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Abstract. Shapes of vesicles formed by lipid bilayers with phase separation are gov-
erned by a line energy associated with the phase interfaces and a bending energy with
phase dependent material parameters. We present a numerical method to approx-
imate solutions to the Euler-Lagrange equations featuring the phase field approach
for the phase separation, triangulated surfaces and isoparametric quadratic surface fi-
nite elements. Furthermore, the method involves an iterative solution scheme that is
based on a relaxation dynamics coupling a geometric evolution equation for the mem-
brane surface with a surface Allen-Cahn equation. Remeshing and grid adaptivity are
discussed, and in various simulations the influence of several physical parameters is
investigated.
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1 Introduction

The basic components of cell boundaries and organelles are bilayers consisting of phos-
pholipids that spontaneously form when introduced into an aqueous environment in ap-
propriate concentration. Vesicles or bags formed by such biomembranes show a great va-
riety of shapes and have been attracting interest from various fields. First, the geometry
and composition is conjectured to contribute to and interact with cell processes. Second,
the lipid bilayers possess intricate mechanical properties which partially are solid-like,
namely they reveal a stiffness against stretching and bending, but are unable to sustain
shear stress and so also behave like a viscous fluid within each of the monolayers. Math-
ematicians finally are attracted by the geometric properties of the membrane but also by
the patterns that phases within the membrane may form. Such phase separation phe-
nomena are due to the different types of lipids of which the membrane consists.
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The classical biomembrane mechanics theory developed in [11, 26, 31] models the
vesicle boundary as a hypersurface on which the following elastic energy functional is
defined:

FCEH(Γ)=
∫

Γ

kκ

2
(κ−κs)

2+
∫

Γ
kgg. (1.1)

Here, the mean curvature (sum of the principal curvature) of the membrane is denoted by
κ and the Gaussian curvature by g, and kκ>0 (bending rigidity) and kg (Gaussian bending
rigidity) are material dependent elasticity parameters while the number κs is known as
the spontaneous curvature. A lateral phase separation due to a decomposition of the
different lipid molecules has been observed and recently been made visible, [5, 6, 43].
Line tension is observed at the phase interfaces, and in [34, 35] an energy functional of
the form

FSI(Γ)=FB+FL =
2

∑
i=1

(

∫

Γi

k
(i)
κ

2
(κ−κ

(i)
s )2+

∫

Γi

k
(i)
g g

)

+
∫

γ
σ̄. (1.2)

was proposed. The two-phase membrane consists of two smooth, not necessarily con-
nected surfaces Γi with a common boundary γ which is the phase interface. The constant
parameter σ̄ denotes the energy density of the interfacial energy. An intricate issue is the
smoothness across the phase interface. As in [35], Section II.B, we assume a C1 surface
which means that the external unit normal of the enclosed vesicle domain is continuous.
This assumption is motivated by the fact that the lipid bilayer should be intact across the
interface. However, higher order derivatives in general are discontinuous. For instance,
we will see that the mean curvature is subject to a jump condition in equilibrium. But we
want to mention that C0 surfaces may be considered, [32], motivated from the pictures
in [6] which, on a macroscopic scale, reveal kinks at the phase interfaces.

In order to deal with the line energy we consider a phase field approach and introduce
an order parameter c to distinguish the two phases. The states c = −1 and c = 1 then
correspond to the two phases, and the phase interfaces are replaced by thin layers across
which c changes is value rapidly but smoothly. To achieve this we replace the line energy
FL by a Ginzburg-Landau energy of the form

FGL =
∫

Γ
σ
( ε

2
|∇Γc|2+

1

ε
ψ(c)

)

. (1.3)

The function ψ(c) := 1
2(1−c2)2 is a double-well potential with minima in c=1 and c=−1.

