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Abstract

Biomembranes consisting of multiple lipids may involve phase separation phenomena leading to coex-
isting domains of different lipid compositions. The modelling of such biomembranes involves an elastic
or bending energy together with a line energy associated with the phase interfaces. This leads to a
free boundary problem for the phase interface on the unknown equilibrium surface which minimizes
an energy functional subject to volume and area constraints. In this paper we propose a new com-
putational tool for computing equilibria based on an L2 relaxation flow for the total energy in which
the line energy is approximated by a surface Ginzburg-Landau phase field functional. The relaxation
dynamics couple a nonlinear fourth order geometric evolution equation of Willmore flow type for the
membrane with a surface Allen-Cahn equation describing the lateral decomposition. A novel system
is derived involving second order elliptic operators and in which the field variables are the positions
of material points of the surface, the mean curvature vector and the surface phase field function.
The resulting variational formulations use H1 spaces. We use triangulated surfaces and the surface
finite element method with H1 conforming surface finite elements. Quadratic surface finite elements
are employed together with a semi-implicit time discretisation of the evolution equations yielding an
iterative scheme for computing stationary solutions using linear solvers. Numerical experiments are
presented which exhibit convergence and the power of this new method for two component geometric
biomembranes by computing equilibria such as dumbbells, discocytes and starfish with lateral phase
separation.

Key words: lipid bilayer, multi-component membrane, phase field method, relaxation dynamics,
numerical simulation, surface finite element method
PACS: 87.16.dt, 87.10.Kn, 64.60.Cn

1. Introduction

Lipid bilayer membranes, in the following called biomembranes, are ubiquitous in living organisms
as they form the boundaries of cells and cell organelles, but also are of interest in the pharmaceutical
industry which intends to use vesicles for drug transport. The mechanics of the biomembranes are
important in understanding cell shapes and their transitions from one configuration to another [32].
Established models of lipid bilayer membranes treat them as deformable inextensible fluid surfaces
of infinitesimal thickness unable to sustain shear stress. This leads to postulating bending energy
functionals with the membrane strain energy depending on the curvature of the surface. Biomembranes
exhibit an interesting variety of shape transitions, i.e. the formation of buds, pearling and vesicle
fission. Such phenomena have recently been observed in multi-component giant unilamellar vesicles
(GUVs) involving a separation into two phases [3, 4].
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In this paper we consider the membrane energy

F(Γ, c) := FW (Γ) + FGL(Γ, c) + FM (Γ)

=
∫

Γ

kH
2
|H|2 +

∫
Γ

σ
(ε

2
|∇Γc|2 +

1
ε
W (c)

)
+
kHα

8
(
m−m0

)2
. (1.1)

where the membrane is modelled as a closed hypersurface Γ in R3 enclosing a bounded region Ω. The
mean curvature of the membrane is denoted by H (sum of the principal curvatures, hence twice the
mean curvature in the notation of other articles). The three energy contributions are:

• Bending energy

A classical model for the elastic bending energy of a single phase membrane is the Canham-
Helfrich-Evans energy functional [9, 20, 25] which in its simplest form reads

FCEH(Γ) := FW (Γ) + FK(Γ) :=
∫

Γ

kH
2
H2 +

∫
Γ

kGK (1.2)

Here K is the Gaussian curvature. The positive real numbers kH (bending rigidity) and kG
(Gaussian bending rigidity) are material dependent elasticity parameters. For constant kH = 1,
FW is the Willmore energy [36] used in differential geometry. For simplicity we assume that
the bending rigidities are the same in the two phases. By the Gauss-Bonnet theorem the last
term is a topological invariant. Since we will confine our study to simply closed vesicles we will
neglect this energy contribution.

• Line energy

Line tension is also observed at the phase interface leading to the following energy functional
for a two component membrane [27, 28]:

2∑
i=1

FW (Γi) + Fγ(Γ) =
2∑
i=1

(∫
Γi

kH
2
H2
)

+
∫
γ

σ̄ (1.3)

where the membrane is composed of two smooth surfaces Γi with a common boundary γ. Then
σ̄ denotes the energy density of the excess free energy of the phase transition located on γ. It is
commonly assumed that the lipid bilayer structure of the membrane remains intact across the
phase interface so that the whole surface Γ = Γ1∪γ∪Γ2 is at least of the class C1. As previously
proposed in [1, 33, 35, 29] the line energy

∫
Γ
σ̄ is replaced by a Ginzburg-Landau free energy for

this purpose which is of the form

FGL(Γ, c) :=
∫

Γ

σ
(ε

2
|∇Γc|2 +

1
ε
W (c)

)
(1.4)

where c is a phase field function (order parameter) to distinguish the two phases, ∇Γ stands for
the surface gradient, W is a double-well potential and ε a small length scale. The coefficient σ is
proportional to the line energy density σ̄ with a coefficient that depends on w. This double-well
potential has two minima in the points c = ±1 so that c ≈ 1 and c ≈ −1 in the two phases,
whilst the phase interface γ is replaced by a thin layer of a thickness scaling with ε across which
c changes its value smoothly but quickly. For definiteness we take

W (c) =
1
2

(1− c2)2

which is the classical quartic double-well potential. The relation between line energy density
and the coefficient in the Ginzburg-Landau energy is then given by, [19],

σ̄ =
4
3
σ (1.5)
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• Area and volume constraints

Contributions to the elastic energy by expansion or contraction, i.e., changing the density of
the lipids in the layers, but also by osmotic pressure may be several orders of magnitude larger
than the energy contribution by bending, and such contributions can be modelled with effective
constraints on the surface areas of the two phases and the volume of the enclosed domain (we
refer to [32], Sec.2.4.4 for the physically relevant regime). Within the phase field methodology,
the constraints on the areas of the two phases naturally are replaced by a constraint on the total
surface are |Γ| and on an integral involving the order parameter which in the simplest case reads∫

Γ
c.

• Bilayer area difference

If the lipid molecules are strongly suppressed from changing the side of the bilayer then also
the density difference between the bilayers is constant in equilibrium, a condition that can be
transformed into a condition on M :=

∫
Γ
H. A common approach is not to take this effect as a

hard constraint into account but as a soft one in form of a penalty term, i.e. an energy of the
form

FM (Γ) :=
kHα

8
(
m−m0

)2
, m :=

M

R̄
=

1
R̄

∫
Γ

H (1.6)

is added to the membrane energy where m0 is a given value and R̄ a characteristic length scale
(in fact R̄ =

√
|Γ|/4π is the radius of a sphere with the same surface area as Γ), and α is a

positive number. The factor αkH sometimes is called the non-local bending rigidity and the
model with the thus augmented energy is called area-difference-elasticity model (we refer to [32]
Sec. 2.5.6 for a classification of commonly used models). Typically α ≈ 1, yet we treat this
dimensionless parameter rather as an independent parameter and in some simulations set it to
zero, i.e. allowing the membrane to instantaneously exchange sufficient material between the
two bilayers such that there is not lipid density difference.

In this work we present an H1 conforming finite element method in order to approximate solutions
to an appropriate relaxation dynamics of the membrane energy and to compute equilibrium membrane
shapes. The equilibrium equations for critical points of the energy as well as the parabolic evolution
equations are highly nonlinear fourth order partial differential equations for the surface coupled to
partial differential equation on the surface for the phase field. In general these equations are impossible
to solve analytically but some insight can be gained in the case of axisymmetric geometries which lead
to ordinary differential equations, see [27, 28]. In order to tackle non axisymmetric configurations and
to consider further generalisations of the model it is necessary develop numerical discretisations.

The bending energy FW with constant kH is known as the Willmore energy in differential geometry
and minima of the functional are called Willmore surfaces, [36, 15]. Several computational methods
based on the use of surface finite elements on triangulated surfaces for approximating variational
formulations based on surface gradients have been proposed to approximate the L2 gradient flow
of curvature dependent bending energies with and without area and volume constraints, [30, 15, 2,
7]. Other previous computational work include approaches on minimising discrete versions of the
membrane energy as in [26] and [6], the shape parametrisation method in [5], the phase field approach
[12, 13], and a finite element method with C1 elements [21, 29]. We refer to [10] for a survey of
numerical methods for geometric evolution equations. The novelty of our approach is the use of a
phase field equation on a triangulated surface used to approximate the line energy arising in two
component biomembranes.

We observe the following about our method and the contributions of this paper:-

• Avoidance of parameterisations: Our approach is intrinsic and does not require explicit formulae
for parameterisations. It relies on the well known formula

∆Γx = Hν (1.7)
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where ∆Γ is the Laplace-Beltrami operator, ν the unit normal to the surface, and x : Γ → Γ
the identity map.

• Variational formulation We derive a new variational formulation and gradient flow dynamics for
the surface energy (1.1) and end up with a geometric evolution equation for the membrane surface
coupled to partial differential equation on the moving surface describing the phase separation
similar to that of [18] where a curvature flow with forcing term for a surface is coupled to a
surface Cahn-Hilliard equation.

• Mixed method and avoidance of C1 elements: The second order operator splitting of the fourth
order partial differential equations for the membrane motion may be viewed as a mixed formu-
lation. It allows the use of H1 conforming and C0 finite elements, and we can avoid C1 finite
elements as employed in [29].

• Quadratic finite elements: Although linear isoparametric surface finite elements would be suffi-
cient we have used quadratic surface elements since approximating curvature and related geo-
metric quantities is possible in better spaces, [23, 24, 11]. Approximating a smooth surface by
parametric quadratic finite elements based on a polyhedral surface the (1.7) gives an approxi-
mation in L2 of the mean curvature [24]. It is also our experience that the meshes associated
with the quadratic finite elements maintained good regularity during the evolution.

• Phase field approximation of line energy: Using a phase field approximation of the line energy
results in the motion of diffuse interfaces during the relaxation dynamics governed by an Allen-
Cahn equation on the moving membrane surface. To solve such a problem on a triangulated
surface we employ the computational methods developed in [16, 17].

• Iteration by semi-implicit time stepping: Local minimiser of the energy are found by relaxing
appropriate initial shapes to energetically favourable states. New iterates for the surface position
x, the mean curvature vector H, and the order parameter c are computed in each relaxation
step as the solution to linear systems. The method combines techniques of [15] and [16].

• Hard Constraints and Newton iteration: The constraints on area, enclosed volume, and the order
parameter integral are effectively ensured by performing Newton iterations in every relaxation
step.

• Convergence: We document numerical experiments which indicate convergence of the numerical
scheme with respect to the mesh size and the phase field interfacial thickness ε.

• Quantitative Results: We compare the energies of relaxed axisymmetric membrane shapes with
data from [28]. But the proposed method can also be used to explore the phase diagram of
non-axisymmetric two-phase membranes. In this context we report on some simulations with
discocytes involving a lateral phase-separation.

The paper is organised as follows. In the following section we fix some notation and introduce
concepts from differential geometry appropriate for our needs. Then in the third section we present the
equilibrium equations satisfied by critical points of the energy functional (1.3) including the constraints
and their approximation by the diffuse interface model based on (1.1). Further, we formulate a
relaxation dynamics via a gradient flow. In section four the surface finite elements are introduced
and the governing equations are discretised. We also present the solution algorithm for the emerging
discrete problem. Finally, in section five we describe the results of significant numerical experiments
that demonstrate the effectivity of the proposed method.

