] be a time interval.

2.1. Sharp interface model

2.1.1. Notation and governing equations

The domain Ω is subdivided into M time dependent sub-domains Ωα(t), α =

1, . . . ,M , separated by moving interfaces Γαβ(t) with unit normal ναβ pointing

into Ωβ . Here and in the following the time dependence of the phases and the phase

interfaces will not be stated explicitly any more. The phase interfaces end in points

belonging to the sets Tαβδ := Γαβ ∩Γβδ ∩Γδα or Γαβ,ext := Γαβ ∩∂Ω. The following

equations and identities are restricted to times t ∈ I when we are in the following

situation: the phase interfaces Γαβ are smooth and, hence, measurable with respect

to the surface measure Hd−1, and to arbitrary indices α, β there is a chain of indices

α = η1, η2, . . . , ηn = β such that each set Γηiηi+1
has positive Hd−1-measure. The

fact that the domain Ω is connected certainly enables to weaken the last assumption

but we do not want to discuss this issue here in detail.

To describe the energy of the system we introduce surface energy densities γαβ :

Sd−1 → (0,∞) where Sd−1 ⊂ R
d is the (d − 1)-dimensional unit sphere. By one-

homogeneous extension, i.e., setting γαβ(rν) := rγαβ(ν) for all r ≥ 0, ν ∈ Sd−1, the

surface energy densities become functions on R
d. They are assumed to be convex

and smooth (except in zero), and for consistency reasons we assume that γβα(ν) =

γαβ(−ν). To avoid wetting effects we suppose that

γαβ(ν) + γβδ(ν) > γαδ(ν) for mutually different α, β, δ and all ν ∈ Sd−1.
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To have volume constraints for the phases with indices α = 1, . . . , A means

that the constraints (1.2) are fulfilled. The numbers Mα are positive and fulfill
∑A

α=1 Mα < |Ω| in the case A < M and
∑A

α=1 Mα = |Ω| in the case A = M

respectively.

The evolution of the system is defined by a gradient flow of the energy (1.1)

with respect to a weighted L2 inner product, taking the constraints (1.2) with the

help of Lagrange factors µα, α = 1, . . . , A, into account. In the following, we state

the resulting equations. The derivation is sketched in the appendix.

The phase interfaces Γαβ move according to the laws

mαβvαβ = −∇s ·
(
Dγαβ(ναβ)

)
+ (µβ − µα). (2.1)

Here, vαβ is the normal velocity in direction ναβ , and the mαβ = mβα are positive

kinetic coefficients. A kinetic anisotropy can easily be taken into account, i.e., each

mαβ is a function of ναβ so that the velocity of the phase interface Γαβ is enhanced

or restricted in certain spacial directions. The operator ∇s· stands for the surface

divergence, and Dγαβ denotes the derivative of γαβ . We have set

µα := 0 if α > A (2.2)

for shorter presentation. The Lagrange factors can be considered as bulk forces act-

ing on the phase interfaces and influencing its motion, whence they will be referred

as forcing terms in the following. They can be computed from the constraints (1.2)

which is shown in the next subsection. The terms −∇s ·Dγαβ are commonly called

weighted mean curvature17, whence (2.1) can be understood as weighted mean cur-

vature flow for the phase interfaces with additional forcing terms due to the volume

constraints.

The equations of motion (2.1) are supplied with boundary conditions in points

where the phase interfaces meet the external boundary of Ω or end in triple points

belonging to the sets Tαβδ. As shown in the appendix, they follow from the definition

of the evolution as gradient flow of (1.1), but they can also be considered as due

to mechanical equilibrium and are commonly known as Youngs’s law (cf. Ref. 12

and Ref. 9 and the references therein). The external unit normal to Γik in a point

x ∈ Tαβδ is denoted by τ ik, (i, k) ∈ Aαβδ := {(α, β), (β, δ), (δ, α)}. The condition

in x now reads

0 =
∑

(i,k)∈Aαβδ

−(Dγik(νik) · τ ik)νik + γik(νik)τ ik. (2.3)

In the case d = 2 the condition is the same and can be derived by identically

extending the local situation into the third dimension. The condition implies that

certain angles are formed.

Similarly, there are angle conditions in points where an interface meets the

external boundary, i.e., in the sets Γαβ,ext:

0 = γαβ(ναβ)(ναβ · νext) + (Dγαβ(ναβ) · ταβ)(ταβ · νext) (2.4)

where again ταβ denotes the external unit normal to Γαβ on Γαβ,ext.
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The forcing terms in the motion law (2.1) act against volume changes of a phase

due to a local interface motion by a force acting globally on the whole boundary of

the phase. It is worth to remark that, because of the kinetic coefficients mαβ , the

influence of the forcing on the normal velocity depends on the type of the phase

interface. If the kinetic coefficients mαβ(ναβ) are anisotropic it even depends on

the directions of the interfaces.

2.1.2. Computation of the forcing terms

For shorter presentation, let us set

Γαα := ∅, mαα := 1, α = 1, . . . ,M.

Condition (1.2) yields for all β = 1, . . . , A that

0 = ∂t|Ωβ | =

M∑

α=1

∫

Γαβ

(−vαβ)dHd−1 (2.5)

=

M∑

α=1

(
∫

Γαβ

∇s · (Dγαβ(ναβ))

mαβ
dHd−1 + (µα − µβ)

∫

Γαβ

1

mαβ
dHd−1

)

For α, β = 1, . . . ,M let us introduce the abbreviations

κβ :=

M∑

α=1

∫

Γαβ

∇s · (Dγαβ(ναβ))

mαβ
dHd−1,

gαβ :=

∫

Γαβ

1

mαβ
dHd−1 = gβα ≥ 0,

hββ :=
M∑

δ=1

gβδ,

hβα := −gβα if α 6= β

and let us set

H := (hβα)A,M
β,α=1, κ := (κβ)A

β=1.

Then (2.5) corresponds to the linear system Hµ = κ (remember that µα = 0 if

α > A), i.e.,

M∑

α=1

hβαµα =

M∑

α=1

gβα(µβ − µα) = κβ , β = 1, . . . , A. (2.6)

Observe that in view of (2.5)

0 = ∂t|Ω| =
M∑

β=1

∂t|Ωβ | =
M∑

β=1

κβ −
M,M
∑

β,α=1

µβgαβ +

M,M
∑

β,α=1

µαgαβ =
M∑

β=1

κβ .

Lemma 2.1. Consider a situation as described at the beginning of Subsec. 2.1.1.

If A < M the system (2.6) has a unique solution µ1, . . . , µA. In the case A = M
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there is a unique solution µ ∈ span{1M}⊥ where 1M = (1, . . . , 1) ∈ R
M provided

that κ · 1M = 0.

Proof. Let us start with the case A = M . Obviously, the vector 1M then lies in

the kernel of H. Since H is symmetric it follows that the image of R
M under H is

a subspace of span{1M}⊥.

Given µ ∈ R
M a short calculation shows that

µ · Hµ =
1

2

M∑

α,β=1

gαβ(µα − µβ)2 ≥ 0.

Any two line indices α 6= β of H are algebraically connected since, by assumption,

there is a chain of indices (α = η1, η2, . . . , ηn = β) such that for each pair |Γηiηi+1
| >

0, whence gηiηi+1
> 0. Therefore, if µ · Hµ = 0 then necessarily µα = µη2

= · · · =

µβ . Since this holds true for all pairs of indices we have that µ · Hµ = 0 implies

µ1 = · · · = µM which is equivalent to µ ∈ span{1M}. The matrix H is therefore

strictly positive when restricted to the space span{1M}⊥. We conclude that H :

span{1M}⊥ → span{1M}⊥ is bijective. Since by assumption κ ∈ span{1M}⊥,

altogether, this determines a unique vector µ ∈ span{1M}⊥ solving the linear

system (2.6).