Denoting by ν the external unit normal to Γ and by P := I−ν⊗ν the projection to the
tangential space the surface gradient of the order parameter is defined by ∇Γc := P∇c.
The gradient term |∇Γc|2 in (1.3) acts as a penalty term which avoids rapid changes of c

whilst the term
ψ′(c)

ǫ favours the values ±1 of the order parameter. Here ε is a small length
scale such that the thickness of the interfacial layers scales with ε. Finally, the coefficient
σ is related to the line energy coefficient σ̄ by

σ̄=
4

3
σ. (1.4)
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The phase field approach has been successfully applied in various fields, see [12] for a
review. In the context of two-phase membranes, the idea of replacing the line energy by
the Ginzburg-Landau energy dates back to the early 90s [1, 36, 42].

The phase dependent physical parameters in (1.2) become functions of the order pa-
rameter c, and we choose them to be of the form

kκ(c)=















k
(1)
κ if 1≤ c,

k
(1)
κ +k

(2)
κ

2 + k
(1)
κ −k

(2)
κ

4 c(3−c2) if −1< c<1,

k
(2)
κ if c≤−1,

and analogously for κs(c) and kg(c). Other sufficiently smooth monotone interpolations
between −1 and 1 may be used. The total membrane energy in this diffuse interface
model then reads

FDI(Γ,c)=FMC(Γ,c)+FGC(Γ,c)+FGL(Γ,c)

=
∫

Γ

1

2
kκ(c)

(

κ−κs(c)
)2

+
∫

Γ
kg(c)g+

∫

Γ

(σε

2
|∇Γc|2+

σ

ε
ψ(c)

)

. (1.5)

In this study we discuss a numerical method to compute equilibrium two-phase
membrane shapes, i.e., local minimisers of the energy (1.5), subject to certain side con-
ditions. The approach is based on approximating the membrane with a trianglulated
surface and the fields by finite element functions. The iterative method is the discreti-
sation of a suitable relaxation dynamics. It couples a geometric evolution equation of
Willmore-flow type for the membrane surface Γ to an advected surface Allen-Cahn equa-
tion for the phase field variable c:

vν =−∆Γ

(

kκ(c)(κ−κs(c))
)

−|∇Γν|2kκ(c)(κ−κs(c))

+
1

2
kκ(c)

(

κ−κs(c)
)2

κ−∇Γ ·
(

k′g(c)(κI+∇Γν)∇Γc
)

+σε∇Γc⊗∇Γc :∇Γν+σ
( ε

2
|∇Γc|2+

1

ε
ψ(c)

)

κ

−∑
i∈I

λiδΓCi, (1.6)

εω∂•t c =−1

2

(

κ−κs(c)
)2

k′κ(c)+kκ(c)
(

κ−κs(c)
)

κ′s(c)−gk′g(c)

+εσ∆Γc− σ

ε
ψ′(c)−∑

i∈I
δcCi, (1.7)

where vν is the normal velocity, ω>0 a kinetic coefficient, and ∂•t c=∂tc+vνν·∇c is the ma-
terial derivative of c along the trajectories defined by the velocity field vνν, ν denoting the
unit normal on Γ. Furthermore, the λi are Lagrange multipliers for possible constraints
which here are denoted by Ci(Γ,c) = 0, i ∈I where I is an abstract index set. We have
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constraints on the total area |Γ|, on integrals of the form
∫

Γ
h(c) and on the volume of the

domain enclosed by Γ in mind. The notation δΓCi stands for the variation with respect to
the surface Γ, and similarly δcCi is the variation with rerspect to c. The relaxation dynam-
ics consisting of (1.6) and (1.7) correspond to an L2 gradient flow dynamics of the energy
(1.5) where the variation of the energy is carefully derived in [24].