4



2. Preliminaries

2.1. Calculus on evolving surfaces
To represent membranes we consider smooth oriented two-dimensional hypersurfaces Γ ⊂ R3 which

have non-empty smooth boundaries ∂Γ and which can be parameterised by maps y : M → Γ over
two-dimensional reference manifolds M. To fix the orientation let ν denote the a unit normal field
on Γ. Further, let µ denote the outer co-normal of Γ on ∂Γ.

To discuss the surface gradient we may consider a fixed surface Γ. For any function η defined on a
neighbourhood of Γ we define its tangential gradient on Γ by

∇Γη := ∇η −∇η · ν ν

where · denotes the standard scalar product and ∇η denotes the usual gradient on R3. The tangential
gradient ∇Γη only depends on the values of η restricted to Γ, and ∇Γη · ν = 0. The components
of the tangential gradient will be denoted by ∇Γη = (Diη)3

i=1. If w : Γ → R3 is a smooth vector
field then ∇Γw is the matrix with components (∇Γw)ij = Djwi, and we write (∇Γw)⊥ = (Diwj)i,j
for its transpose and use the scalar product ∇Γw : ∇Γz =

∑
i,j DjwiDjzi. We will furthermore

use the notation w ⊗ z for the matrix with entries wizj . The surface divergence is defined by ∇Γ ·
w = tr(∇Γw). The Laplace-Beltrami operator on Γ(t) is defined as the tangential divergence of the
tangential gradient, ∆Γη = ∇Γ · ∇Γη.

At a point x ∈ Γ we define the matrix P (x) := I − ν(x) ⊗ ν(x) ∈ R3×3 where I is the identity
matrix. Any vector y ∈ R3 is projected by P to the tangential space TxΓ. With the help of P we
can write

∇Γη = P∇η, ∇Γw = ∇wP , ∇Γ ·w = P : ∇Γw. (2.1)

Let IΓ : Γ → Γ, IΓ(x) = x for all x ∈ Γ, denote the identity map on surface Γ. Throughout this
paper we will usually simply write x for the identity map on (the actual surface) Γ:

Notation: x = IΓ.

After extending IΓ to N , the identities ∇IΓ = ∇x = I and (2.1) yield that ∇Γx = ∇xP = P =
I − ν ⊗ ν.

The mean curvature of Γ with respect to ν is defined by

H = −∇Γ · ν. (2.2)

Observe that the orientation is such that if Γ is the boundary of a ball of radius R and ν its external
unit normal then its mean curvature is H = − 2

R . Note that H is the sum of the principle curvatures
rather than the arithmetic mean and hence differs from the common definition by a factor 2. We
remark that the mean curvature vector H = Hν is invariant with respect to the orientation of ν, and
the identity (1.7) follows from

∆Γx = ∇Γ · ∇Γx = ∇Γ · P = −∇Γ · ν ν = Hν.

As observed by Dziuk, [14, 15], the following variational identity is useful in defining numerical schemes
and in the variational calculus:

Definition 2.1. Variational curvature equation For a smooth closed surface Γ with mean curva-
ture H the following weak equation holds for the identity map∫

Γ

H · z +∇Γx : ∇Γz = 0 (2.3)

for each test vector field z : Γ→ R3.
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For each surface Γ(·), the symmetric matrix ∇Γν of the tangential derivatives of the normal field is
known as the Weingarten map or shape operator. It satisfies |∇Γν|2 = H2

1 + H2
2 = H2 − 2K where

Hi are the principle curvatures, H = H1 +H2 and K = H1H2 is the Gaussian curvature.
There is a formula for partial integration:∫

Γ

∇Γη = −
∫

Γ

ηHν +
∫
∂Γ

ηµ. (2.4)

Let us write γ for a smooth curve on Γ or the boundary of Γ and let τ γ denote the unit tangential
field along γ such that (τ γ ,µ,ν) constitutes a positively oriented orthonormal basis in every point on
γ. The notation ∇γf stands for the derivative of a field f : γ → R along γ: Using a parametrisation
r(s) for curve γ we have that

∇γf =
1

|∂sr(s)|
∂s(f ◦ r)(s) τ γ .

The curvature vector of γ is denoted by h and fulfils

h =
1

|∂sr(s)|
∂s

( ∂sr(s)
|∂sr(s)|

)
. (2.5)

It is normal to the curve whence we may write

h = hgµ+ hνν.

The quantity hg = h ·µ is the geodesic curvature of γ and hν = h ·ν is usually called normal curvature
(with respect to Γ).

2.2. The material derivative and transport formulae
Relaxing an initial surface by deforming it leads to the notion of an evolving surface {Γ(t)}t de-

pending smoothly on the time t ∈ I := [0,∞), i.e., the parametrisations y(·, t) : M → Γ(t) depend
smoothly on t. We define the velocity of Γ(t) in a point y(p, t) with p ∈M by

v(·, t) : Γ(t)→ R3, v(y(p, t), t) :=
d

dt
y(p, t).

Interpreting y(p, t) as a mass point the velocity vector field may be understood as the material velocity.
In general, one can decompose the velocity into the form v = vνν+vτ with a scalar normal component
vν := v · ν and a tangential vector field vτ := v − vνν.

We will usually omit the dependence of fields and surfaces on t since it is clear from the context
whether we deal with the evolving surface or a surface at a specific time. In particular, we just write
∇Γ for ∇Γ(t) whence this operator contains only spatial derivatives but no time derivatives.

By ∂•t we denote the material derivative of a scalar function η = η(x, t) defined on an open set
around the moving surface, ∂•t η = ∂η

∂t + v · ∇η. Recalling the parameterisations y(t) we note that

∂•t η(y(t), t) =
d

dt
η(y(·), ·)

∣∣
t

= ∂tη(y(t), t) + v(y(t), t) · ∇η(y(t), t). (2.6)

from which we see that the material derivative depends only on the values of η on the surface Γ(t).
Occasionally we will also use the normal time derivative where only the normal portion of the velocity
is taken into account:

∂◦t η(y(t), t) = ∂tη(y(t), t) + vν(y(t), t)
∂η

∂ν
(y(t), t). (2.7)

In the problem that we will consider later on the velocity field is purely normal, and in this case
material derivative and normal time derivative coincide. In the general case, a consequence of the
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splitting of v into a normal and a tangential part is the relation ∂•t η = ∂◦t η+vτ ·∇Γη. It is convenient
to note that with (2.2) we obtain

∇Γ · v = ∇Γ · (vνν) +∇Γ · vτ = vν∇Γ · ν +∇Γ · vτ = −vνH +∇Γ · vτ . (2.8)

The following formulae for the differentiation of a parameter dependent surface integral will play a
decisive role.

Lemma 2.2 (Transport Formulae). Let {Γ(t)}t∈I be an evolving surface and η, ψ be smooth scalar
fields on Γ such that all the following integrals exist. Then

d

dt

∫
Γ

η =
∫

Γ

(∂•t η + η∇Γ · v) . (2.9)

Further, with the rate of deformation tensor D(v)ij = 1
2

(
Divj +Djvi

)
(i, j = 1, . . . , n),

d

dt

∫
Γ

∇Γη · ∇Γψ =
∫

Γ

∇Γψ · ∇Γ∂
•
t η +

∫
Γ

∇Γ∂
•
t ψ · ∇Γη +

∫
Γ

∇Γη · (∇Γ · vI − 2D(v))∇Γψ. (2.10)

A proof of this Lemma is given in [16].
Later on we will apply (2.10) with η and ψ replaced the components of the vector field x and

another vector field z respectively. Then we will also apply the following identity which is derived
using that P = ∇Γx is symmetric and (2.1):

∇Γxi · 2D(v)∇Γzi = DjxiDjvkDkzi +DjxiDkvjDkzi

= DkziDjvkDixj +DixjDkziDkvj

= ((∇Γz)⊥)ki(∇Γv∇Γx)ki + (∇Γx∇Γz)jk(∇Γv)jk
= (∇Γz)⊥ : ∇Γv + P∇Γz : ∇Γv. (2.11)

Further useful formulae for time derivatives of the unit normal are

∂◦t ν = −∇Γ(v · ν) = −∇Γvν , ∂•t ν = −(∇Γv)⊥ν. (2.12)

3. Mathematical models for two phase biomembranes

3.1. Phase-field surfaces and constraint functionals
Definition 3.1. Admissible phase-field surface An admissible phase-field surface (Γ, c) for the
membrane energy (1.1) is the smooth boundary Γ of a bounded, simply connected open set Ω ⊂ R3

together with a smooth field c : Γ→ R which is called an order parameter or phase-field variable.

As specified in the introduction we are interested in critical points (Γ, c) of F(·, ·) defined by (1.1)
subject to side conditions concerning the areas of the two phases and the volume of the enclosed
domain. Let us denote the target value for the enclosed volume |Ω| by V and the target values for
the areas of the two membrane domains |Γi| by Ai, i = 1, 2. The fact that the sphere minimizes the
area enclosing a given volume leads to the natural requirement on the data {V,A1, A2} that

|Γ| = A1 +A2 ≥ 4π(3V/4)2/3 (3.1)

where the right hand side is the area of the sphere enclosing the volume V .
To take the area constraints into account in the phase-field model we consider the function

h(c) =


1 if 1 ≤ c,
1
2c(3− c

2) if − 1 < c < 1,
−1 if c ≤ −1,
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and impose a constraint on
∫

Γ
h(c) and on |Γ|. In fact, in the limit as ε → 0 one expects that∫

Γ
h(c)→ |Γ1|−|Γ2|. Recalling that we want to preserve the areas of Γ1 and Γ2 in this limit motivates

to preserve
∫

Γ
h(c) and |Γ| = |Γ1|+ |Γ2| instead. We remark that this approach has been successfully

applied previously in the context of Allen-Cahn systems on flat domains, cf. [22]. Denoting by Ai > 0
the prescribed surface areas of Γi, i = 1, 2 the constraint on the total area and on the phase area
difference read

CA(Γ, c) = 0, (3.2)
Cc(Γ, c) = 0 (3.3)

in terms of the functionals

CA(Γ) := |Γ| − (A1 +A2), Cc(Γ, c) :=
∫

Γ

h(c)− (A1 −A2).

The constraint Cc will be called mass constraint in the following with the notion behind that
∫

Γ
h(c)

could correspond to some kind of mass.
Let V > 0 be the prescribed enclosed volume. Defining the functional

CV (Γ, c) := |Ω| − V =
1
3

∫
Γ

x · ν − V

the volume constraint reads
CV (Γ, c) = 0. (3.4)

3.2. Variations of surface functionals
In this subsection we consider smooth hypersurfaces Γ which are the boundary of a simply connected

open set Ω ⊂ R3. Given a smooth field w : Γ→ R3 there is a τ0 such that the sets

Γ(τ) := {x(τ) := x+ τw(x),x ∈ Γ}

have the same property for all τ ∈ (−τ0, τ0).

Definition 3.2. Variation of surface functionals Let E = E(Γ) be a surface functional and w :
Γ→ R3 be a deformation field. The variation of E in Γ in direction w is defined by〈

DE(Γ),w
〉

:=
d

dτ
E(Γ(τ))

∣∣∣
τ=0

.

Before we consider the variations of the functionals involved in the membrane problem we state a
helpful result which dates back to an idea of [15]. The variational curvature identity (2.3) holds true
on deformed surfaces and may be differentiated with respect to τ in τ = 0. This will turn out to be
useful when computing the variation of the (local and non-local) membrane energies.