In the case A < M the volume conserved phases never occupy the whole domain

since
∑A

α=1 |Ωα| =
∑A

α=1 Mα < |Ω|. Consider a maximal set B ⊂ {1, . . . , A} of alge-

braically connected indices. By assumption there must always be some hypersurface

of non-vanishing surface measure between a conserved phase and a non-conserved

phase, i.e., there is a pair of indices (α, β) ∈ B × {A + 1, . . . ,M} with gαβ > 0.

Therefore, at least one strictly diagonal dominant line exists in the block of the ma-

trix H belonging to the indices B. Hence that block is weakly diagonal dominant.

Thanks to the connectedness it is invertible. But since this holds true for all such

blocks we obtain that (2.6) is uniquely solvable.

The Lagrange multipliers may be interpreted as pressures. In the case A = M

the pressures are only determined up to a constant. If A < M the pressure in

the non-conserved phases are set to zero, and this fixes the pressure in the overall

system.

2.1.3. Decay of energy

In order to show that the motion described above implies an energy decay we need

the following transport identity for a moving surface Γ(t) with some smooth surface

density γ (cf. the appendix of Ref. 11 for a derivation):

d

dt

(∫

Γ(t)

γdHd−1
)

=

∫

Γ(t)

(
∂◦γ − γvκ

)
dHd−1 +

∫

∂Γ(t)

γv∂Γ · τΓdHd−2.

Here, v denotes the scalar normal velocity, κ the curvature, v∂Γ the vectorial normal

velocity of the boundary ∂Γ (considered as a moving surface of dimension d − 2),
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and τΓ the external unit normal to Γ on ∂Γ. The normal-time derivative ∂◦ in some

point x on Γ is defined to be the derivative when following the curve c(t) that is

implicitly given as the solution to c(0) = x and c′(t) = v(c(t))ν(c(t)) with the

unit normal ν. Moreover we will need the following formula of partial integration

on surfaces (e.g., cf. Ref. 5)

∫

Γ

(
∇s · ζ + ζ · νκ

)
dHd−1 =

∫

∂Γ

ζ · τΓdHd−2

for a smooth vector field ζ on Γ, with the same notation as above for the remaining

quantities.

Lemma 2.2. The motion law (2.1) together with the boundary conditions (2.3) and

(2.4) and with the system (2.6) implies the decay of energy in time, i.e.,

d

dt
FSI ≤ 0.

Proof. Using ∂◦ναβ = −∇svαβ , καβ = −∇s · ναβ (cf. Ref. 5 for these identities),

v∂Γαβ
· ναβ = vαβ , and the motion law (2.1) we see that

d

dt
FSI =

∑

α<β

∫

Γαβ

∂◦γαβ(ναβ) − vαβκαβγαβ(ναβ)dHd−1

+
∑

α<β

∫

∂Γαβ

γαβ(ναβ)v∂Γαβ
· ταβdHd−2

=
∑

α<β

∫

Γαβ

−∇svαβ · Dγαβ − vαβDγαβ · ναβκαβdHd−1

+
∑

α<β

∫

∂Γαβ

γαβταβ · v∂Γαβ
dHd−2

=
∑

α<β

∫

Γαβ

∇s · Dγαβ
−∇s · Dγαβ + µβ − µα

mαβ
dHd−1 (2.7)

+
∑

α<β

∫

∂Γαβ

(

γαβταβ −
(
Dγαβ · ταβ

)
ναβ

)

· v∂Γαβ
dHd−2. (2.8)

For the last identity we applied the above formula of partial integration to the first

term.

Let us first consider the boundary part. The set ∂Γαβ consists of the set Γαβ,ext

and the sets Tαβδ, δ 6= α, β. On Γαβ,ext the condition (2.4) implies that γαβναβ +

(Dγαβ ·ταβ)ταβ is tangential to ∂Ω so that its rotation −(Dγαβ ·ταβ)ναβ +γαβταβ

by 90◦ degree in the plane spanned by ταβ and ναβ is normal to ∂Ω. But since

Γαβ,ext moves along ∂Ω its vectorial normal velocity is tangential to ∂Ω, hence

(

γαβ(ναβ)ταβ −
(
Dγαβ(ναβ) · ταβ

)
ναβ

)

· v∂Γαβ
= 0 on Γαβ,ext.
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Using the condition on triple lines (2.3) and the fact that the velocities v∂Γαβ
, v∂Γβδ

,

and v∂Γδα
coincide on Tαβδ (to avoid a splitting of these sets, the velocities will be

denoted by vαβδ) we now obtain that the boundary terms in the line (2.8) vanish:

∑

α<β

∫

∂Γαβ

(

−
(
Dγαβ(ναβ) · ταβ

)
ναβ + γαβ(ναβ)ταβ

)

· v∂Γαβ

=
∑

α<β<δ

∫

Tαβδ

( ∑

(i,k)∈Aαβδ

−(Dγik(νik) · τ ik)νik + γik(νik)τ ik

︸ ︷︷ ︸

=0 by (2.3)

)

· vαβδ.

It remains to consider (2.7). But, using (2.5), it holds that

∑

α,β

(−µβ + µα)

∫

Γαβ

−∇s · (Dγαβ(ναβ)) + µβ − µα

mαβ
dHd−1 = 0.

Hence, noting that Dγβα(νβα) = −Dγαβ(ναβ),

(2.7) = −1

2

∑

αβ

∫

Γαβ

(vαβ)2 mαβ dHd−1 ≤ 0

which shows the desired result.

2.2. Diffuse interface model

2.2.1. Notation and governing equations

We define the sets HΣM := {φ ∈ R
M |∑α φα = 1}, ΣM := {φ ∈ HΣM |φα ≥ 0∀α},

and TΣM := {d ∈ R
M |∑α dα = 0} = span{1M}⊥. Observe that the tangent space

on HΣM in some point φ ∈ HΣ can naturally be identified with TΣM .

The gradient potential is a twice differentiable function a : HΣM × (TΣM )d →
[0,∞) that has the structure

a(φ,∇φ) =
∑

α<β

Aαβ(qαβ), qαβ = φα∇φβ − φβ∇φα,

where the functions Aαβ : R
d → (0,∞) are two-homogeneous. The multi-well po-

tential w : HΣM → [0,∞] has M minima which value zero and which precisely are

the corners of ΣM , i.e., the vectors eα = (δαβ)β with the Kronecker symbol δαβ . To

allow for different mobilities for the different interfaces we make use of a function

ω : HΣM × (TΣM )d → (ω0, ω1) ⊂ R

with 0 < ω0 ≤ ω1. We remark that also in the diffuse interface model anisotropic

kinetic coefficients can be taken into account9 since the local orientation of the

diffuse interfaces is given in terms of the gradient of φ on which ω depends (see

below).
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The evolution of the multi-phase system is defined to be a weighted L2 gradient

flow of the energy (1.4). We consider solutions φ = (φ1, . . . , φM ) : I × Ω → HΣM

to the system

ε ω(φ,∇φ) ∂tφα = ε∇ · a,∇φα
(φ,∇φ) − εa,φα

(φ,∇φ)

− 1
εw,φα

(φ) − fα(φ) − λ (2.9)

subject to initial values

φ(t = 0) = φ(ic) : Ω → HΣM , (2.10)

with periodic boundary conditions or natural boundary conditions

a,∇φα
(φ,∇φ) · νext = 0 on ∂Ω, α = 1, . . . ,M, (2.11)

and subject to the volume constraints (1.5),
∫

Ω

φα(t, ·) = Mα =

∫

Ω

φ(ic), α = 1, . . . , A, ∀t ∈ I. (2.12)

For ∂tφ ∈ TΣM being fulfilled there is the Lagrange factor

λ =
1

M

M∑

β=1

ε∇ · a,∇φβ
− εa,φβ

− 1
εw,φβ

(φ) − fβ(φ) (2.13)

The forcing terms fα are chosen in such a way that condition (2.12) is fulfilled.

Analogously to (2.2) we set

fα := 0 if α > A. (2.14)

Possible forms of the fα are discussed in the following subsection.