The variational formulation on which the finite element method will be based in-
volves an additional equation linking the mean curvature κ to the surface Γ. Denoting by
x : Γ→Γ the identity map, we will make use of the formula

∆Γx=κν. (1.8)

Observing that we may write vνν=∂tx for the velocity of Γ we easily see that the sur-
face evolution equation (1.6) in fact is a fourth order equation. But thanks to the splitting
into two second order equations (1.6) and (1.8) only H1 conforming finite element spaces
are required. We use isoparametric quadratic surface finite elements (SFEs) in order to
get a consistent approximation of the shape operator (or Weingarten map) ∇Γν. We refer
to [17, 30] for a discussion of the approximation of geometric quantities with Lagrange
SFEs. Solving equations as (1.7) with SFEs is discussed in [22]. With respect to (1.6) and
(1.8) we employ the method of [4] that has some mesh smoothing properties which makes
it preferable to other methods based on triangulated surfaces as [8, 13, 20, 38]. The evolu-
tion law (1.6) gives the motion in the normal direction. Using an approximated version
of this equation to move the vertices of the triangulated grid in an approximated normal
direction may lead to distorted meshes and hence to the need for remeshing. Our pre-
vious method presented in [23] for two-phase membranes (that is more restrictive with
respect to the material parameters by requiring constant kκ and kg as well as κs = 0) is
based on [20] for the membrane evolution which evolves vertices in the normal direc-
tion. Here, following [4], we add a tangential movement (obtained by solving a Dirichlet
problem in each time step) which leads to a nicer mesh.

The discretization is semi-implicit in time where only the terms to highest order and
the Lagrange multipliers are taken implicitly in time. In order to evolve the discrete
surface from the old time level to the new time level, we parameterize the new surface to
be computed at the new time level over the already computed surface at the old time level
so that no global parameterization over a fixed domain is required. This means, unless
we remesh, we use a fixed connectivity of vertices for the triangulation of the surface
and we calculate the new positions of the triangle nodes given the current ones. In each
time step, the discretization results in a problem for the vector of nodal positions of the
new triangulated surface, a vector for the approximated mean curvature at the nodes, the
nodal values of the order parameter and the Lagrange multipliers. The resulting systems
has a saddle point structure. We solve this by factorizing the main matrix associated
with the linear operator for the variables other than the Lagrange multipliers, solve a
few linear systems depending on the number of constraints, and then perform a quasi-
Newton iteration to compute the solution including the Lagrange multipliers.
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Let us briefly discuss other numerical approaches. For axisymmetric vesicle equilib-
rium shapes ode solvers are sufficient [35]. A method for vesicles close to a sphere is
presented in [41] where already the phase field method is used for the phase separation.
In [27, 37] H2 conforming finite elements with C1 ansatz functions are used to define a
discrete energy which is minimized using a black box conjugate gradient solver. This led
to distorted meshes. In some simulations in [37] this was overcome by taking additional
mesh regularization energies into account but convergence of the associated regularizing
forces to zero in the long term could not be guaranteed. Combining the methods of [2]
for surface clusters with the numerical scheme for Willmore flow in [4] would eventu-
ally eventually enable the approximation of the Euler-Lagrange equations for the sharp
surface and line energy (1.2).

The phase field method has been used to describe the membrane itself [44] as well
as phase separation on the surface, see also [33] for the coupling with fluid flow in 2D.
This approach can handle topological changes which we deem useful with respect to the
intra-membrane phase separation since it allows the study the appearance and stability
of configurations withmultiple domains (or rafts) of one phase in another matrix phase.
However topological changes of the membrane itself require severe rearrangements of
the lipid molecules so that the validity of continuum phase field models may be ques-
tioned for such phenomena. On the other hand phase field equations or diffuse interface
models are well established in the flat situation for approximationg or modelling ener-
getic interfaces. As the problem of computing the hypersurface involves a higher dimen-
sion than computing the (one-dimensional) phase interfaces we deem it advantageous to
use the parametric approach together with, for instance, SFEs, in order to approximate
the surface as it requires substantially fewer degrees of freedom than the phase field ap-
proach or level set methods, see the discussion in [16] whereas we use a phase filed model
on the surface itself.

We discretize the Euler-Lagrange equations of the surface energy for which, thanks
to the operator splitting, H1 conforming finite elements are sufficient. We stress that
we approximate a problem where material points on the surface move in the normal
direction. Hence, one is free to define a tangential motion for the triangle vertices as, for
example, in [4] in order to maintain a good mesh. In fact, a viscous term is added to the
evolution equations, just as in the spirit of [37]. Mesh smoothing becomes more desirable
when the deformations are very strong, and for such cases we propose a global method
so that simulations can be carried on.