Lemma 3.3. Derivative of the variational curvature equation, [15] Let {z(τ) : Γ(τ)→ R3}τ
be such that ∂•τz|τ=0 = 0. Then

0 =
d

dτ

(∫
Γ(·)

H(·) · z(·) +∇Γ(·)x(·) : ∇Γ(·)z(·)
)∣∣∣
τ=0

=
∫

Γ

∂•τH · z +H · z∇Γ ·w

+
∫

Γ

∇Γz : ∇Γw +∇Γ · z∇Γ ·w − (∇Γz)⊥ : ∇Γw − P∇Γz : ∇Γw. (3.5)
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Proof. For the second term of (2.3) we apply the Leibniz formula involving surface gradients (2.10)
together with the identities ∂•τx = w (the time t is replaced by τ and the deformation field w is the
velocity field) and ∇Γx : ∇Γz = ∇Γ · z and with (2.11):

d

dτ

∫
Γ(·)
∇Γ(·)x(·) : ∇Γ(·)z(·)

∣∣∣
τ=0

=
∫

Γ

∇Γz : ∇Γw +∇Γ · z∇Γ ·w − (∇Γz)⊥ : ∇Γw − P∇Γz : ∇Γw.

Applying (2.9) to the first term of (2.3) and using ∂•τz = 0 we end up with the identity (3.5).

Lemma 3.4. Variation of the Willmore functional, [15]〈
DFW (Γ),w

〉
=
∫

Γ
−kH

2 |H|
2∇Γ ·w − kH∇ΓH : ∇Γw − kH∇Γ ·H∇Γ ·w

+
∫

Γ
kH(∇ΓH)⊥ : ∇Γw + kHP∇ΓH : ∇Γw. (3.6)

Proof. Using (2.9) we see that

d

dτ
FW (Γ(·))

∣∣
τ=0

=
∫

Γ

kH∂
•
τH ·H +

kH
2
|H|2∇Γ ·w. (3.7)

We now employ Lemma 3.3 with a field z which for τ = 0 coincides with H and, as required, fulfills
∂•τz|τ=0 = 0. From (3.5) we obtain that∫

Γ

∂•τH ·H =
∫

Γ

(
− |H|2∇Γ ·w −∇ΓH : ∇Γw

)
+
∫

Γ

(
−∇Γ ·H∇Γ ·w + (∇ΓH)⊥ : ∇Γw + P∇ΓH : ∇Γw

)
.

Multiplying with kH and replacing the first term in (3.7) we deduce (3.6).

Remark 3.5. The formula for the variation of the bending energy FW usually reads

d

dτ
FW (Γ(·))

∣∣∣
τ=0

= kH

∫
Γ

(
∆ΓH + |∇Γν|2H −

1
2
H3
)
ν ·w, (3.8)

see e.g. [36] for a derivation. In particular, only deformations in normal direction have an impact
on the bending energy which is clear since purely tangential deformations do not change the surface.
With some lengthy calculations involving integrations by parts one can deduce this from (3.6). For the
numerics we will make use of the variational formulation (3.6) but (3.8) is useful for the asymptotic
analysis of the governing equations, [19].

Lemma 3.6. Variation of the non-local bending energy functional〈
DFM (Γ),w

〉
=
∫

Γ

kHα

8R̄
(m−m0)

(
|∇Γν|2 − |∇Γ · ν|2

)
ν ·w. (3.9)

Proof. In order to compute the variation of the non-local bending energy (1.6) we first observe that

d

dτ

∫
Γ(·)

H(·) · ν(·)
∣∣∣
τ=0

=
∫

Γ

∂•τH · ν +H · ∂•τν + H · ν︸ ︷︷ ︸
=H=−∇Γ·ν

∇Γ ·w︸ ︷︷ ︸
=∇Γ·ν w

(3.10)

where we used (2.9) again. For the first term we employ Lemma 3.3 with a field z which for τ = 0
coincides with ν. In the following calculation we use symmetry of the tangential tensor ∇Γν which,
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in particular, means that P∇Γν = P (∇Γν)T = (∇Γν)T = ∇Γν, and we further use that ∇Γw =
w∇Γν + ν ⊗∇Γw as well as (2.2).∫

Γ

∂•τH · ν =
∫

Γ

−H · ν︸ ︷︷ ︸
=−H

∇Γ ·w −∇Γν : ∇Γw−∇Γ · ν︸ ︷︷ ︸
=+H

∇Γ ·w + (∇Γν)T : ∇Γw + P∇Γν : ∇Γw

=
∫

Γ

∇Γν :
(
w∇Γν + ν ⊗∇Γw

)
=
∫

Γ

|∇Γν|2w.

Recalling the identity (2.12) we have

H · ∂•τν = −H · (∇Γw)Tν = −∇ΓwH · ν = 0

since H points in the normal direction, so the second term in (3.10) vanishes. Altogether this gives

d

dτ

∫
Γ(·)

H(·) · ν(·)
∣∣∣
τ=0

=
∫

Γ

|∇Γν|2w − |∇Γ · ν|2w =
∫

Γ

(
|∇Γν|2 − |∇Γ · ν|2

)
ν ·w.

From this and since

d

dτ
FM (Γ(·))

∣∣∣
τ=0

=
kHα

8R̄
(m−m0)

d

dτ

∫
Γ(·)

H(·) · ν(·)
∣∣∣
τ=0

we conclude that (3.9) is true.

That the variation of the enclosed volume is the external unit normal and that the variation of the
surface area is the minus the mean curvature vector are well known facts.

Lemma 3.7. Variation of the area and volume functionals〈
DCV (Γ, c),w

〉
=
∫

Γ

ν ·w, (3.11)〈
DCA(Γ, c),w

〉
= −

∫
Γ

H ·w (2.3)
=
∫

Γ

∇Γx : ∇Γw. (3.12)

3.3. Variations of phase-field surface functionals
Given an admissible phase-field surface, variations with respect to the surface are based on defor-

mations which we will restrict into normal direction. But when deforming we have to say how the
phase-field variable defined on the surface changes.

Definition 3.8. Admissible deformations of admissible phase-field surfaces Given an admis-
sible phase-field surface (Γ, c), a smooth normal vector field w = wν : Γ→ R3 and a smooth function
η : Γ → R, the deformed admissible phase-field surface (Γ(τ), c(τ)) in direction (w, η) for a small
τ ∈ R is defined by

Γ(τ) := {x(τ) := x+ τw(x)ν(x) |x ∈ Γ}, (3.13)
c(τ) : Γ(τ)→ R, c(τ,x(τ)) := c(x) + τη(x). (3.14)

Such a pair (w, η) is called admissible deformation field for an admissible phase-field surface.

By the regularity assumptions on admissible phase-field surfaces there is a small τ0 > 0 so that
(Γ(τ), c(τ)) is indeed is admissible for all τ ∈ (−τ0, τ0). In particular, for each point x(τ) on Γ(τ)
there is a unique point x ∈ Γ with x(τ) = x + τw(x)ν(x) so that c(τ) is well defined. Concerning
the derivative of c(τ) with respect to τ we observe that

d

dτ
c(·,x(·))

∣∣
τ=0

= ∂τ c(0,x(0))+∂τx(0) ·∇c(0,x(0)) = ∂τ c(0,x)+w(x)ν(x) ·∇c(x) = ∂◦τ c(·,x(·))|τ=0
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where we employed the notation of Section 2.2 with t replaced by the parameter τ . On the other
hand, from (3.14) we see that d

dτ c(·,x(·))|τ=0 = η(x), whence

∂•τ c(·,x(·))
∣∣
τ=0

= ∂◦τ c(·,x(·))
∣∣
τ=0

= η(x). (3.15)

In the case η = 0 this means that we extend the phase-field constantly in the normal direction away
from Γ in order to define it on the deformed surface Γ(τ).

Definition 3.9. Let E = E(Γ, c) be a functional defined on admissible phase-field surfaces, let (Γ, c)
be an admissible surface and let (w, η) be an admissible deformation field. The variation of E in (Γ, c)
in direction (w, η) is defined by〈

δE(Γ, c), (w, η)
〉

=
d

dτ
E
(
Γ(τ), c(τ)

)∣∣∣
τ=0

.

Remark 3.10. We will also be interested in variations of functionals that only depend on Γ but not
on c, namely FW , FM , CA, and CV . With a slight abuse of notation we will still write δFW etc. where
we mean 〈

δFW (Γ), (w, η)
〉

:=
〈
DFW (Γ), wν

〉
. (3.16)

Lemma 3.11. Variation of the Ginzburg-Landau energy functional For an admissible phase-
field surface (Γ, c) with admissible deformation field (w, η) we have that〈

δFGL(Γ, c), (w, η)
〉

=
∫

Γ

σ
(
ε∇Γc∇Γη + 1

εW
′(c)η

)
−
∫

Γ

σε∇Γc⊗∇Γc : ∇Γν w −
∫

Γ

σ
(
ε
2 |∇Γc|2 + 1

εW (c)
)
H · ν w, (3.17)

Proof. We use (2.10) for the term involving ∇Γc, (2.9) for the term with the double well potential,
(2.4) for partial integration (recall that Γ is closed whence no boundary term appears), (2.2) and
(3.15) to obtain (3.17):

d

dτ
FGL

(
Γ(·), c(·)

)∣∣∣
τ=0

=σ

∫
Γ

ε∇Γc · ∇Γ∂
•
t c− ε∇Γc⊗∇Γc : 2D(w) +

1
ε
W ′(c)∂•t c

+ σ

∫
Γ

(ε
2
|∇Γc|2 +

1
ε
W (c)

)
∇Γ ·w

=σ

∫
Γ

−ε∆Γc η +
1
ε
W ′(c)η − ε∇Γc⊗∇Γc : ∇Γν w

+ σ

∫
Γ

−
(ε

2
|∇Γc|2 +

1
ε
W (c)

)
Hw. (3.18)

Lemma 3.12. Variation of the mass constraint functional For an admissible phase-field surface
(Γ, c) with admissible deformation field (w, η) we have that〈

δCc(Γ, c), (w, η)
〉

=
∫

Γ

h′(c)η − h(c)Hw. (3.19)

Proof. We use (2.9), (3.15), and (2.2):〈
δCcA(Γ, c), (w, η)

〉
=

d

dτ

(∫
Γ(·)

h(c(·))
)∣∣∣
τ=0

=
∫

Γ

h′(c)∂•t c+ h(c)∇Γ · (wν)

=
∫

Γ

h′(c)η − h(c)Hw

which is the desired formula.
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3.4. Critical points
3.4.1. Diffuse interface model
Definition 3.13. Critical point, diffuse interface model An admissible phase-field surface (Γ, c)
is a critical point of the diffuse interface membrane energy (1.1) subject to constraints (3.2), (3.3),
and (3.4) if

0 =
(
δFW + δFGL + δFM + λV δCV + λAδCA + λcδCc

)
(Γ, c)

where λV , λA, and λc are appropriate Lagrange multipliers.

Using (3.8), (3.17), (3.9), (3.11), (3.12), and (3.19) and recalling (3.16) critical points have to fulfil

Problem 3.14. Diffuse interface equilibrium equations For given values V , A1, A2 fulfilling
(3.1) find an admissible phase-field surface (Γ, c) and Lagrange multipliers λV , λA, and λc such that

0 = kH
(
∆ΓH + |∇Γν|2H −

1
2
H3
)

− σε∇Γc⊗∇Γc : ∇Γν −
(σε

2
|∇Γc|2 +

σ

ε
W (c)

)
H

+
kHα

4R̄
(m−m0)

(
|∇Γν|2 −H2

)
+ λV −

(
λA + λch(c)

)
H, (3.20)

0 = εσ∆Γc−
σ

ε
W ′(c)− λch′(c), (3.21)

0 = |Ω| − V, 0 = |Γ| − (A1 +A2), 0 =
∫

Γ

h(c)− (A1 −A2). (3.22)

Below we will give some interpretation of these equations when comparing with the equilibrium
equations in the sharp interface limit which we are going to consider next.