If the multi-well potential is of obstacle type, i.e., w(φ) = ∞ if φ 6∈ ΣM , then

evolution problem is described by a variational inequality1. For almost every t ∈ I

and for all functions ζ : Ω → ΣM a solution φ satisfies

0 ≤
∫

Ω

(

ω(φ,∇φ)∂tφ · (ζ − φ) + a,∇φ(φ,∇φ) : ∇
(
ζ − φ

)

+
(
a,φ(φ,∇φ) + w,φ(φ)

)
· (ζ − φ) + f(φ) · (ζ − φ)

)

(2.15)

where the colon operator : (Rn×m)2 → R, A : B =
∑

i,j AijBij , appears.

2.2.2. Choice of the forcing terms

Let us consider the case of a smooth multi-well potential w. With the abbreviations

rα := ε∇ · a,∇φα
− εa,φα

− 1
εw,φα

, (2.16)

Rα :=

∫

Ω

rα

ω(φ,∇φ)
, R̃α := Rα − 1

M

M∑

β=1

Rβ , Fα :=

∫

Ω

fα(φ)

ω(φ,∇φ)
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we derive from the condition (2.12)

0 =

∫

Ω

ε∂tφα = R̃α − Fα +
1

M

A∑

β=1

Fβ , α = 1, . . . , A. (2.17)

In the case A = 1 the only equation of (2.17) becomes 0 = R̃1 − M−1
M F1

which uniquely determines F1. If A = M we may choose Fα = Rα since then

by
∑M

α=1 Rα =
∑M

α=1 Fα and the definition of R̃α the sums in the conditions (2.17)

drop out.

Let us now consider the case 1 < A < M . Subtracting the identity (2.17)

for some α ∈ {1, . . . , A} from the one for some β ∈ {1, . . . , A}\{α} yields Fβ =

R̃β − R̃α +Fα. Replacing the Fβ in the identity (2.17) for α then gives after a short

calculation

Fα =
(

R̃α +
1

M − A

A∑

β=1

R̃β

)

if 1 < A < M. (2.18)

In the following, h : R → R denotes a monotone increasing interpolation function

mapping [0, 1] to [0, 1] such that h′(p) > 0 whenever p ∈ (0, 1). Let us define

fα = µαh′(φα), α = 1, . . . , A.

for appropriate values µα ∈ R. The idea behind this definition is that a possible loss

or gain of volume of a phase due to the term r = (r1, . . . , rM ) is counterbalanced

by adding terms to the corresponding phase field variable in the interface-regions

to the surrounding phases. The fact that h′(p) > 0 whenever p ∈ (0, 1) is essential

for that procedure. The balancing is performed independently of the indices of the

neighboring phases.

Setting Hα :=
∫

Ω
h′(φα)/ω(φ,∇φ) the discussion above yields that the non-local

terms

µα =







(MR̃1)
/
((M − 1)H1), if A = 1,

(
R̃α + 1

M−A

∑A
β=1 R̃β

)/
Hα, if 1 < A < M,

Rα

/
Hα, if A = M,

(2.19)

for α = 1, . . . , A are necessary and sufficient in order to guarantee (2.12).

We remark that, in the case of an obstacle multi-well potential w, the above

formula for the µα needs not to be true (already (2.17) is not true). We found no

explicit formula for the forcing terms in that case.

2.2.3. Remark on the sharp interface asymptotics

It is possible to relate the diffuse interface model to the sharp interface model

as the thickness parameter ε of the diffuse interfaces converges to zero. For this

purpose, methods developed in Ref. 16 for the case of two phases and in Ref. 8

for an arbitrary number of phases but without volume constraints were combined.
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The method is formal in the sense that suitable asymptotic expansions in ε in the

domains of the phases and in the interface-regions are assumed to exist. Matching

them yields the equations governing the sharp interface model from the equations

of the phase field model. Since the asymptotic analysis did not require essential new

ideas and techniques we omit the details.

2.2.4. Decay of energy

To investigate whether the energy (1.4) decays we will make use of the abbreviations

(2.16), furthermore setting

r̃α := rα − 1

M

M∑

β=1

rβ and f̃α := fα − 1

M

M∑

β=1

fβ , (2.20)

i.e., r̃ = (r̃1, . . . , r̃M ) and f̃ = (f̃1, . . . , f̃M ) are the projections of r = (r1, . . . , rM )

and f = (f1, . . . , fM ) to TΣM respectively. Observe that if α > A then fα = 0 but,

in general, f̃α 6= 0. Using ∂tφ ∈ TΣM and (2.9) a short calculation shows that

d

dt
FGL =

1

ε

∫

Ω

(

− |r̃|2
ω

+
r̃ · f̃
ω

)

(2.21)

Let us now assume that the interpolation function h is the identity. Then fα =

µα is constant in space, and the conditions (2.17) give that f̃α

∫

Ω
1
ω =

∫

Ω
r̃α

ω for the

indices α = 1, . . . , A. Using that f̃ ∈ TΣM is the projection of f ∈ R
M and (2.14)

we find that

f̃ · f̃
∫

Ω

1

ω
= f · f̃

∫

Ω

1

ω
=

M∑

α=1

fα f̃α

∫

Ω

1

ω
=

A∑

α=1

fα f̃α

∫

Ω

1

ω

=

A∑

α=1

fα

∫

Ω

r̃α

ω
=

M∑

α=1

fα

∫

Ω

r̃α

ω
= f ·

∫

Ω

r̃

ω
= f̃ ·

∫

Ω

r̃

ω
.

Therefore, adding 0 = 1
ε

∫

Ω
f̃ · (r̃ − f̃)/ω to (2.21) yields

d

dt
FGL = −1

ε

∫

Ω

|r̃ − f̃ |2
ω

≤ 0 if h(r) = r.

In the general case of any interpolation function h it is not clear whether this

still holds true. But we remark that in the sharp interface limit as ε → 0 the energy

decay property has already been shown in Subsec. 2.1.3.

3. Numerical methods

3.1. General remarks on the numerical algorithms

The differential equations or the variational inequality in Subsec. 2.2.1 describing

the evolution of the multi-phase system are numerically solved using finite difference

methods. The procedure is carefully described in Ref. 9. In space the domain Ω is
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supposed to be cubic, and we have a uniform mesh with grid constant ∆x. The

number of nodes is denoted by N . The value of a field at some node xi, i ∈
{1, . . . ,N}, is indicated with a lower index i. In time we use an explicit method,

the discrete time step being denoted by ∆t. The values of a field at the time n∆t

is then denoted by an upper index n ∈ {0, . . . , nmax := T /∆t}. To summarize, we

will write

φn
iα ≈ φα(n∆t,xi)

where φ(t,x) = (φ1, . . . , φM )(t,x) is a solution to the evolution equations.

We assume that every phase involves an interface to another phase and that

the grid constant ∆x is small enough to resolve all the interface-layers of thickness

scaling with ε. In particular, we assume that for every α and every n there is a grid

point xi such that φn
iα ∈ (0, 1).

3.2. Methods for smooth multi-well potentials

In this subsection the function w : HΣM → [0,∞) is a smooth function, in applica-

tions typically a polynomial. The terms of (2.9) are discretized as described in Ref.

9. In particular, we obtain discrete versions of the terms rα and r̃α defined in (2.16)

and (2.20) respectively. Defining initial values on the grid by

φ0
iα := φ(ic)

α (xi) (3.1)

the discrete system to solve reads

ωn
i

φn+1
iα − φn

iα

∆t
= r̃n

iα − µn
αh′(φn

iα) +
1

M

A∑

β=1

µn
βh′(φn

iβ) (3.2)

for α = 1, . . . ,M , i = 1, . . . ,N , and for the time steps n = 0, . . . , nmax − 1.

Also the boundary conditions (2.11), whenever applied, are discretized as in Ref.

9. The volume constraint (2.12) reads

(∆x)d
N∑

i=1

φn
iα = (∆x)d

N∑

i=1

φ0
iα ∀n. (3.3)

In formula (2.19) we already stated how the coefficients µα must be such that

the volume condition is satisfied. Setting

Hn
α := (∆x)d

N∑

i=1

h′(φn
iα)

ωn
i

, Rn
α := (∆x)d

N∑

i=1

rn
iα

ωn
i

, R̃n
α := Rn

α − 1

M

M∑

β=1

Rn
β (3.4)

we obtain the following version of (2.19) in the discrete setting:

µn
α =







(MR̃n
1 )
/
((M − 1)Hn

1 ), if A = 1,
(
R̃n

α + 1
M−A

∑A
β=1 R̃n

β

)/
Hn

α , if 1 < A < M,

Rn
α

/
Hn

α , if A = M.