To conclude the discussion of the choice of the model, our method combines the ef-
ficiency of triangulated surfaces with the topological flexibility and algorithmic conve-
nience of the phase field method to deal with the moving membrane surface and the
lateral phase separation, respectively.

In the next section we present the variational formulation of the evolution problem
and precisely state the constraints. Also the energy and Euler-Lagrange equations in the
sharp interface limit as ε→0 are stated. We then introduce the SFEs and proceed with the
spatial discretisation in Section 3. Also mesh adaption and mesh regularity are discussed.
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In the final section we present and discuss results of significant numerical experiments.
This includes a convergence study in ǫ (including grid refinement), investigating the ef-
fect of varying the magnitude of the line tension and the Gaussian bending rigidities, the
stabilization of multiple raft domains on sphere like vesicles and a study of non-sphere
like vesicles. We indicate how the computational approach may be used to calculate
phase diagrams.

For the implementation of the numerical schemes the finite-element software AL-
BERTA [39] has been employed, and for solving the linear systems we have made use of
the software UMFPACK [15].

2 Modelling

2.1 Vesicles and constraints

We consider vesicles formed by lipid bilayers and define admissible phase field surfaces
for the membrane energy (1.5) to be the smooth boundary Γ = ∂Ω of a bounded domain
Ω⊂R

3 (the vesicle domain) together with a smooth field c : Γ→R, the order parameter
or phase field variable.

The vesicle encloses a given volume denoted by V, such that the areas of the two
phases are prescribed; we denote them by Ai, i=1,2 (we refer to [40], Section 2.4.4 for the
physically relevant regime). In the context of the phase field model, the area constraints
are taken into account with the help of the function

h(c)=











1 if 1≤ c,
1
2 c(3−c2) if −1< c<1,

−1 if c≤−1.

Again other monotone interpolations between −1 and 1 may be used. As ε → 0 one
expects that

∫

Γ
h(c)→|Γ1|−|Γ2| where Γi, i = 1,2, are the domains of the two phases in

the sharp interface limit, see Section 2.3. This motivates the conservation of
∫

Γ
h(c) and

|Γ|=|Γ1|+|Γ2| instead of |Γ1| and |Γ2|. We remark that this approach has been successfully
applied previously in the context of Allen-Cahn systems on flat domains, cf. [28]. The
constraints read

CA(Γ,c)=0, (2.1)

Cc(Γ,c)=0 (2.2)

in terms of the functionals

CA(Γ) := |Γ|−(A1+A2), Cc(Γ,c) :=
∫

Γ
h(c)−(A1−A2). (2.3)

Defining the functional

CV(Γ) := |Ω|−V =
1

3

∫

Γ
x·ν−V (2.4)
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the volume constraint reads

CV(Γ)=0. (2.5)

2.2 Gradient flow dynamics

Calculation of the variation of the energy (1.5) and the constraints (2.3) and (2.4) is based
on deforming the membrane and changing the order parameter along the trajectories
associated with the deformation. Given a smooth normal vector field w=wν :Γ→R

3 and
a smooth function η:Γ→R we set Γ(τ):={x(τ):=x+τw(x)ν(x)|x∈Γ} and c(τ) :Γ(τ)→R,
c(τ,x(τ)) := c(x)+τη(x). The variation of the membrane energy is defined by

〈

δFDI(Γ,c),(w,η)
〉

=
d

dτ
FDI

(

Γ(·),c(·))
∣

∣

∣

τ=0
.

and similarly for the constraint functionals CV , CA, and Cc.

We now define the relaxation dynamics by a weighted L2 gradient flow. We consider
the inner product

Mω

(

(v,χ),(w,η);(Γ,c)
)

:=
∫

Γ

(

vw+εωχη
)

where ω > 0 is a kinetic coefficient. It yields a time scale which may speed up or slow
down the phase separation in comparison with the membrane surface relaxation. The
scaling in ǫ is such that the resulting Allen-Cahn equation for the order parameter c on
the evolving surface Γ approximates a forced geodesic curvature in the sharp interface
limit as ε→0 in analogy to the phase field approximation of mean curvature flow in flat
domains, [16, 28].