3.4.2. Sharp interface model
Definition 3.15. Admissible two-phase surface For the membrane energy (1.3) Γ is an admissible
two-phase surface if it is the boundary of a simply connected open bounded domain Ω ⊂ R3 which
can be decomposed in the form Γ = Γ1 ∪ γ ∪ Γ2 where

• Γ1 and Γ2 are two-dimensional smooth oriented not necessarily connected hypersurfaces with
smooth boundaries that coincide and correspond to γ which consists of a finite number of smooth
curves,

∂Γ1 = ∂Γ2 = γ,

• locally around each point x ∈ γ the surface Γ can be parametrized by a C1 map.

For the admissible two-phase surface Γ = Γ1 ∪ γ ∪ Γ2 we denote by µ the outer co-normal of Γ2,
whence −µ is the outer co-normal of Γ1. Observe that Γ topologically is the sphere. We also use τ γ
for the unit tangential vector field along γ such that (τ γ ,µ,ν) is positively oriented.

The Euler-Lagrange equations of the membrane energy (1.3) can be derived by deforming the
surface Γ with a suitably regular vector field. The calculation is carried out in [19] for even more
general energies.

Problem 3.16. Sharp interface equilibrium equations For given data {V,A1, A2} fulfilling (3.1)
find an admissible two-phase membrane Γ = Γ1 ∪ γ ∪ Γ2 and find Lagrange multipliers λV , λA,1, and
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λA,2 such that

0 = kH
(
∆Γi

H(i) + |∇Γi
ν(i)|2H(i) − 1

2 (H(i))3
)

+ kHα
4R̄

(m−m0)
(
|∇Γi

ν(i)|2 − (H(i))2
)

+ λV − λA,iH on Γi, i = 1, 2, (3.23)

0 = kH
[
H
]1
2

on γ, (3.24)

0 = kH
[
∇ΓH

]1
2
· µ− σ̄hν on γ, (3.25)

0 = σ̄hg + (λA,1 − λA,2) on γ, (3.26)
0 = |Ω| − V, (3.27)
0 = |Γi| −Ai, i = 1, 2. (3.28)

Equation (3.23) can be considered as a force balance in points on the membrane where we emphasize
that forces arising from the bending energy and the constraints point in normal direction whence we
can formulate it as a scalar equation for the normal components of the forces. The phase interface
involves a continuity condition (3.24) and a force balance, too, which is split into a component (3.26)
tangential to Γ and normal to γ and a component (3.25) normal to Γ. Since the Lagrange multipliers
are real numbers we see from (3.26) that equilibrium membrane shapes involve phase interfaces which
all have the same constant geodesic curvature.

Remark 3.17. It is shown in [19] by a formal asymptotic analysis that solutions to Problem 3.14
converge to solutions to Problem 3.16 as ε→ 0. Here, we confine ourselves on making a few remarks
for readers that are familiar with this technique.

• Energetically favorable solutions to the Allen-Cahn equations involve large domains where c ≡
±1 which correspond to the phases Γi in the sharp interface limit. With this in mind we see
how (3.23) emerges from (3.20).

• These equations also allow us to identify λA,1 with λA + λc and λA,2 with λA − λc in the sharp
interface limit, ε→ 0.

• The term ε∆Γc− 1
εW
′(c) converges to the geodesic curvature hg of the limiting curve γ which

allows us to recover (3.26) from (3.21).

• The curvature terms in (3.24) and (3.25) arise from the expansion of the term ∆ΓH in (3.20)
in the interfacial layer between the phases. The normal component of curvature hν is obtained
from the second line of (3.20) which to leading order approximates ∼ − 1

ε σ̄(µ · ∇Γνµ + H) on
γ since ∇Γc ∼ 1

εµ there. Using that (τ γ ,µ) is an orthonormal basis of the tangential space on
Γ whence we may write H = −∇Γ · ν = −µ · ∇Γνµ− τ γ · ∇Γντ γ and obtain hν by observing
that −τ γ · ∇Γντ γ = hν .

3.5. Relaxation dynamics and energy decay
We define a relaxation dynamics as a weighted L2 gradient flow of the membrane energy taking

the constraints into account with Lagrange multipliers.

Definition 3.18. Weighted L2 product Let (Γ, c) denote an admissible phase-field surface and let
ω > 0 be a kinetic coefficient. On the space of admissible deformation fields we consider the inner
product

Mω

(
(v, χ), (w, η); (Γ, c)

)
:=
∫

Γ

(
vw + εωχη

)
.

The parameter ω is a kinetic coefficient that allows to accelerate or slow down the phase separation
in comparison with the membrane surface relaxation. We remark that we will end up with an Allen-
Cahn equation for the order parameter c on the evolving surface Γ which with the ε scaling of the
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kinetic coefficient will approximate in the sharp interface limit a forced geodesic curvature flow for the
interphase line. We chose it in analogy with the phase field approximation of mean curvature flow in
flat domains, [10, 22].

Problem 3.19. Gradient flow Suppose that data {V,A1, A2} fulfilling (3.1) and an initial admis-
sible phase-field surface (Γ0, c0) are given such that

V = |Ω0| = 1
3

∫
Γ0
ν0 · x0, A1 +A2 = |Γ0| = 1

2

∫
Γ0
∇Γ0 · x0, A1 −A2 =

∫
Γ0
h(c0). (3.29)

Find a family of admissible phase-field surfaces {(Γ(t), c(t))}t∈[0,∞) with (Γ(0), c(0)) = (Γ0, c0) and
with normal velocity v(t) = vν(t)ν(t) of Γ(t), and find functions λV , λA, λc : [0,∞)→ R such that at
each time t ∈ [0,∞)

Mω

((
vν(t), ∂•t c(t)

)
,
(
w, η

)
;
(
Γ(t), c(t)

))
= −

〈(
δFW + δFGL + δFM + λV (t)δCV + λA(t)δCA + λc(t)δCcA

)
(Γ(t), c(t)), (w, η)

〉
(3.30)

for all admissible deformations (w, η) of (Γ(t), c(t)), and such that at each time t ∈ [0,∞)

0 = CV (Γ(t), c(t)), (3.31)
0 = CA(Γ(t), c(t)), (3.32)
0 = CcA(Γ(t), c(t)). (3.33)

Theorem 3.20. Suppose that {(Γ(t), c(t)), λV (t), λA(t), λc(t)}t is a solution to Problem 3.19. Then

d

dt
F(Γ(t), c(t)) = −

∫
Γ(t)

(
|vν(t)|2 + εω|∂•t c(t)|2

)
≤ 0. (3.34)

Proof. Thanks to the Lagrange multipliers the solution satisfies

0 =
d

dt
CV (Γ(t), c(t)) =

〈
δCV (Γ(t), c(t)), (vν(t), ∂•t c(t))

〉
,

0 =
d

dt
CA(Γ(t), c(t)) =

〈
δCA(Γ(t), c(t)), (vν(t), ∂•t c(t))

〉
,

0 =
d

dt
CcA(Γ(t), c(t)) =

〈
δCcA(Γ(t), c(t)), (vν(t), ∂•t c(t))

〉
.

Therefore

d

dt
F(Γ(t), c(t)) =

〈
(δFW + δFGL + δFM )(Γ(t), c(t)), (vν(t), ∂•t c(t))

〉
=
〈(
δFW + δFGL + δFM + λV (t)δCV + λA(t)δCA + λc(t)δCcA

)
(Γ(t), c(t)), (vν(t), ∂•t c(t))

〉
= −Mω

((
vν(t), ∂•t c(t)

)
,
(
vν(t), ∂•t c(t)

)
;
(
Γ(t), c(t)

))
from which the assertion follows.

3.6. Relaxation flow
We now present the problem on which the numerical method will be based. Analytically, the L2

relaxation flow defined below and the gradient flow dynamics in Problem 3.19 are equivalent since the
right hand side of law (3.35) for the velocity points into the normal direction.
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Problem 3.21. Strong form of relaxation flow Suppose that data {V,A1, A2} fulfilling (3.1) and
an initial admissible phase-field surface (Γ0, c0) are given such that (3.29) is satisfied. Find a family of
admissible phase-field surfaces {(Γ(t), c(t))}t∈[0,∞) with (Γ(0), c(0)) = (Γ0, c0) and with velocity v(t)
of Γ(t), and find functions λV , λA, λc : [0,∞)→ R such that at all times t

v = −kH
(
∆ΓH + |∇Γν|2H −

1
2
H2
)
ν

+ σε∇Γc⊗∇Γc : ∇Γν ν +
(σε

2
|∇Γc|2 +

σ

ε
W (c)

)
H

− kHα

4R̄
(m−m0)

(
|∇Γν|2 −H2

)
ν − λV ν +

(
λA + λch(c)

)
H, (3.35)

such that
εω∂•t c = εσ∆Γc−

σ

ε
W ′(c)− λch′(c), (3.36)

and such that the constraints (3.31), (3.32), and (3.33) are fulfilled.

In order to formulate the above flow it in a variational form appropriate for surface finite elements
we introduce for future convenience the following variational forms:

Ls(Γ; η, φ) :=
∫

Γ

ηφ

L(Γ; z,w) :=
∫

Γ

z ·w

Es(Γ; η, φ) :=
∫

Γ

∇Γη · ∇Γφ

E(Γ; z,w) :=
∫

Γ

∇Γz : ∇Γw

R(Γ; z,w) :=
∫

Γ

∇Γ · z∇Γ ·w − (∇Γz)⊥ : ∇Γw + P∇Γz : ∇Γw

D(Γ; z,w) :=
∫

Γ

1
2
|z|2∇Γ ·w

W(Γ; z,w) := kHE(Γ; z,w) + kHR(Γ; z,w) + kHD(Γ; z,w)

G1(Γ; η,Q,w) :=
∫

Γ

σε∇Γη ⊗∇Γη : Qν ·w

G2(Γ; η, z,w) :=
∫

Γ

(σε
2
|∇Γη|2 +

σ

ε
W (η)

)
(z · ν)ν ·w

M1(Γ; z) :=
kHα

4R̄

( 1
R̄

∫
Γ

z · ν −m0

)
M2(Γ;Q,w) :=

∫
Γ

(
|Q|2 − |tr(Q)|2

)
ν ·w

N (Γ;w) :=
∫

Γ

ν ·w

where η, φ are scalar fields, w, z are vector-valued fields, and Q is a tensor-valued field on Γ.

Problem 3.22. Variational relaxation flow Suppose that data {V,A1, A2} fulfilling (3.1) and an
initial admissible phase-field surface (Γ0, c0) are given such that (3.29) is satisfied. Find a family of
admissible phase-field surfaces {(Γ(t), c(t))}t∈[0,∞) with (Γ(0), c(0)) = (Γ0, c0) and with velocity v(t)
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of Γ(t), and find functions λV , λA, λc : [0,∞)→ R such that at all times t

L(Γ;v,w) =W(Γ;H,w) + G1(Γ; c,∇Γν,w) + G2(Γ; c,H,w)
+M1(Γ;H)M2(Γ;∇Γν,w)
− λVN (Γ;w) + λAL(Γ;H,w) + λcL(Γ;h(c)H,w), (3.37)

ωεLs(Γ; ∂•t c, φ) = −εσEs(Γ; c, φ)− σ

ε
Ls(Γ;W ′(c), φ)− λcLs(Γ;h′(c), φ) (3.38)

for all test functions (w, φ) : Γ(t) → R3 × R where the fields {H(t)}t are computed from (2.3) and
such that the constraints (3.31), (3.32), and (3.33) are fulfilled.