(3.5)



June 12, 2007 10:55 WSPC/INSTRUCTION FILE GNWS07

14 Garcke, Nestler, Stinner, Wendler

3.3. Volume equilibration method

In this subsection we consider multi-well potentials w of obstacle type so that the

evolution is described by the variational inequality (2.15).

3.3.1. General projection method

A numerical method to solve the variational problem is presented in Ref. 9. It

consists of solving a system of equations as for smooth potentials w and, after, a

projection of the phase field vectors to the Gibbs simplex ΣM in each grid point.

Thus, given some values µn+1
α , in every time step we first compute the vectors

φ
n+1,1/2
i from the equations

ωn
i

φ
n+1,1/2
iα − φn

iα

∆t
= r̃n

iα − µn+1
α h′(φn

iα) +
1

M

A∑

β=1

µn+1
β h′(φn

iβ) (3.6)

for α = 1, . . . ,M and i = 1, . . . ,N , and after we set

φn+1
i := PM (φ

n+1,1/2
i ), i = 1, . . . ,N , (3.7)

where PM : R
M → ΣM is the projection characterized by

(PM (p) − p) · (v − PM (p)) ≥ 0 ∀v ∈ ΣM .

Observe that the µα appear implicitly in (3.6) in contrast to (3.2). Indeed, since

we want that the additional volume constraints (3.3) are satisfied the µn+1
α will have

to be adapted.

In the following we present an iterative ad hoc method to realize the volume

constraints without explicitly computing µn+1.

3.3.2. Numerical equilibration of the volume change

In every time step we first take the influence of the r-term on the phase field

variables into account, i.e., setting µn+1 = 0 in (3.6) we compute for all nodes i

φ
n+1,0
i := PM

(
φn

i +
∆t

ωn
i

r̃n
i

)
. (3.8)

Up to the scaling factor (∆x)d, the deviations from the desired volumes are given

by dn+1,0
α :=

∑

i(φ
n+1,0
iα − φ0

iα), α = 1, . . . , A. We now compute for α = 1, . . . , A

ηn+1,1
α :=

{(
dn+1,0

α + 1
M−A

∑A
β=1 dn+1,0

β

)/∑

i h′(φn
iα) if A < M,

dn+1,0
α

/∑

i h′(φn
iα) if A = M

and, setting ηn+1,1
α = 0 if α > A, we calculate then for α = 1, . . . ,M

φ
n+1,1/2
iα := φn+1,0

iα − ηn+1,1
α h′(φn

iα) +
1

M

A∑

β=1

ηn+1,1
β h′(φn

iβ).
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The ηn+1,1
α are chosen in such a way that the φ

n+1,1/2
i fulfill the volume

constraints (3.3) (compare their definition with (3.5)). But since it may be that

φ
n+1,1/2
i 6∈ ΣM in some nodes i we perform a loop over the nodes and compute the

vectors φ
n+1,1
i := PM (φ

n+1,1/2
i ). This may destroy again the property that the vol-

ume constraints are fulfilled. We therefore iterate the above procedure computing

the dn+1,1
α , ηn+1,2

α , φn+1,2
iα , dn+1,2

α , ... until

max
1≤α≤A

|dn+1,k
α /(∆x)d| is small enough.

If the function ω(φ,∇φ) is not constant the motion due to the r-term of certain

phase interfaces and, eventually, even in certain directions of the phase interfaces is

enhanced compared to others. In the above method the equilibration of the volume is

performed independently of the type of the phase interface and the local orientation.

Indeed, the factors ωn
i resulting from ω(φ,∇φ) only appear in (3.8).

Advantages of the above method are the easy implementation due to the logical

decoupling of the correction procedure from the update of phase-field values and

the (compared to the other methods) lower memory requirements since storing the

kinetic coefficients ωn
i is not necessary, especially when a high number of phases is

present.

3.4. Semi-smooth Newton method

As in the previous subsection we consider multi-well potentials of obstacle type re-

sulting in a variational inequality of the form (2.15). Again, at every time step we

perform (3.6) and (3.7) but now we will present a different way to obtain appro-

priate forcing terms µn+1
α . In particular, we address the fact that different kinetic

coefficients of the phase interfaces cannot be taken into account by the volume

equilibration method presented in the previous subsection.

Consider the function

fn+1 : R
A → R

A, fn+1(µ) := (∆x)d
N∑

i=1

(
φn+1

iα (µ) − φ0
iα

)A

α=1
(3.9)

for the time step n → n+1 where φn+1
i (µ) = PM (φ

n+1,1/2
i (µ)) and the φ

n+1,1/2
iα (µ)

are computed as in (3.6) with the µn+1
α replaced by the components of µ. A zero of

fn+1 means that the volume constraints (3.3) are satisfied. The idea is to use the

Newton iteration to compute µn+1, i.e., we perform an iteration of the form

µn+1,k+1 := µn+1,k − (Dfn+1(µn+1,k))−1fn+1(µn+1,k). (3.10)

Unfortunately, the function fn+1 is not everywhere differentiable because of the pro-

jection, whence it may be not clear which value should be assigned to Df(µn+1,k).

But we will show that f is semi-smooth enabling to apply a semi-smooth Newton

method. Let us briefly state that f is semi-smooth in µ if f is locally Lipschitz at
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µ and if for any h ∈ R
A

lim
B∈∂f(µ+th′), h′→h, tց0

Bh′ exists.

Here, the generalized derivative ∂f appears. If Df denotes the set on which f is

differentiable then it is defined by

∂f(µ) = co
{

lim
µ′→µ, µ′∈Df

Df(µ′)
}

(3.11)

where co(S) denotes the convex hull of a set S.

As initial value for the iteration we chose µ0,0 := 0 and µn+1,0 := µn respectively

in our simulations.

3.4.1. Properties of the projection

In this section we state some properties of the projection PM : R
M → ΣM . By

PM , the space R
M is divided into a finite number of open polyhedra where PM is

linear, and on the flat surfaces separating the polyhedra PM is continuous but its

derivative DPM jumps.

Definition 3.1. Let φ be a regular point of PM . Define

R(φ) :=
{
β ∈ {1, . . . ,M}|(PM (φ))β 6= 0

}
,

r(φ) := |R(φ)|,
S(φ) := {1, . . . ,M}\R(φ).

Given a regular point φ with β1, β2 ∈ R(φ) then, close to φ, PM is the identity

in direction eβ1
− eβ2

. One can conclude the following lemma:

Lemma 3.1. Let φ be a regular point of PM and let R(φ) = {βk}r(φ)
k=1 . The deriva-

tive of PM in φ in direction d ∈ R
M is

DPM (φ)d = projection of d to span{eβ1
− eβ2

, . . . , eβr(φ)−1
− eβr(φ)

}. (3.12)

In particular, if d = eα = (δαβ)M
β=1 with the Kronecker symbols δαβ and if α ∈ R(φ)

then

DPM (φ) · eα =







0, if δ ∈ S(φ),
r(φ)−1

r(φ) , if δ = α,
−1

r(φ) , if δ ∈ R(φ)\{α}.
(3.13)

Let now φ ∈ R
M be a point where PM is not regular. Then there is a closed

ball Bδ(φ) with sufficiently small radius δ > 0 around φ such that the cut with

each of the adjacent polyhedra is a ball segment with tip in φ. More precisely, given

any adjacent polyhedron H and any point h ∈ (Bδ(φ) ∩ H)\{φ} then also the set

{φ + r h−φ
‖h−φ‖ |r ∈ (0, δ)} belongs to Bδ(φ) ∩ H. Therefore, given some h ∈ TΣM

with ‖h‖ < δ, the linearity of PM in every polyhedron implies that the directional
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derivatives in direction h in the points φ and φ + h agree. But this means that the

criterion (v) of Theorem 2.3 in Ref. 15 is fulfilled. As a conclusion of that theorem

we get

Lemma 3.2. The projection PM : R
M → ΣM is semi-smooth.