Problem 2.1 (Gradient Flow Dynamics). Suppose that an initial phase field surface (Γ0,c0),
Γ0 enclosing a domain Ω0, is given such that |Ω0|= V, |Γ0|= A1+A2, and

∫

Γ0 h(c0) =
A1−A2. Find a family {(Γ(t),c(t))}t∈[0,∞) with (Γ(0),c(0)) = (Γ0,c0) and functions λi :
[0,∞)→R, i∈I , such that at each time t∈ [0,∞)

Mω

(

(

vν(t),∂•t c(t)
)

,
(

w,η
)

;
(

Γ(t),c(t)
)

)

=−
〈

δFDI(Γ(t),c(t)),(w,η)
〉

−∑
i∈I

λi(t)
〈

δCi(Γ(t),c(t)),(w,η)
〉

(2.6)

for all deformations (w,η) of (Γ(t),c(t)), and such that 0=Ci(Γ(t),c(t)), i∈I , at each time
t∈ [0,∞).

The variations of the contributions to FDI and of the constraints can be computed as
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Figure 1: Sketch of a two-phase membrane with vectors τ, µ, and ν as occurring in the shape interface model
in Section 2.3.

presented in [24] and we confine ourselves to just stating the resulting formulae:

〈

δFMC(Γ,c),(w,η)
〉

=
∫

Γ

(1

2
(κ−κs(c))2k′κ(c)−kκ(c)(κ−κs(c))κ′s(c)

)

η

+
∫

Γ

(

∆Γ

(

kκ(c)(κ−κs(c))
)

+|∇Γν|2kκ(c)(κ−κs(c))
)

w,

+
∫

Γ

(

− 1

2
kκ(c)(κ−κs(c))2κ

)

w,

〈

δFGC(Γ,c),(w,η)
〉

=
∫

Γ

(

gk′g(c)
)

η+
∫

Γ

(

∇Γ ·
(

k′g(c)(κI+∇Γν)∇Γc
)

)

w,

〈

δFGL(Γ,c),(w,η)
〉

=
∫

Γ

(

−σε∆Γc+
σ

ε
ψ′(c)

)

η

+
∫

Γ

(

−σε∇Γc⊗∇Γc :∇Γν−σ
( ε

2
|∇Γc|2+

1

ε
ψ(c)

)

κ
)

w,

〈

δCV(Γ,c),(w,η)
〉

=
∫

Γ
w, (2.7)

〈

δCA(Γ,c),(w,η)
〉

=
∫

Γ
−κw, (2.8)

〈

δCc(Γ,c),(w,η)
〉

=
∫

Γ
h′(c)η−h(c)κw. (2.9)

The strong equations (1.6), (1.7) emerge directly from (2.6).

2.3 Related sharp interface model

An asymptotic analysis of the stationary equations of (1.6) and (1.7) with constraints has
been performed in [24]. For completeness we state the limiting problem as ε→0.

Admissible membranes surfaces Γ=Γ1∪γ∪Γ2 for the membrane energy FSI are spec-
ified below (1.2). Recall that Γ1 and Γ2 are smooth, not necessarily connected hypersur-
faces with smooth boundaries coinciding with γ which consists of a finite number of
smooth curves, and locally around γ the surface Γ can be parametrized by a C1 map.

Limits of quantities on γ that may be discontinuous carry an upper index of the form
(1) or (2) depending on whether γ is approached from Γ1 or Γ2, and by [·](2)

(1)
=(·)(2)−(·)(1)
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we denote the jump across γ. Furthermore, by µ we denote the outer co-normal of Γ2,
and by τ a unit tangential vector field along γ such that (τ,µ,ν) is positively oriented.
Figure 1 gives in impression of the situation where γ consists of one curve only and Γ

topologically is a sphere.