4. Finite element approximation

4.1. Isoparametric quadratic surface finite elements
The discretization is based on triangulated surfaces and isoparametric surface finite elements. We

refer to [23, 8, 11] for facts and results on such elements.

Definition 4.1. Triangulated surfaces A triangulated polyhedral surface Γ̃h is a polyhedron with
triangular faces, i.e.

Γ̃h =
⋃
T̃∈T̃h

T̃

where T̃h consists of a finite number of closed, non-degenerate triangles T̃ such that the intersection
of two different triangles is either empty or a common edge or a common vertex and such that each
triangle has at least one edge in common with another triangle.
Given a triangulated polyhedral surface Γ̃h, a quadratic triangulated surface Γh over Γ̃h is of the form

Γh =
⋃
T∈Th

T

where there exists a homeomorphism F : Γ̃h → Γh such that

• for each T ∈ Th there is a T̃ ∈ T̃h with T = F(T̃ ),

• F|T̃ is a quadratic polynomial on each T̃ ∈ T̃h,

• F leaves vertices unchanged.

It follows that each triangle T ∈ Th can be parametrised by a quadratic polynomial ΦT : T̂ →
T where T̂ := {λ ∈ R3 |λi ≥ 0,

∑
i λi = 1} is a fixed reference triangle. Denoting the space of

polynomials of degree two by P2(·) we have that ΦT ∈ P2(T̂ ).

Definition 4.2. Isoparametric quadratic surface finite element space Given a quadratic tri-
angulated surface Γh, the isoparametric quadratic surface finite element space is defined by

Sh(Γh) :=
{
φ ∈ C0(Γh)

∣∣φ|T ◦ ΦT ∈ P2(T̂ ) on each T ∈ Th
}
. (4.1)

For discrete versions of three-dimensional fields as, for example, the field H = {Hk}3k=1 we intro-
duce the finite element space Sh(Γh) := S3

h(Γh). We remark that the finite elements are isoparametric
since the map F in Definition 4.1 belongs to Sh. The matrix P h = I − νh ⊗ νh = ∇Γh

xh stands for
the projection onto the tangential space of Γh and is well-defined at each point in the interior of a
triangle T ∈ Th.

The nodal variables are the evaluations at the vertices and at the midpoints of the edges whose
coordinates are denoted {xi}Nh

i=1. Thus Nh is the dimension of Sh. We denote the standard basis
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by {φi}Nh
i=1 characterised by φi(xj) = δij with δij being the Kronecker symbol. Elements ζh ∈ Sh

can uniquely be written in the form ζh(x) =
∑
i ζiφi(x) with coefficients ζi = ζh(xi). We introduce

the notation ζ = (ζi)Nh
i=1 for the coefficient vector. The standard basis of S3

h is {φiek}Nh,3
i,k=1 where

ek = {δkj}3j=1. We will employ the notation H = {Hi,k}Nh,3
i,k=1 where Hi,k = Hh(xi) · ek.

Definition 4.3. Discrete admissible phase-field surface A discrete admissible phase-field surface
(Γh, ch) is a quadratic triangulated surface Γh that encloses a bounded, simply connected open domain
Ωh together with a scalar field ch ∈ Sh(Γh). For such discrete admissible phase-field surfaces we denote
the external unit normal of the enclosed Ωh by νh and the identity on Γh by xh.

It is convenient to generalise (2.3) to triangulated surfaces in order to define a finite element function
representing the curvature on Γh:

Definition 4.4. Discrete variational curvature equation For a discrete admissible phase-field
surface (Γh, ch) the discrete mean curvature Hh ∈ Sh(Γh) is defined via

L(Γh;Hh,wh) + E(Γh;xh,wh) = 0 (4.2)

which has to hold for all wh ∈ Sh(Γh).

Formula (2.4) applied to the unit normal ν on an admissible phase-field surface yields∫
Γ

∇Γν : Z + ν · (∇Γ ·Z) =
∫

Γ

∇Γ · (ZTν) =
∫

Γ

(ZTν) ·H

for any smooth test function Z : Γ→ R3×3 and motivates the following

Definition 4.5. Discrete Weingarten map For a discrete admissible quadratic triangulated sur-
face (Γh, ch) with the discrete mean curvature satisfying (4.2) the discrete Weingarten map Qh ∈
S3×3
h (Γh) is defined via∫

Γh

Qh : Zh = −
∫

Γh

(∇Γh
·Zh) · νh +

∫
Γh

νh ⊗Hh : Zh (4.3)

for all tensor-valued test fields Zh ∈ S3×3
h (Γh).

Remark 4.6. The version (4.3) for the shape operator employed by us stems from [23] and was shown
in [24] to satisfy

‖Qh −∇Γν‖L2(Γ) = O(h)

provided that the sufficiently smooth limiting surface Γ is interpolated by the triangulated surfaces
Γh, i.e., vertices and edge-midpoints are projected to Γ. Furthermore, numerical experiments indicate
that this convergence also holds true in L∞(Γ) . We remark that for such convergence results we
need quadratic finite elements and linear finite elements are not sufficient. Another possibility for
approximating the shape operator is to compute ∇Γh

νh on (more precisely, in the interior of) every
T ∈ Th. As shown in [11] this converges to ∇Γν in L2 and L∞ linearly in h for quadratic (but not for
linear) elements where again Γ is the known smooth limit of the surfaces Γh obtained by interpolation.

4.2. Discrete problems
4.2.1. Discretisation in space

For dynamic problems we will consider families of triangulated surfaces {Γh(t)}t∈I where each Γh(t)
has the above properties and the nodes xi(t) depend smoothly on the relaxation time t. The velocity

vh(t,x) :=
∑
i

∂txi(t)φi(t,x) (4.4)
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is an element of Sh(Γh(t)) and is tacitly taken into account in the operator ∂•t whenever working on
a triangulated surface. We remark that (see [16])

∂•t φi = (∂t + vh · ∇)φi = 0 ∀i = 1, . . . , Nh. (4.5)

Also the other t-dependent surface fields will become families of finite element functions as, e.g.,
{Hh(t)}t where the t dependence concerns the coefficient vector H(t) but also the basis functions
ekφi(t, ·) of Sh(Γh(t)).

Definition 4.7. Let {Γh(t), c(t)}t∈I be an evolving discrete admissible phase-field surface for which
Hh(t) and Qh(t) denote the discrete mean curvature and Weingarten map equation at each t ∈ I,
respectively. Further, let (λhV , λ

h
A, λ

h
c ) : I → R3. The following variational equations are defined at

each time t ∈ I.
The discrete variational surface equation reads

L(Γh;vh,wh) =W(Γh;Hh,wh) + G1(Γh; ch,Qh,wh) + G2(Γh; ch,Hh,wh)
+M1(Γh;Hh)M2(Γh;Qh,wh)

− λhVN (Γh;wh) + λhAL(Γh;Hh,wh) + λhcL(Γh;h(ch)Hh,wh) (4.6)

for a test vector field wh ∈ Sh(Γh).
The discrete variational phase field equation is defined by

ωεLs(Γh; ∂•t ch, φh) = −εσEs(Γh; ch, φh)− σ

ε
Ls(Γh;W ′(ch), φh)− λhcLs(Γh;h′(ch), φh) (4.7)

for a scalar test function φh ∈ Sh(Γh).
The discrete constraint equations are

0 = ChV (Γh) = 1
3N (Γh;xh)− V, (4.8)

0 = ChA(Γh) = 1
2E(Γh;xh,xh)− (A1 +A2), (4.9)

0 = Chc (Γh, ch) = Ls(Γh;h(ch), 1)− (A1 −A2). (4.10)

Remark 4.8. In the above recall that the velocity has the nodal values of the velocity field are
vi,k(t) = ∂txi,k(t), and by the transport property of the basis functions (4.5) we see that

∂•t ch =
∑
i

∂•t (ciφi) =
∑
i

∂•t ci φi + ci ∂
•
t φi =

∑
i

∂tci φi

Remark 4.9. Deforming Γh by a field wh ∈ Sh(Γh) yields quadratic triangulated surfaces again.
Variations of the constraints (4.8) and (4.9) based on such deformations read similar as in the contin-
uous setting (see Lemma 3.7):〈

δChV (Γh),wh

〉
= N (Γh;wh), (4.11)〈

δChA(Γh),wh

〉
= E(Γh;xh,wh) = −L(Γh;Hh,wh). (4.12)

Problem 4.10. Semi-discrete variational relaxation flow Suppose that data {V,A1, A2} fulfill-
ing (3.1) and a discrete admissible phase-field surface (Γ0

h, c
0
h) are given such that

V = |Ω0
h|, A1 +A2 = |Γ0

h|, A1 −A2 = Ls(Γh;h(c0h), 1). (4.13)

Find a family of discrete admissible phase-field surfaces {(Γh(t), c(t))}t∈I with (Γh(0), ch(0)) :=
(Γ0
h, c

0
h) and find functions λV,h, λA,h, λc,h : [0,∞) → R such that the discrete surface, phase field

and constraint equations (4.6)–(4.10) are fulfilled at each time t ∈ I where the fields {Hh(t)}t and
{Qh(t)}t are computed from (4.2) and (4.3), respectively.

18



4.2.2. Full discretisation
In order to discretise in time we consider times {tm}m∈N with tm ∈ [0,∞), tm > tm−1, and tm →∞

as m → ∞ and set τm := tm+1 − tm for the time steps. Quantities at time tm are denoted with an
upper index m. At any time level m the surface Γmh is given by knowledge of xmh , the vertices of the
triangulation. On each surface Γmh we define the fields H̃

m

h ∈ Sh(Γmh ) and Qm
h ∈ S3×3

h (Γmh ) by (4.2)
and (4.3), respectively, i.e.

L(Γmh ; H̃
m

h ,wh) = −E(Γmh ;xmh ,wh) (4.14)

for all wh ∈ Sh(Γmh ) and∫
Γm

h

Qm
h : Zh = −

∫
Γm

h

(
(∇Γh

·Zh) · νmh + νmh ⊗ H̃
m

h : Zh
)

(4.15)

for all tensor-valued test fields Zh ∈ S3×3
h (Γh). For notational convenience we set (for wh ∈ Sh(Γmh ))

Zm(wh) := kHR(Γmh ; H̃
m

h ,wh) + kHD(Γh; H̃
m

h ,wh)

+ G1(Γmh ; cmh ,Q
m
h ,wh) + G2(Γmh ; cmh , H̃

m

h ,wh)

+M1(Γmh ; H̃
m

h )M2(Γmh ;νmh ,Q
m
h ,wh)

+ λh,mc L(Γmh ;h(cmh )H̃
m

h ,wh). (4.16)

To step from a time level to the next one we decouple the computation of the surface from that of
the order parameter.