The generalized derivative ∂PM of the projection is defined as in (3.11). If φ

is a regular point we have ∂PM (φ) = {DPM (φ)}. In the other case ∂PM (φ) is

the convex hull of a finite number of matrices, namely, the values of DPM in the

polyhedra adjacent to φ.

3.4.2. Local convergence

Assume that there is a solution µn+1 to the equation fn+1(µ) = 0. Theorem 3.2

of Ref. 15 yields local convergence of the Newton iteration to µn+1 if we show

that fn+1 is semi-smooth and locally Lipschitz, and that the elements belonging

to ∂fn+1(µ) for all µ close to µn+1 are regular matrices. Since PM is Lipschitz

and semi-smooth and since φ
n+1,1/2
i (µ) is linear in µ the first and second necessary

property of fn+1 follow immediately.

Lemma 3.3. Let µn+1 be a solution to the equation fn+1(µ) = 0 and assume

that A < M . For all µ in a small neighborhood of µn+1 any B = (bαβ)A
α,β=1 ∈

−∂fn+1(µ) can be divided into blocks which are M-matrices.

For the definition of and facts on M-matrices we refer to standard literature on

numerical methods for partial differential equations. By the sum condition (1.3) the

omitted case A = M is equivalent to the case A = M − 1.

Proof. Let µn+1 and B be given as in the assertion. The chain rule leads to

∂fn+1(µ) =
(

∂PM
δ (φ

n+1,1/2
i (µ))Dφ

n+1,1/2
i (µ)

)A

δ=1

where we have that ∂µα
φ

n+1,1/2
i (µ) = −∆t

ωn
i

h′(φn
iα)(eα − 1

M 1M ). Observe that

∂PM (φ)1M = 0 for all φ since 1M⊥ΣM .

Let us first consider the case that φ
n+1,1/2
i (µ) is a regular point. By definition

R(φ
n+1,1/2
i ) = R(φn+1,1

i ), r(φ
n+1,1/2
i ) = r(φn+1,1

i ), and S(φ
n+1,1/2
i ) = S(φn+1,1

i ).

If α ∈ S(φn+1,1
i ) then we have by (3.12)

(
DPM (φ

n+1,1/2
i )eα

)

δ
= 0 ∀δ ∈ {1, . . . ,M}. (3.14)

If α ∈ R(φn+1,1
i ) then with (3.13)

(
DPM (φ

n+1,1/2
i )eα

)

δ
=







0 if δ ∈ S(φn+1,1
i ),

r(φn+1,1
i

)−1

r(φn+1,1
i

)
if δ = α,

−1

r(φn+1,1
i

)
if δ ∈ R(φn+1,1

i )\{α}.
(3.15)
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This leads to

(
DPM (φ

n+1,1/2
i (µ))∂µα

φ
n+1,1/2
i (µ)

)

δ

= −∆t

ωn
i

h′(φn
iα)







0 if δ ∈ S(φn+1,1
i (µ)),

r(φn+1,1
i

(µ))−1

r(φn+1,1
i

(µ))
if δ = α,

−1

r(φn+1,1
i

(µ))
if δ ∈ R(φn+1,1

i (µ))\{α}.
(3.16)

In the other case, any element P = (pδα)M
δ,α ∈ ∂PM (φ

n+1,1/2
i (µ)) is a convex

combination of projections (compare the remark below Lemma 3.2) so that pδα is

a convex combination of identities as in (3.15). For the following, we may restrict

our attention to regular points. It is easy to see that the subsequent argumentation

is still valid in the case of convex combinations.

The factors −∆t
ωn

i

h′(φn
iα) are always non-positive. Therefore, the contribution

of node i to the diagonal elements bαα are always non-positive while the other

contributions on non-diagonal elements are always non-negative.

By the assumption stated at the end of Subsec. 3.1 there is some node i such

that φn+1
iα (µn+1) ∈ (0, 1), whence h′(φn+1

iα (µn+1)) > 0. From the sum condition
∑

α φn+1
iα = 1 we see that there needs to be another index δ with φn+1

iδ (µn+1) ∈
(0, 1). By the Lipschitz continuity of PM we conclude that r(φn+1,1

i (µ)) ≥ 2 for

all µ in a small neighborhood of µn+1. In view of the contribution (3.16) of node

i to the column α of B this implies that the diagonal entries of B are strictly

negative. Moreover, the contribution to the entry bδα means that the lines δ and α

in B are algebraically connected. The maximal connected blocks of B are therefore

irreducible. For shorter presentation, we now assume that B in total is irreducible.

We will show the weak column sum criterion from which we can conclude that

B is an M-matrix. Let the line index δ run from 1 to M in (3.16). The number

of entries set to ∆t
ωn

i

h′(φn
iα)/r(φn+1,1

i (µ)) is just r(φn+1,1
i (µ)) − 1. Summing up the

entries over δ we obtain zero. We conclude that for every α ∈ {1, . . . , A}
|bαα| ≥

∑

1≤δ≤A
δ 6=α

|bδα|. (3.17)

It remains to show that this inequality becomes strict for some index α. But since

A < M there is some phase α with some transition region to some non-conserved

phase β > A, i.e., there is some node i with

(
DPM (φ

n+1,1/2
i (µ))∂µα

φ
n+1,1/2
i (µ)

)

β
=

∆t

ωn
i

h′(φn
iα)
/
r(φn+1,1

i (µ)) < 0.

This contribution is missing on the right hand side of (3.17) so that the inequality

becomes strict for that α.

Altogether, thanks to the previous lemma and the facts on PM stated in Subsec.

3.4.1 the function f defined in (3.9) is semi-smooth. With Theorem 3.2 of Ref. 15

we obtain the following result:
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Theorem 3.1. Replacing Df(µn+1,k) by some matrix B ∈ ∂f(µn+1,k) the Newton

iteration (3.10) is well defined and locally superlinearly convergent.

3.4.3. Remarks on the numerical implementation

In the case that µn+1,k is not a regular point of f or, equivalently, the corre-

sponding iterative φ
n+1,k+1/2
i (µn+1,k) computed from (3.6) with µn+1 replaced by

µn+1,k, is not a regular point of PM , we make the cheapest choice by extending Def.

3.1 and formula (3.12) to that case, i.e., we set Df(µn+1,k) := (
∑N

i=1 fδα,i)
A
δ,α=1,

where fδα,i := 0 in the case α ∈ S(φn+1,k+1
i (µn+1,k)), and in the case α ∈

R(φn+1,k+1
i (µn+1,k))

fδα,i := −∆t

ωn
i

h′(φn
iα)







0 if δ ∈ S(φn+1,k+1
i (µn+1,k)),

r−1
r if δ = α,

−1
r if δ ∈ R(φn+1,k+1

i (µn+1,k))\{α}.

with r := r(φn+1,k+1
i (µn+1,k)).

Observe that the right hand side only depends on the projected points

φ
n+1,k+1
i = PM (φ

n+1,k+1/2
i ). By that computation also the index sets R(φn+1,k+1

i ),

S(φn+1,k+1
i ), and the numbers r(φn+1,k+1

i ) are known. Moreover, the values ∆t
ωn

i

and

h′(φn
iα) have been used earlier. That’s why the computational effort to assemble the

matrix Dfn+1(µn+1,k) is of the order O(N ) and, hence, optimal.

In order to solve the linear system (3.10) we used a standard QR decompo-

sition algorithm. An iterative method seemed to be inappropriate because in the

considered applications the number A of conserved phases was always small (four

or lower).

4. Applications

4.1. General remarks on the parameter choices

If not otherwise stated we made the following choices for the parameters and po-

tentials in the simulations presented in the subsequent sections.