Definition 4.11. Fully discrete scheme Assume that an initial discrete admissible phase-field sur-
face (Γ0

h, c
0
h) is given such that (4.13) holds for data {V,A1, A2} fulfilling (3.1). Set λ0

c,h = 0. The fully
discrete scheme consists of computing discrete admissible phase-field surfaces (Γmh , c

m
h ) subsequently

for m = 0, 1, 2, . . . as follows:

1. Fully discrete evolution of the surface Given a discrete admissible phase-field surface
(Γmh , c

m
h ) at time tm, the field xm+1

h ∈ Sh(Γmh ) defining the surface Γm+1
h , the discrete mean

curvature vector Hm+1
h ∈ Sh(Γmh ) and the Lagrange multipliers λh,m+1

V and λh,m+1
A at time

tm+1 are obtained from the equations

L
(

Γmh ;
xm+1
h − xmh
τm

,wh

)
− kHE(Γmh ;Hm+1

h ,wh)

+λh,m+1
V N (Γmh ;wh)− λh,m+1

A L(Γmh ; H̃
m

h ,wh) = Zm(wh), (4.17)

L(Γmh ;Hm+1
h , ζh) + E(Γmh ;xm+1

h , ζ) = 0, (4.18)

ChV (Γm+1
h ) = 0, (4.19)

ChA(Γm+1
h ) = 0, (4.20)

where (4.17) and (4.18) have to hold for all vector fields wh, ζh ∈ Sh(Γmh ).
2. Fully discrete evolution of the phase field Given a discrete admissible phase-field surface

(Γmh , c
m
h ) at time tm and a surface Γm+1

h at time tm+1 the field cm+1
h ∈ Sh(Γmh ) and the Lagrange

multiplier λh,m+1
c are obtained from

ωεLs
(

Γm+1
h ;

cm+1
h − cmh
τm

, φh

)
+ εσEs(Γm+1

h ; cm+1
h , φh)

+λh,m+1
c Ls(Γm+1

h ;h′(cmh ), φh) =
σ

ε
Ls(Γm+1

h ;W ′(cmh ), φh), (4.21)

Chc (Γm+1
h , cm+1

h ) = 0, (4.22)

where (4.21) has to hold for all φh ∈ Sh(Γm+1
h ).
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4.3. Solution algorithm
Let us denote the mass and the stiffness matrix by

M := (Mij)Nh
i,j=1, Mij :=

∫
Γh

φi φj , A := (Aij)Nh
i,j=1, Aij :=

∫
Γh

∇Γh
φi · ∇Γh

φj

and their 3× 3 block versions by M = (δklM)3
k,l=1 and A = (δklA)3

k,l=1.

4.3.1. Iterative procedure for the surface
The surface update step consisting of (4.17) and (4.18) from time level m to m+ 1 in Scheme 4.11

may be written in matrix-vector form as(
1
τmM

m −kHAm

Am Mm

)(
xm+1

Hm+1

)
=
(

1
τmM

mxm + zm

0

)
− λm+1

V,h

(
nm

0

)
− λm+1

A,h

(
km

0

)
where

zmh ∈ Sh(Γmh ), zi,k := Zm(ekφi), (4.23)
nmh ∈ Sh(Γmh ), ni,k := N (Γmh ; ekφi),

kmh ∈ Sh(Γmh ), ki,k := −L(Γmh ; H̃
m

h , ekφi)
(4.14)

= E(Γmh ;xmh , ekφi).

Thus setting

Im :=
(

1
τmM

m −kHAm

Am Mm

)
, (Im)−1

(
nm

0

)
=: qm =

(
qm

1
qm

2

)
, (Im)−1

(
km

0

)
=: sm =

(
sm1
sm2

)
.

we have (
xm+1

Hm+1

)
= (Im)−1

(
1
τmM

mxm + rm

0

)
− λh,m+1

V qm − λh,m+1
A sm. (4.24)

In view of the constraints (4.19) and (4.20) we may write

0 = f(λm+1) :=
(
ChV
(
Γm+1
h (λm+1)

)
ChA
(
Γm+1
h (λm+1)

))
where λm+1 = (λh,m+1

V , λh,m+1
A ). This is solved by a Newton method for which we need the derivative

of f . We see from (4.24) that a change in λh,m+1
V corresponds to a deformation of Γm+1

h (λ) in the
direction −qm1,h which is the finite element function associated with the vector −qm

1
. The partial

derivative of f with respect to λh,m+1
V therefore corresponds to the variation of ChV and ChA in direction

−qmh . The treatment of the derivatives with respect to λh,m+1
A is similar. In view of the formulae

(4.11), (4.12) and the definitions of n and k we obtain

Df(λm+1) =
(
∂λV
ChV
(
Γm+1
h (λm+1)

)
∂λA
ChV
(
Γm+1
h (λm+1)

)
∂λV
ChA
(
Γm+1
h (λm+1)

)
∂λA
ChA
(
Γm+1
h (λm+1)

)) = −
(
nm+1 · qm

1
nm+1 · sm1

km+1 · qm
1

km+1 · sm1

)
.

We perform an iteration of the form

λm+1,k+1 = λm+1,k −
(
Df(λm+1,k)

)−1
f(λm+1,k) (4.25)

to compute the values λm+1. The values λm+1,0 = λm, λ0,0 = 0 are taken as initial choice. The
iteration is stopped if the values CV (Γm+1(λm+1,k+1))/V and CA(Γm+1(λm+1,k+1))/(A1 + A2) are
reduced below a given tolerance. In our simulations we chose 10−12 as tolerance and observed that
usually one and rarely, typically within the very first time steps, more Newton iteration steps were
necessary to achieve the desired accuracy. Damping has never been required to ensure convergence.
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Algorithm 1 Membrane Evolution with Phase Separation
input: Initial discrete admissible phase-field surface (Γ0

h, c
0
h),

output: Relaxed discrete admissible phase-field surface (Γm̄h , c
m̄
h ) and discrete mean curvature Hm̄

h

at some (sufficiently large) time tm̄ > 0,

assemble M0 and A0 and its 3× 3 diagonal block versions,
factorise M0,
for m = 0, . . . , m̄− 1 do

adapt the grid based on the given data and choose a time step τm,
assemble rm, nm, km, Im,
solve (Im)−1( 1

τmM
mxm + zm, 0)T , (Im)−1(nm, 0)T , and (Im)−1(km, 0)T ,

perform a Newton iteration for the Lagrange multipliers λm+1
V,h , λm+1

A,h and compute xm+1, Hm+1,
assemble wm+1,m, pm+1,m, Rm+1, Mm+1

solve (Rm+1)−1( ε
τmM

m+1cm − wm+1,m) and (Rm+1)−1pm+1,m,
perform a Newton iteration for the Lagrange multiplier λm+1

c,h and compute cm+1,
end for

4.3.2. Iterative procedure for the phase field
With respect to the phase separation update step from time level m to m + 1 in the Scheme 4.11

we observe that equation (4.21) may be written in the form

Rm+1cm+1 =
εω

τm
Mm+1cm − wm+1,m − λm+1

c,h pm+1,m where Rm+1 =
εω

τm
Mm+1 + εσAm+1

and where the fields

wm+1,m
h ∈ Sh(Γm+1

h ), wi :=
σ

ε
Ls(Γm+1

h ;W ′(cmh ), φi),

pm+1,m
h ∈ Sh(Γm+1

h ), pi := Ls(Γm+1
h ;h′(cmh ), φi)

are used.
Again we apply the Newton method to compute the Lagrange multiplier λm+1

c,h so that the constraint
(4.22) is satisfied at time tm+1. The procedure is similar to the one described above and a detailed
description therefore is omitted.

4.3.3. Algorithm
The proposed algorithm to compute the new membrane Γm+1

h from Γmh consists of (i) successively
solving three linear systems for the matrix Im (recall (4.24)), (ii) performing the Newton iteration
(4.25) which involves computing the new surface Γm+1

h and new curvature Hm+1
h , (iii) solve the two

linear systems (Rm+1)−1wm+1,m and (Rm+1)−1pm+1,m for the phase separation equation, and (iv)
perform the Newton iteration for the Lagrange multiplier λm+1

c,h which involves computing the new
order parameter cm+1

h .
The overall procedure as described above is summarised in Algorithm 1. Issues like stopping criteria,

mesh adaption, and choice of the time step are discussed in the section on the numerical simulations.

Remark 4.12. The main computational cost in our simulations arised from solving the linear sys-
tems. Taking explicit choices for the Lagrange multipliers would involve only two linear systems for
(xm+1,Hm+1) and cm+1 (which could be written as one big systems, of course). But for the system
sizes in our simulations direct methods for factorising the matrices were suitable so that the cost for
solving multiple systems instead of only two is small. Furthermore, by reordering the unknowns by
the coordinates, i.e. in the form

(x,H)m+1 → (x1,1, . . . ,xNh,1,H1,1, . . . ,HNh,1,x1,2, . . . ,HNh,2,x1,3, . . . ,HNh,3)m+1
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the matrix Im involves diagonal blocks of the form(
1
τmM

m −kHAm
Am Mm

)
,

and the off-diagonal blocks are zero, whence it is sufficient to factorise these blocks which are of size
2Nh. Setting σ = 0, α = 0 and kH = 1 we end up having this property for Willmore flow. For
comparison, the system size of the method in [2] for Willmore flow is 4Nh. In [15], where our method
for the bending energy stems from, more terms contained in R are taken into account semi-implicitly
in time, and as a consequence the off-diagonal blocks do not vanish any more so that a system of size
6Nh has to be solved in each time step.

Remark 4.13. When replacing H̃
m

h in (4.23) by Hm
h we observed that the grid quality was gently

worse which motivates the choice of H̃h there. Moreover, we then need no initial values for the
curvature. Towards the end of the relaxation the nodes essentially do not move any more so that the
new curvature field Hm+1

h practically coincides with H̃
m+1

h .

Remark 4.14. Taking the term from the double-well potential and the mass constraint explicitly
in time in the Allen-Cahn equation, i.e., wm+1,m instead of wm+1,m+1, leads to a mild stability
restriction on the time step of the form τ . ε2/ω. In the simulations presented below we chose τ ∼ h2

and always had h . ε whenever computing problems involving a phase separation. Stability problems
never occurred.

5. Numerical experiments

5.1. Monitored quantities
To measure the discrete energy we compute

Fh := FhW + FhGL + FhM

= kH

∫
Γh

1
2
|Hh|2 + σ

∫
Γh

(ε
2

∣∣∇Γh
ch
∣∣2 +

1
ε
W (ch)

)
+
kHα

8

( 1
R̄

∫
Γh

Hh · ν −m0

)2

.

Since the surface mesh is evolving we monitored the mesh quality. As one quality measure q(Γh) of
the polyhedral surface Γh we have used the minimal value of the sinus of the interior angles of the
elements,

q(Γh) := min{qT |T ∈ T (Γh)}, where qT := min{sin(α) |α inner angle of T}. (5.26)

With inner angles we mean all angles of the four flat triangles formed by neighbouring nodes: Recalling
that any T ∈ Th has six nodes, three of them corresponding to the vertices and three located on the
edges, we consider the three (flat) triangles formed by a vertex and the nodes on the adjacent edges
and the triangle formed by the nodes on the edges.

Whenever we refer to the velocity field we mean the finite element function

vmh ∈ Sh(Γmh ), vmi,k :=
xmi,k − x

m−1
i,k

τm−1
.

The numerical error of convergence has been measured in the form

eoc(Fh) :=
log(|Fh(

√
2ε)−Fh(ε)|/|Fh(ε)−Fh(ε/

√
2)|)

log(
√

2)
(5.27)

and analogously for λV,h and λc,h.
Unless otherwise stated the time step has always been chosen to be τm . (h0

min)2 where h0
min is

the initial minimal edge length.
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initial shape Nh V̄ final shape Fh/(8π) extracted
ellipsoid, radii 0.8436, 0.8436, 0.23 1538 0.6211 discocyte 1.9010 1.9
ellipsoid, radii 0.7, 0.7, 0.2855 1538 0.7921 discocyte 1.4717 1.5
cigar, diameter 0.7, length 3.5 2818 0.6211 dumbbell 1.9553 1.95
cigar, diameter 0.7, length 2.1 1794 0.7920 dumbbell 1.4046 1.4

Table 1: Helfrich flow, results for several initial shapes. The cigars have been gently deformed towards prolates to
initially comply with the constraints on area and volume. Energies have been normalised by dividing by 8πkH . From
the phase diagram in [34], Figure 8, values have been extracted for comparison. For the prolate/dumbbell branch with
V̄ = 0.7920 as in the last row we performed another simulation on a finer grid resulting in a normalised energy of 1.4045.

5.2. Helfrich flow
We first report on some consistency tests for elastic membranes without lateral phase separation,

i.e. we set c ≡ 1. The gradient flow dynamics of the bending energy subject to constraints on area
and volume but no area difference term (α = 0) is commonly known as Helfrich flow. We relaxed
some appropriate initial shapes and compared the energies in the relaxed states with results from [34]
where phase diagrams for various models of axisymmetric lipid bilayer vesicles have been derived.

The scale invariance of the bending energy is an important issue since it reduces the number of
effective parameters on which the energetically most favourable state depends: Under a dilation of
the space the energy FW (Γ) does not change. We recall that the quantity

R̄ =
√
A/2π

had been introduced as a reference length scale and is the radius of the sphere with surface area
A := A1 +A2. Equilibrium shapes effectively only depend on the reduced volume

V̄ := V
/

(
4
3
πR̄3).

We remark that if Γ topologically is a sphere then V̄ ∈ [0, 1] because the sphere minimises the surface
area among all surfaces of that topological type enclosing a given volume.

We employed an adaptive time stepping by setting

τm =
(h0
min)2

10R̄ maxi |vm−1
i,· |

where maxi∈Nh
|vi,·| is the maximal node velocity, h0

min is the initial minimal edge length, and the
length scale R̄ is taken into account for scale invariance. We remark that taking the minimal edge
length at time tm instead of h0

min into account did not essentially change the results of our simulations.
The simulations were terminated when the maximal node velocity was small enough, namely when

max
i∈Nh

|vi,·| ≤ R̄× 10−4.

The initial shapes and the data for the relaxed shapes are listed in Table 1. For V̄ ≈ 0.62 the
discocyte shape has less energy than the dumbbell shape whilst for V̄ ≈ 0.79 the situation is vice
versa. Also quantitatively the energies are close to the values that have been computed in [34] with
a different method restricted to axisymmetric shapes. Some final shapes including cuts through
symmetry planes are displayed in Figure 1.

5.3. Convergence experiment
The goal is now to numerically investigate our method with respect to convergence as the mesh is

refined and as ε→ 0. We chose an rotationally symmetric configuration and relaxed a cigar of length 4
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Figure 1: Final shapes for the ellipsoid/discocyte branch with V̄ ≈ 0.62 in the upper row and the prolate/dumbbell
branch with V̄ ≈ 0.79 in the lower row. In addition to the meshes, cuts through symmetry planes are displayed allowing
for a qualitative comparison with shapes in [34], Figure 9.

and diameter 1 with spherical caps and with symmetry axis {x = (x1, x2, x3)T ∈ R3 |x2 = x3 = 0.5}.
Area and enclosed volume are given by A1 +A2 = 12.566356 and V = 2.879785, respectively. We set
α = 0 and ω = 0.1. The initial data for the order parameter were set to

c0(x) =


1 if 2.25 ≤ x1,

x1 − 1.25 if 0.25 ≤ x1 ≤ 2.25,
−1 if x1 ≥ 0.25,

where x = (x1, x2, x3)T ∈ R3,

and the area difference is given by A1−A2 = 4.71. The initial configuration is displayed in Figure 2 on
the left. Simulations were performed on grids with between 2306 and 36866 nodes. The initial grids
were obtained by glueing together four coarsely triangulated surfaces of unit cubes, refining globally
by bisection and projecting onto the surface. The following table lists the maximal and minimal initial
edge lengths h0

max and h0
min as well as the (constant) time step τ = τm for all m:

Nh 02306 04610 09218 18434 36866
h0
max 0.143635 0.092185 0.076591 0.047842 0.039576
h0
min 0.046909 0.036232 0.023239 0.018107 0.011182
τ/10−5 10.0 5.0 2.5 1.25 0.625

Since close to equilibrium the relaxation is rather slow an adaptive time stepping procedure is
desirable but the method used in Sec. 5.2 on the pure Helfrich flow is not appropriate because
of the contributions to the force coming from the line energy and because of the equation for the
order parameter. This issue is left for future research but we remark that we performed simulations
for various (constant) time steps indicating that the error from the time discretisation is negligible
compared to the spatial discretisation error.

Figure 3 shows typical evolutions of the velocity and the Lagrange multipliers. Initially, the evo-
lution is rather fast. Later on, the quantities do not change any more in time, whence the system
can be considered as relaxed. In Table 2 we present the values for energy, the mass and the volume
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Nh Fh λc,h λV,h ‖vh‖L2(Γh) q
02306 49.898116 -0.440981 17.568521 0.01961168 0.435407
04610 49.893313 -0.439833 17.572988 0.00844491 0.430948
09218 49.892998 -0.439936 17.572570 0.00556093 0.426217
18434 49.892651 -0.439907 17.572540 0.00165041 0.424645

Table 2: Convergence tests with cigars relaxing to non-symmetric dumbbells as in Figure 2, values at time t = 0.3 for
ε = 0.3.

ε Nh Fh eoc(Fh) λc,h eoc(λc,h) λV,h eoc(λV,h)
0.3 04610 49.893313 — -0.439907 — 17.572540 —
0.3/
√

2 09218 49.810412 1.2511 -0.459824 1.5139 17.579676 1.1018
0.15 18434 49.756678 1.6448 -0.471610 1.7940 17.584547 2.3746
0.15/

√
2 36866 49.726291 — -0.477939 — 17.586686 —

Table 3: Convergence tests with cigars relaxing to non-symmetric dumbbells as in Figure 2, values at time t = 0.3 and
experimental errors of convergence computed according to (5.27).

Lagrange multiplier, the velocity and the grid quality for ε = 0.3 measured at time t = 0.3. As has
been mentioned, the influence of the time step is small compared to the influence of the number of
nodes Nh. The values reveal convergence of Fh, λc,h, λV,h, and ‖vh‖L2 → 0 as Nh →∞.

Of further interest is the convergence as ε → 0. We kept the ratio ε/
√
Nh constant where the

meshes are fine enough in the sense that a further refinement has negligible influence on the values
compared to the influence of ε, i.e., the discretisation error is smaller than the modelling error. The
values are shown in Table 3. Figure 4 displays the evolution of the membrane energy and (parts of
the) shape profiles around the necks obtained by intersecting the plane {x2 = 0.5} with the surface.
As ε → 0 not only the energies converge but also the distance from one profile curve to the next
one becomes smaller indicating that the surface shapes converge. We observed this not only in the
displayed region but everywhere. The reason for zooming into this specific region is that the transition
points marking the zero level sets of ch are displayed, too, and apparently converge. This means that
also the approximations to the interface locations converge as ε→ 0.

5.4. Adaptive local grid refinement
As the interfacial thickness parameter ε becomes small it is desirable to adaptively refine the grid,

mainly in the transition regions of the order parameter but also in strongly curved regions. The
finite element software ALBERTA [31] that we used for implementing our scheme requires a marking
function that provides a flag for each element indicating whether it has to be refined (= bisected) or

Figure 2: Initial (left) and relaxed phase-field surface (right, at time t = 0.3) for the convergences tests, here for ε = 0.3
and Nh = 4610 nodes. The color/greyscale indicates the order parameter ranging from c = 1, (light red/grey), to
c = −1, (dark blue/grey).
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Figure 3: Relaxation of cigars with two phases. For ε = 0.3 on the mesh with Nh = 4610 nodes we display the evolution
of ‖vh‖L2(Γh) and ‖vh‖L∞(Γh) on the left and the evolution of the Lagrange multipliers on the right.

Figure 4: Relaxation of cigars with two phases. On the left: Evolution of the membrane energy Fh for different values
of ε. On the right: Shape profiles as in Figure 2 (right) around the necks with the phase transition region for several
values of ε; we display the distance in the x3-direction of the surface to the symmetry axis {x2 = x3 = 0.5} and the
position of the phase interface characterised by ch = 0; we remark that the axes scale differently.
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Algorithm 2 Marking Strategy for adaptive refinement.
input: Triangulated surface Γh with order parameter ch and curvature vector Hh and marking

strategy (Nin, Noff , NH),
output: A number f(T ) ∈ {−1, 0, 1} for each element T ∈ Th indicating whether T has to be refined

(f(T ) = 1) or may be coarsened (f(T ) = −1),

for T ∈ Th do
compute the diameter diam(T ) of T ,
find the maximal value Ic of |ch| in the six nodes,
compute IH as the mean of the values of √sH,h in the six nodes of T ,
set f(T ) = 0,
if Ic < 0.97 (i.e., if we are within the interfacial layer) then

if diam(T ) > ε/Nin or diam(T ) > NH/IH then
set f(T ) = 1,

else if diam(T ) < ε/(2Nin) and diam(T ) < NH/(2IH) then
set f(T ) = −1,

end if
else

(i.e., we are in the pure phase)
if diam(T ) > ε/Noff or diam(T ) > NH/IH then

set f(T ) = 1,
else if diam(T ) < ε/(2Noff ) and diam(T ) < NH/(2IH) then

set f(T ) = −1.
end if

end if
end for

whether it may be coarsened. We want to ensure that the interfacial layers are resolved by the mesh
but also demand the strongly curved regions to contain sufficient numbers of nodes. For the latter
ones we consider the quantity

sH := |∇Γν|2 = H2
1 +H2

2 = H2 − 2K,

i.e., the sum of the squares of the principal curvatures. The Gaussian curvature can be computed via

K = det(I +∇Γν)−H − 1,

and as discussed in [24] the discrete analogue

Kh(x) =
Nh∑
i=1

Kiφi(x), Ki = det(I +Qh)− trace(Qh)− 1,

is a good approximation. Hence, define the discrete version of sH by

sH,h(x) =
Nh∑
i=1

sH,iφi(x), sH,i = |Hi|2 − 2Ki.

Our marking strategy consists of three positive numbers (Nin, Noff , NH) ∈ (0,∞)3 with the fol-
lowing meaning: The diameter of an element in the interfacial layer shall be smaller than ε/Nin, and
if the element belongs to one of the bulk phases then the diameter shall be smaller than ε/Noff , and
throughout the element diameter shall be smaller than NH/IH where IH is the arithmetic mean of
the values of √sH,h in the nodes belonging to the element. The algorithm 2 carefully states when
triangles are marked for refinement or coarsening.
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fully refined mesh adaptively refined mesh
ε Nh Fh λV,h Nh Fh λV,h

0.3 04610 49.893313 17.572988 03698 49.893365 17.573109
0.3/
√

2 09218 49.810412 17.579676 06114 49.809644 17.580724
0.15 18434 49.756678 17.584547 06786 49.756712 17.584635
0.15/

√
2 36866 49.726291 17.586686 09850 49.725234 17.586805

0.075 — — — 09914 49.708009 17.585037

Table 4: Comparison of numbers of nodes, energy, and Lagrange multipliers for the volume constraint in dependence of
ε for the fully and adaptively refined meshes, test problem as described in Section 5.3, values measured at time at time
t = 0.3.