The simulations were carried out on regular grids with a spacing of ∆x = 0.02

and a diffuse interface parameter of ε = 0.06. The time step width ∆t of the explicit

scheme was 4 · 10−5 for 2D and 3 · 10−5 for 3D simulations.

To initialize the phase fields we first considered values in {0, 1}, i.e., we had jump

discontinuities and sharp interfaces between the phases. A smoothing operation

was then applied that preserved the initialized volumes (∆x)d
∑

i φiα. It essentially

consisted in performing some time steps of a discretized heat equation for the φα.

We used the gradient potential

a(φ,∇φ) =
∑

α<β

gαβ |φα∇φβ − φβ∇φα|2
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and the smooth multi-well potential

w(φ) =
∑

α<β

9gαβφ2
αφ2

β +
∑

α<β<δ

gαβδφ
2
αφ2

βφ2
δ (4.1)

with gαβ = 1 and gαβδ = 6. As discussed in Ref. 9 and 7 the above potentials

correspond to isotropic surface energies γαβ(ν) = gαβ . The kinetic coefficients are

set to one, mαβ = 1, and to realize this we always made the choice ω(φ,∇φ) = 1.

Sometimes we used the obstacle multi-well potential

w(φ) =

{
16
π2

∑

α<β gαβφαφβ +
∑

α<β<δ gαβδφαφβφδ, φ ∈ ΣM ,

∞, φ 6∈ ΣM .
(4.2)

in combination with one of the iterative schemes. Then we set the tolerance rate to

10−6 for the fraction
∑

i(φ
n
iα −φ0

iα)/
∑

i φ0
iα of the volume difference and the initial

volume, α = 1, . . . , A. We here already remark that for both methods, the volume

equilibration method (Subsec. 3.3) and the semi-smooth Newton method (Subsec.

3.4), usually one iteration step was necessary in each time step to achieve that

tolerance. Moreover, the computational time was comparable for both methods.

In the figures presented in the following the level sets φα = 0.5 are shown for

some or all of the indices α ∈ {1, . . . ,M}.

4.2. Survival of the fattest

Situations where the solution to the sharp interface model is explicitly known or can

easily be computed provide appropriate tests for the numerical methods presented

in the Subsec. 3.2, 3.3, and 3.4. Exemplary, let us consider two phases (1 and 2)

of conserved volume which are initially arranged as follows. Phase 2 occupies a

domain consisting of two separate balls surrounded by a connected domain of phase

1. With γ12 = 1 and ω12 = 1 in (2.1) the boundaries of the balls move according

to an isotropic curvature flow, modified by the additional terms in the evolution

equation ensuring the volume conservation. In particular, the balls maintain their

shape, and the evolution can be described in terms of their radii r1(t) and r2(t).

The motion law (2.1) implies that these functions satisfy the ordinary differential

equations

ṙ1 = − 1

r1
+

2

r1 + r2
, ṙ2 = − 1

r2
+

2

r1 + r2
, (4.3)

until one of the balls vanishes.

Solving (4.3) numerically with an explicit Runge-Kutta method (see below for

initial radii) yields an approximation of the surface energy evolution Econt(t) :=

2π(r1(t) + r2(t)) that can be compared with the discrete version of (1.4)

Edis(n∆t) := (∆x)d
N∑

i=1

(

εa(φn
i , (∇∆xφn)i) +

1

ε
w(φn

i )
)

(4.4)
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where (∇∆xφn)i = (φn
i+1 − φn

i−1)/2∆x stands for the central difference operator

and the {φn
i }i are solutions obtained from the presented algorithms.

The simulation domain (0, 4)× (0, 2) was chosen and the balls were centered in

(1, 1) and (3, 1) with initial radii r1(0) = 0.4 and r2(0) = 0.6. Only one smoothing

step was performed but the discontinuities were quickly smeared out during the

first time steps, and interface-layers with a thickness of the order ε appeared. We

performed simulations for ε ∈ {
√

2/10, 1/10, 1/(
√

2 · 10)} with grid constants ∆x ∈
{0.02, 0.01} and time steps ∆t = 4 · 10−5 and 10−5 respectively.

The evolution for the smooth multi-well potential (4.1) and for the obstacle

potential (4.2) with the iterative procedures turned out to be similar. Fig. 1 indicates

that the energy (4.4) converges as ε → 0, here shown for the obstacle potential in

combination with the Newton method. Similar behaviors were found when applying

the other methods.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5
Obstacle Type Potential, Newton Method

time t

en
er

gy

eps = 0.14
eps = 0.1
eps = 0.07

Fig. 1. Convergence of the system energy with decreasing ε, simulation results for ∆x = 0.01.

The simulation for ε = 0.1 and ∆x = 0.01 was compared to the solution to the

sharp interface model, whose evolution started at time t = 0.01 when nice smooth

diffuse interface layers had formed from the initial jumps. The initial values for (4.3)

were set as follows. We measured the energy (4.4) from the phase field simulations

at t = 0.01 separately on the two domains (0, 2) × (0, 2) and (2, 4) × (0, 2), each of

them containing one of the two balls. Dividing each energy by 2π we got the radii

r̄1 ≈ 0.388, r̄2 ≈ 0.598 of two circles of the same total surface energy in the sharp

interface model, which were used as initial values at time t = 0.01.

Fig. 2 shows a good agreement in the energy evolution of the sharp interface

model and the phase field model (Newton method). A clear deviation from the sharp

interface dynamics only arises at time of about t = 0.2, when the ball of phase 2
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with smaller initial radius reaches a radius in the range of the interface width ε.
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Fig. 2. Comparing the evolution of the energy for the sharp interface model and the phase field
model.

4.3. Bubbles

4.3.1. Three bubbles in 2D with volume conservation

In a domain of 200 × 200 grid points three bubbles with square shape and equal

area of 80 × 80 grid points were initially set as shown in Fig. 3a. The bubbles

were represented by 3 different phase-field parameters embedded in a fourth matrix

phase. Fig. 3 shows the evolution of the interfaces. A configuration of three identical

circular segments with planar intersections meeting at an angle of 120◦ is finally

reached (chart c) in accordance with condition (2.3).

4.3.2. Three bubbles in 2D, only two of them with volume conservation

We studied the case of three adjacent bubbles where only two of them were subject

to a volume conservation. The equilibration method in Subsec. 3.3 with the obstacle

potential (4.2) with gαβδ = 6 was chosen. The initial configuration is shown in Fig.

4a where the squares have a size of 61×61, the rectangle of 61×122, and the whole

domain of 200 × 200 grid points.

Due to its convexity and interface curvature the bubble with non-preserved phase

volume shrinks and disappears. In Fig. 4d the final configuration of a double bubble

is reached which consists of portions of three intersecting spheres. This configuration

was shown to be the minimal energy surface in R
2 (see Ref. 6) and R

3 (see Ref. 13).
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Fig. 3. Evolution of a system of three bubbles with preserved volume. The pictures represent the
shape at times 0.0, 0.0825, and 1.185 (a - c)

The curvature of the partition sphere follows the relation14

1

R
=

1

r2
− 1

r1
, (4.5)

with R denoting the radius of the intersection circular segment and r1 and r2 the

radii of the bubbles. We extracted radii r̃1, r̃2, and R̃ from the simulation data by

fitting circles to the φ = 0.5 contour lines, r̃1 being the radius of the greater bubble.

Replacing r1 and r2 in (4.5) by r̃1 and r̃2 we get an expected radius R̃′ for the

intersection circular. It turned out that the fraction R̃/r̃1 = 3.16 was a little bit

to small compared to the expected fraction R̃′/r̃1 = 3.31 but we remark that the

problem of fitting spheres with big radii is ill-conditioned.

Fig. 4. Evolution of a system of three bubbles, one of them with non-preserved volume (upper
right one at a). The pictures represent the shape at times 0.0, 0.105, 0.3075, and 1.50 (a - d)

Additionally, we compared the above used obstacle potential with the volume

correction method of Subsec. 3.2 for the smooth potential7

w(φ) =
∑

α<β

9φ2
αφ2

β

(
1 + 8

∑

δ 6=α,β

φδ

)
+

∑

α<β<δ

6φ2
αφ2

βφ2
δ .