Remark 5.1. Clearly one could also have taken sH,i = |(Qh)i|2 as an approximation to the sum of
the squares of the principal curvature. We have not tried out other approaches since the refinement
should be part of procedures to keep a good mesh property even in the case of large deformations.
We leave a careful analysis of this issue and the efficiency of the above method for future research and
confine ourselves on applying it as is to make the computations somewhat cheaper.

We performed an explicit (in time) mesh adaption strategy and executed the marking algorithm
at the beginning of every third time step followed by the mesh adaption. During the latter one the
field on the surface are interpolated and restricted to obtain the values in the new nodes as described
in [31]. Often, this leads to an increase of the total energy and, in particular, the surface data are
not consistent any more in the following sense: For a triangulated surface in (or close to) equilibrium
equation (4.2) is fulfilled and relates xh and Hh, and mesh adaptions typically destroy this relation.
But we observed that the system quickly relaxes back and decreases the energy to the previous state.
For this reason we perform a couple of time steps before considering another mesh adaption. We
also observed that in the late stage of the simulation when the system has almost relaxed no mesh
adaption is required any more.

By our choice of the double-well potential W the profile of the order parameter across an interfacial
layer is close to tanh(d(x, t)/ε) where d(x, t) is the distance of x to the level set {c(x, t) = 0}. If we
define the interfacial layer to consist of the points {|c(x)| ≤ 0.97} then the thickness of the layer is
close to 4ε. In our tests with the data of the previous section a value of Nin = 1.6 resulted in meshes
with resolutions of the interfaces comparable with the fully refined meshes yielding the values in Table
3. With respect to the bulk a value of NH = 0.5 resulted in a resolution of the phases comparable
to the fully refined mesh with Nh = 4610 nodes close to the spherical tips and somewhat coarser
in the cone-shaped part of the red phase. In Figure 5 we compare the fully refined grid with the
adaptively refined grid at time t = 0.3 for ε = 0.3/

√
2. In Table 4 the energies and the node numbers

of the relaxed shapes for several values of ε are shown. The time step has been related to the element
diameters in the interfacial regions and, hence, is the same for a given ε. Similarly as before our
simulation results generally suggest that the discretisation error is smaller than the modelling error
(influence of ε).

5.5. Consistency with the phase diagram
We aimed for a quantitative comparison with the results in [28] for axisymmetric vesicles without

area-difference term (α = 0) but with a lateral phase separation. As initial data we chose prolate-like
ellipsoids centred in the origin, symmetric with respect to the axis {x = (x1, x2, x3) ∈ R3 |x1 = x2 =
0}, with pronounced tips in x3-direction and with appropriate radii to fulfill the constraint on the
given reduced volume V̄ (recall Section 5.2 for its definition; the characteristic length scales R̄ were
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Figure 5: Parts of the meshes of relaxed shapes for the test data in Section 5.3 with ε = 0.3/
√

2, fully refined mesh
with Nh = 9218 nodes (left) in comparison with the adaptively refined mesh with Nh = 6114 nodes (right).

red. vol. extracted Fh/(8π) ε
0.95 2.22 2.222 0.1
0.91 2.175 2.177 0.1
0.90 2.155 2.157 0.1
0.89 2.11 2.124 0.1
0.90 2.155 2.1614 0.15

Table 5: Quantitative comparison between the energies extracted from the phase diagram in Section II.B.2 on page
2676 in [28] and the energies measured with our method. In the last row the result for a larger ε than in the third row
but the same parameters otherwise reveals a bigger energy. In the test example in Section 5.3 we had already observed
that decreasing ε leads to decay of the energy, cf. Table 3.

about 1.9). The initial values for the order parameter where of the form

c0(x) =


1 if p+ 0.25 ≤ x3,

4(x3 − p) if p− 0.25 ≤ x3 ≤ p+ 0.25,
−1 if x3 ≤ p− 0.25,

where x = (x1, x2, x3)T ∈ R3,

with an appropriate value p for the height of the interface such that the first phase occupies a tenth
of the total domain, A1/(A1 + A2) = 0.1. Further, we set ω = 0.1. The computations have been
carried out with adaptive mesh refinement and the results are displayed in Table 5 revealing a good
agreement with the values in [28].

5.6. Effects from the non-local bending energy
We now present a computational example that demonstrates the effectivity of our method for non-

axisymmetric shapes. The initial shape shown in Figure 6 on the left has a minimal edge length of
h0
min ≈ 0.055 and the all simulations have been carried out with a fixed time step of τ = 4.0× 10−5.

Neglecting any phase separation phenomena we first relaxed the initial shape under the Helfrich
flow with area-difference term (α = 100). The resulting shape is non-axisymmetric and shown in
Figure 6 on the right which qualitatively is in agreement with the results in [37].

In turn, when relaxing the same shape without the area-difference term (α = 0) then the resulting
shape is axisymmetric again but involves an unphysical self-intersection. In Figure 7 we display some
shapes during the relaxation.

Finally we took a phase separation with an initial field c0 into account that involved a red phase
at one of the tips and blue phases elsewhere, see Figure 8 on the left for the initial shape with order
parameter and on the right for the relaxed shape. Apart from additional parameters for the phase
separation the simulation parameters were the same as before in Figure 6. As expected, the energy
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Figure 6: Initial (left) and relaxed (right) shape for the Helfrich flow with weak area-difference constraint (α = 100,
c ≡ 1). Simulation parameters are V = 8.513298, A1 + A2 = 33.931229, A1 − A2 = −23.6, M0 = m0R̄ = −69.0, and
we set kH = 1.0. The length scale is R̄ ≈ 1.643 and the reduced volume V̄ ≈ 0.458. At the end time t = 2.0 we had
Nh = 4170 grid points and a total energy of Fh ≈ 81.752518 with a main contribution of Fh

W ≈ 81.749575 from the

bending energy and a small contribution of Fh
M ≈ 0.002943 from the area-difference term.

Figure 7: Relaxation of the initial shape in Figure 6 (left) subject to Helfrich flow (α = 0, c ≡ 1). The shapes are
displayed at times t = 0.2 (very similar to the relaxed shape with α = 100, see Figure 6 on the right), t = 0.4 (revealing
already a self-intersection), and t = 1.0 (axisymmetric relaxed shape), and on the very right we show a cut through the
middle of the shape at time t = 0.5 more clearly revealing a self-intersection. Simulation parameters are V = 8.513298,
A1 +A2 = 33.931229, and we set kH = 1.0. The length scale is R̄ ≈ 1.643 and the reduced volume V̄ ≈ 0.458.

associated with the phase interface leads to a more pronounced neck between the tip with the red
phase and the remainder of the vesicle in the blue phase.

5.7. Two-phase discocytes
We investigate the effect of a phase separation on a discocyte shape as in Figure 1 (top). The initial

configuration is displayed in Figure 9 on the left which is a discocyte centered at the origin and with
symmetry axis {(0, 0, z) ∈ R3 | z ∈ R}. The initial values for the order parameter were of the form

c0(x) =


1 if 0.4 ≤ x3,

5x0 − 1 if 0.0 ≤ x3 ≤ 0.4,
−1 if x3 ≤ 0.0,

where x = (x1, x2, x3)T ∈ R3.

The simulation data is shown in the caption to Figure 9. In particular, the reduced volume is V̄ ≈
0.6297.

As σ is increased from zero the equilibrium discocyte is deformed maintaining some non-convex
portions. For example, the relaxed shape for σ = 3 in Figure 9 in the middle still reveals dints.
However If σ is increased to σ = 3.45 then the dints vanish and the final shape is an axisymmetric
dumbbell shape but with a different symmetry axis to that of the initial discocyte, namely {(x, 0, 0) ∈
R3 |x ∈ R}, see Figure 9 on the right.

For comparison we also performed simulations with cigar-like initial shapes and the same simulation
parameters. In this range (recall that V̄ ≈ 0.6297) we know from Section 5.2 that shapes belonging
to the oblate/discocyte branch energetically are favorable, hence we expect this to hold for small σ.
In Figure 10 we show plots of the energies of the relaxed shapes over σ where we obtain the dashed
curve when relaxing an initial cigar shape and the continuous curve when relaxing the discocyte. The
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Figure 8: Initial (left) and relaxed (right) shape for membrane energy with phase separation and area-difference
constraint (α = 100). Simulation parameters are V = 8.513298, A1 + A2 = 33.931229, A1 − A2 = −23.6,
M0 = m0R̄ = −69.0, and we set σ = 2, kH = 1, ω = 0.02. At the end time t = 2.0 we had Nh = 4746 grid
points, and energy contributions of Fh

W ≈ 83.171314, Fh
GL ≈ 6.373348, and Fh

M ≈ 0.001882. The color/greyscale
indicates the order parameter ranging from c = 1 (light red/grey) to c = −1 (dark blue/grey).

Figure 9: Relaxation of a discocyte with phase separation. From left to right: initial shape and final shapes for σ = 3, 4
a time t = 0.03 on top, below the corresponding cross-sections through the plane {x ∈ R3 |x1 = 0}. Further simulation
parameters are V = 0.179394, A1 +A2 = 2.093816, A1−A2 = −0.917461, α = 0, kH = 1, ω = 0.02, ε = 0.1. The length
scale is R̄ ≈ 0.408 and the reduced volume V̄ ≈ 0.6297. The color/greyscale indicates the order parameter ranging from
c = 1 (light red/grey) to c = −1 (dark blue/grey).

latter one indeed reveals less energy for σ up to about 0.8. After that, the shapes belonging to the
prolate/dumbbell branch have less energy, and for σ ≥ 3.45 the discocytes also relax to shapes of this
branch. That we obtain two-phase discocytes as in the middle of Figure 9 for σ between 0.8 and 3.45
indicates that these shapes are local minimisers of the membrane energy since the relaxation method
ensures that the energy decays.

5.8. Topological changes of the phase separation
In the previous example it was mainly the initial membrane shape which lead to different relaxed

shapes for the same parameters. We now consider an example where such an effect is due to the initial
location of the interphase boundary. We consider cigar-like shapes. The domain of one phase is an
annular region around its cylindrical portion but the heights are different, Figures 11 and 12 on the
left. The simulation parameters are given in the captions of these Figures and are identical for the
two simulations.

For the higher positioned phase interfaces of Figure 11 we observe that the dark blue/grey phase
detects the tip and moves there resulting in two connected inter-membrane phases and a total energy
of Fh ≈ 52.1334. In turn, the two light red/grey domains remain separated by the annular dark
blue/grey domain of the other phase when the phase interfaces initially are positioned further away
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Figure 10: Energies of relaxed two-phase membranes from the oblate/discocyte branch (cf. Figure 9) versus the
prolate/dumbbell branch (cf. Figure 2) plotted over σ. Parameters are V = 0.179394, A1 +A2 = 2.093816, A1 −A2 =
−0.917461, α = 0, kH = 1, ε = 0.1. The length scale is R̄ ≈ 0.408 and the reduced volume V̄ ≈ 0.6297.

from the upper tip, see Figure 12. The final energy in the latter case is Fh ≈ 55.145 and bigger than
in the previous case because the phase interface has approximately twice the length. In fact, the line
energy of the relaxed shape in Figure 12 on the right is FhGL ≈ 6.4135 whilst the shape in Figure 11
on the right involves a line energy of FhGL ≈ 3.3271.
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