Here, the initial configuration corresponds to the situation in Fig. 3a, the upper right

phase not being due to volume conservation. The bubble contours after simulation
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time t = 0.353 and 0.555 are depicted in Fig. 5. Only for intermediate states small

deviations in the shape can be seen, especially for the boundary of the vanishing

grain in chart on the left in Fig. 5. The resulting shapes on the right in Fig. 5 are

almost indistinguishable for both methods.

Fig. 5. Comparison of volume preservation methods for a smooth (black line) and non-smooth
potential (gray line). Starting with the configuration of Fig. 3a with only two bubbles due to

volume constraints, the results are shown at time t = 0.3525 (left) and 0.555 (right).

Concerning the computational efficiency, the iterative procedure has a slight

drawback to the direct method for the smooth potential during the first time steps

which is associated with a strong rearrangement of phase volume (5 to 10 iterations

were necessary to achieve a tolerance ratio of 10−6). But this was compensated

during the long run, where often a single iteration step was sufficient.

4.3.3. Double bubbles in 3D

The simulations in 3D were started with two adjoining bubbles with cuboid geom-

etry on a domain of 150× 75× 75 grid points and were terminated after reaching a

stationary shape. The final configurations for three different bubble volume ratios

of 1.0, 0.484 and 0.252 (a - c, from left to right) and intersection profiles are shown

in Fig. 6.

The evolution of a more exotic double bubble is shown in Fig. 7, a - c. The

grid size is 70 × 90 × 90. The disk shaped first phase has a radius of 60 grid points

and width of 16 grid points. The second phase, wrapped around the disk like a tire

around a wheel rim, has also a width of 16 grid points and a thickness of 7 grid

points. The simulation results in a stationary torus/dumbbell configuration (chart

c). The volume relation of the torus/dumbbell bubbles is 0.54. After choosing a

greater fraction (e.g. 0.91) by thickening the second phase the torus bubble merges

to a simply connected shape cutting the dumbbell into two parts.

We studied the stability of the torus/dumbbell. The simulation was restarted

using the configuration of Fig. 7 c as initial state. A small amount of Gaussian

distributed noise in the diffuse interface region of each phase field parameter was
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Fig. 6. Three different double bubble configurations with intersection profiles through the symme-

try axis.

Fig. 7. Evolution of the torus-dumbbell configuration.

added to perturb the system. This resulted always in a thinning of the toroidal ring

at one point and a swelling at the diametrical opposed side (see Fig. 8) until the

ring tore apart and formed a simple double bubble as in Fig. 6. The torus was in

no case found to be stripped off the dumbbell in direction of the symmetry axis,

as one might intuitively assume. We remark that in such situations the phase field

approach is advantageous compared to sharp interface methods (e.g., cf. Ref. 2)
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since topological changes of the phase arrangement are captured in a natural way.

Fig. 8. Effect of perturbation with interfacial noise for the torus/dumbbell system of Fig. 7 c. A
snapshot after deformation and tearing of the torus is shown.

4.4. Tessellations

An intuitive application of volume preservation in the phase-field framework is the

study of tessellations. A tessellation is a periodic arrangement (a periodic tiling) of

polygons in 2D or polyhedra in 3D which fill the plane (or space) completely. Our

goal is to obtain tessellations by solving the following

Tessellation Problem: Given a rectangular or cuboidal period-

icity cell in 2D or 3D, respectively, find a partition into a fixed

number of sub-domains with given area/volume such that the sur-

face energy of the type (1.1) is minimal.

The idea is to define an initial space partitioning and to let the system relax

to an energetically favorable state. Contrary to the bubble simulations discussed

before, no additional surrounding ’matrix’ phase is present to embed the geometrical

objects. It is necessary to state that the dimensions of the periodic simulation

domain influence the resulting structure. The simulation parameters of Subsec. 4.1

were used except a higher interface width by setting ε = 0.1.

4.4.1. Tessellations in 2D

On a domain of 200 × 200 grid points 4 phases were initially filled in adjacent

sectors of equal area (see Fig. 9a). Keeping the periodicity at the borders in mind,

4 different quadruple points initially exist in the simulation domain, one in the

center, one at the edges and two at the horizontal and vertical boundaries.

The quadruple points are unstable versus splitting in two triple points. To in-

duce this splitting a perturbation was necessary which was realized in two different
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ways. First, a small amount of Gaussian distributed noise was added to the dif-

fuse interface profile for each interface. The noise amplitude for this simulation and

the following was chosen small enough not to increase the numerically determined

surface energy significantly. Fig. 9 shows the temporal evolution for one simulation

run, where a tiling of hexagons with 120◦ inner angle occurs (chart c). Due to the

fixed square dimension of the domain, it is elongated vertically by a factor of 2/
√

3

in comparison to the ideal hexagonal tiling.

Fig. 9. 2D tiling of a square domain with 4 cells of equal area. The triple point separation is
initiated by a small amount of noise on all diffuse interfaces. Contour line plots are given for
simulation times 0.0, 0.0825, and 1.185 (a - c)

As a second method the perturbation of the quadruple points was realized by

initially filling neighbored grid points in different quadrants with the same phase-

field parameter. In this way the direction of the quadruple point splitting is fixed

in advance. All combinations of directions in agreement with the periodicity were

tested, leading to the four different tessellations depicted in Fig. 10. The left col-

umn indicates the enforced initial splitting directions. The temporal evolution of

the surface energy for these four cases is given in Fig. 11. Scaling the energy of

the hexagonal tiling in Fig. 10a to unity, the value for the surface energies of the

configurations b - d were calculated to 1.028, 1.039, and 1.066.

The minimum energy configuration (chart a) is the same hexagonal structure as

found after perturbing the interface with noise (see Fig. 9), and we conjecture that

this is the solution to the above stated tessellation problem. The configuration with

second lowest value is a combination of two regular pentagons with curved sides

and two heptagons (adjoining in the center of chart b) with two sides only minor

developed. This geometry resembles the Cairo pentagonal tiling consisting of 4

identical irregular pentagons. Giving to all quadruple points the identical splitting

direction the distorted hexagonal structure in Fig. 10c establishes. The highest

energy configuration is a combination of square-like objects in chart d, with convex

and concave sides (the concave objects are in fact degenerated octagons). As in

the case b the curved polygonal sides arise to establish the 120◦ angles according
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Fig. 10. The morphologies found in the 2D tessellation of a square domain with 4 cells, ordered with

increasing surface energy from a - d: hexagon, pentagon/heptagon, distorted hexagon, and con-
cave/convex squares. The quadruple points were perturbed on a grid cell scale with the initialized
phase interface orientation marked as bold lines.

to the force balance condition (2.3). Due to the larger interface width used in the

simulations, this configurations was only temporarily stable and switched after some

time to the pentagon/heptagon configuration (cp. Fig. 11, dotted line).

4.4.2. Tessellation in 3D

For the simulations in 3D a computational domain of 100 × 100 × 100 grid points

was chosen. First, four squares in the form of tetragonal prisms were initiated with

equal volumes. As expected an arrangement of hexagonal prisms establishes, with
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Fig. 11. Plot of the surface energy vs. time for the four tiling simulations from Fig. 10 a - d.

a cross sectional view as in the 2D case (Fig. 9c).

Second, the simulation domain was divided into 8 equal cubes and initiated with

different phase-field parameters. The relaxation into the minimum energy configu-

ration is shown in Fig. 12 at different time steps. Here, only the lower four grains

are shown to allow for a better insight into the structure.

Fig. 12. Transformation of the initial checkerboard tiling into a pattern based on truncated octa-

hedra as shown in Fig. 13. Only the lower 4 grains are shown.

A solution to the problem of partitioning the 3D space into equal volumes with

minimum energy was proposed 1878 by Lord Kelvin18 (we remark that a structure

with less symmetry but with 0.3 % lower surface energy was found by D. Weaire

and Phelon20). The building block is Kelvin’s famous tetrakaidecahedron, a poly-

hedron with 14 sides. The tetrakaidecahedron results from a Voronoi partitioning
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Fig. 13. Building block of the 3D cuboid tiling: A octahedron truncated at the edges in two different

portions, revealing 2 small, 4 large square and 8 distorted hexagonal faces.

of the bcc crystal lattice and can be constructed by cutting the edges of an octa-

hedron at a distance of 1
6

√
2 l, with l being the edge length of the octahedron. The

hexagonal sides are not planar but slighly curved. In our simulation, a differently

truncated octahedron emerges as a result (Fig. 13) with two larger square faces

along one octahedral direction and four smaller faces in the perpendicular direc-

tions. The hexagonal faces are elongated but centrosymmetric. We conjecture that

this form is the solution of the following problem. Partition the flat 3-torus into

eight equal volumes with minimal interfacial area. The upper half of this cell (Fig.

13) strongly resembles the solution found for the minimum surface problem in a

bee’s honeycomb19: two arrays of ideal hexagonal faces on both sides of the honey-

comb are opposed, and the problem consists in finding a minimal contact surface.

In the bee’s honeycomb the prisms are capped by three rhombi, whereas a better

solution found by Fejes Tóth19 is a combination of centrosymmetric hexagons and

small rhombi, derived from a truncated octahedron.

To reproduce this problem, a 3D simulation domain of 100 × 100 × 116 was

chosen in order to make it possible that regular hexagons form on the faces. The

periodic boundary conditions on two sides normal to the developing honeycomb

were exchanged by Neumann boundary conditions. All other simulation parameters

including the initial configuration were kept unchanged. In Fig. 14 (left) a top-

view of the resulting interface structure is given, where again only the lower cells

are shown. A single cell, depicted in Fig. 14 (right), clearly resembles the Tóth

solution. Only a small rhombic distortion of the small squared faces is observed

here. Some of the elongated hexagonal faces in the contact surface were examined

geometrically and show a ratio of the long perimeter vs. the (perpendicular) height

of 1.48 (Tóth solution: 1.5).

4.5. Anisotropy in the surface energy: Platonic solids

As a final application with a relation to grain growth the effect of an anisotropic

surface energy was studied. Here, a faceted surface energy density was set as

a(φ,∇φ) = (max1≤k≤n {(φα∇φβ − φβ∇φα) · ~ηk })2 which results in crystalline
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Fig. 14. Left: top view of the lower four cells of the 3D honeycomb structure using a numerical
grid of laterally 116 × 100 points and vertically 100. Right: a single cell showing two elongated
hexagonal and two small square faces.

shapes with flat faces and n edges in direction of the vectors ηk. As an example, we

chose the edge vectors ηk to be the corners of the tetrahedron, the hexahedron, the

octahedron, the dodecahedron, and the icosahedron, and studied the shape evolu-

tion of a spheroidal crystal into each that platonic bodies. In the simulation domain

of 100 × 100 × 100 grid cells an initially spherical grain was set with a radius of 30

cells. The volumes of both phases, the grain and the matrix phase, were preserved

and the simulations carried out until no more change in the surface energy was

recognizable.

In Fig. 16 the final shapes of all edge vector configurations are depicted after

12000 time steps. The transition time of the sphere into the final polygons decreases

with increasing number of edges: for the solids a - e respectively 3000, 2750, 2000,

500, and 500 time steps were necessary to reach the final energy within 1 % of its

final value. The edges along the regular polygons of their surface (triangles, squares,

or pentagons) then exhibit a curvature whose radius scales with the diffuse interface

width ε.

Appendix A. Derivation of the motion laws

In this appendix we briefly sketch how the motion laws (2.1) and the conditions

(2.3) and (2.4) are obtained from an appropriate gradient flow of the energy (1.1)

taking the constraints (1.2) into account.

An admissible configuration is a subdivision SΩ := {Ω1, . . . ,ΩM} of Ω into sub-

domains with the properties as described at the beginning of Subsec. 2.1.1. The

manifold of such admissible configurations is denoted by N . Variations are based

on deformations of the domain Ω. We define the tangential space on N in some

element SΩ to consist of objects w = {wαβ : Γαβ → R}α<β where wαβ is the

deformation of Γαβ in normal direction ναβ . We set wαβ := −wβα if α > β for
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Fig. 15. Evolution of a sphere at specified simulation time into a dodecahedron. A faceted
anisotropic surface energy density was used.

Fig. 16. Platonic solids as final configurations in the simulations with faceted anisotropic surface
energy, a - e: tetrahedron, hexahedron, octahedron, icosahedron and dodecahedron.

simplifying the presentation. To avoid splitting of the sets Tαβδ the wαβ have to

fulfill the following conditions. If wαβδ is the deformation of a point belonging to

Tαβδ then

wαβδ · ναβ = wαβ , wαβδ · νβδ = wβδ, wαβδ · νδα = wδα.

For two deformations w = {wαβ}α<β and u = {uαβ}α<β we define the product

(u,w) :=
∑

α<β

∫

Γαβ

mαβuαβwαβ dHd−1

with positive weights mαβ which will become the kinetic coefficients in (2.1). Let

us write the constraints (1.2) in the form

Cα(SΩ) := |Ωα| − Mα = 0, α = 1, . . . , A,
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and let µ1, . . . , µA be Lagrange multipliers for those conditions.

Given an admissible configuration SΩ, its evolution ∂tSΩ is an element of the

tangential space TSΩ
N on N in SΩ, and it is defined by a gradient flow of the

energy FSI(SΩ) subject to the conditions Cα(SΩ) = 0, α = 1, . . . , A:

(∂tSΩ, w) := −
〈δFSI

δSΩ
(SΩ), w

〉

−
A∑

α=1

µα

〈 δC
δSΩ

(SΩ), w
〉

(A.1)

has to hold for every w ∈ TSΩ
N .

The computation of the variation of FSI(SΩ) in direction w is analogous to the

computation of its time derivative in the proof of Lemma 2.2. We obtain (compare

with (2.7) and (2.8))

〈δFSI

δSΩ
(SΩ), w

〉

=
∑

α<β

∫

Γαβ

(
∇s · Dγαβ

)
wαβdHd−1

+
∑

α<β

∫

∂Γαβ

(

γαβταβ −
(
Dγαβ · ταβ

)
ναβ

)

· w∂Γαβ
dHd−2.

The variation of Cα in direction w is given by (compare with (2.5), this is the change

in volume when deforming the interfaces Γαβ of Ωα by wαβ in direction ναβ)

〈 δC
δSΩ

(SΩ), w
〉

=
M∑

β=1

∫

Γαβ

wαβ .

Altogether, writing ∂tSΩ = {vαβ} the definition (A.1) becomes
∑

α<β

∫

Γαβ

mαβvαβwαβdHd−1

=
∑

α<β

∫

Γαβ

(
∇s · Dγαβ

)
wαβdHd−1 −

A∑

α=1

M∑

β=1

∫

Γαβ

µαwαβdHd−1

+
∑

α<β

∫

∂Γαβ

(

γαβταβ −
(
Dγαβ · ταβ

)
ναβ

)

· w∂Γαβ
dHd−2. (A.2)

Let us first look at the last line. In points belonging to a set Γαβ,ext the de-

formation w∂Γαβ
can be any vector tangential to ∂Ω. After rotating the vector

γαβταβ −
(
Dγαβ · ταβ

)
ναβ by 90 degree in the plane spanned by ταβ and ναβ we

obtain (2.4) as a necessary condition. Having this established the last line becomes
∑

α<β<δ

∫

Tαβδ

( ∑

(i,k)∈Aαβδ

−(Dγik(νik) · τ ik)νik + γik(νik)τ ik

)

· wαβδdHd−2

which yields the force balance (2.3). With the convention (2.2) a short computation

shows that

−
A∑

α=1

M∑

β=1

∫

Γαβ

µαwαβ =
∑

α<β

∫

Γαβ

(µβ − µα)wαβ .

Thus, (A.2) finally yields the motion law (2.1).
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13. M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof of the double bubble conjecture,

Electronic Research Announcements of the Amer. Math. Soc. 6 (2000) 45–49.
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