In a tube around γ, these vector fields (τ,µ,ν) may be extended to Γ and then are con-
tinuous across γ since Γ is a C1 surface. The curvature quantities hν :=−τ·∇Γντ and hd:=
−µ·∇Γντ are continuous but hp :=−µ·∇Γνµ may be discontinuous across γ. Let us also
remark that κ =hν +hp and g=hνhp−h2

d.

Problem 2.2 (Sharp Interface Equilibrium Equations). Find a two-phase membrane Γ =

Γ1∪γ∪Γ2 and find Lagrange multipliers λV , λ
(1)
A , and λ

(2)
A such that

0= k
(i)
κ ∆Γi

κ+k
(i)
κ |∇Γi

ν|2(κ−κ
(i)
s )

− 1
2 k

(i)
κ (κ−κ

(i)
s )2κ+λV−λ

(i)
A κ on Γi, i=1,2, (2.10)

0=
[

kκ(hν +hp−κs)+kghν

](2)

(1)
on γ, (2.11)

0=−
[

kκ∇Γ(hν +hp)
](2)

(1)
·µ+

[

kg

](2)

(1)
∇γhd ·τ−σ̄hν on γ, (2.12)

0=
[

kκ
2 (hν+hp−κs)

2+kg(hνhp−h2
d)

](2)

(1)

−
[

(kκ(hν +hp−κs)+kghν)hp

](2)

(1)
−σ̄hg+

[

λA

](2)

(1)
on γ, (2.13)

0= |Ω|−V, (2.14)

0= |Γi|−Ai, i=1,2. (2.15)

An asymptotic analysis of the stationary equations of (1.6), (1.7) with constraints (2.1),
(2.2), and (2.5) has been performed in [24], too, and in the limit as ε→0 the above Euler-
Lagrange equations emerge.

2.4 Variational formulation

We aim for employing the method described in [4] in order to approximate the geometric
evolution equation (1.6). Note that we may write vν = ∂tx·ν for the membrane normal
velocity, recalling that x(t) denotes the identity map on the evolving surface Γ(t). We
then multiply (1.6) with a test function χ :Γ→R and integrate over Γ. The first and fourth
term on the right hand side may be integrated by parts and further evaluated, for instance

∫

Γ
−∆Γ

(

kκ(c)(κ−κs(c))
)

χ=
∫

Γ
∇Γ

(

kκ(c)(κ−κs(c))
)

·∇Γχ

=
∫

Γ
kκ(c)∇Γκ ·∇Γχ+k′κ(c)∇Γc·∇Γχ(κ−κs(c))−kκ(c)κ′s(c)∇Γc·∇Γχ.
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The first one of these terms and the third one of (1.6) may be put to the left hand side. For
fields ξ : Γ→R

3 and φ,χ : Γ→R let us now define the forms

N (Γ,c;ξ,χ) :=
∫

Γ
ξ ·νχ,

C(Γ,c;χ,φ) :=
∫

Γ
kκ(c)∇Γφ·∇Γχ+

1

2
kκ(c)

(

κ−κs(c)
)2

φχ,

B(Γ,c;χ) :=
∫

Γ
k′κ(c)(κ−κs(c))∇Γc·∇Γχ−kκ(c)κ′s(c)∇Γc·∇Γχ

+
∫

Γ
−|∇Γν|2kκ(c)(κ−κs(c))χ+

(

k′g(c)(κI+∇Γν)∇Γc·∇Γχ

+
∫

Γ
σε∇Γc⊗∇Γc :∇Γνχ+σ

( ε

2
|∇Γc|2+

1

ε
ψ(c)

)

κχ,

L(Γ,c;χ) :=
∫

Γ
χ, K(Γ,c;χ) :=

∫

Γ
−κχ, H(Γ,c;χ) :=

∫

Γ
−κh(c)χ.

Then a weak formulation of (1.6) reads

N (Γ,c;∂tx,χ)−C(Γ,c;χ,κ)=B(Γ,c;χ)−λVL(Γ,c;χ)−λAK(Γ,c;χ)−λcH(Γ,c;χ)

for all test functions χ : Γ→R.

Also the mean curvature equation (1.8) may be tested with a test function and inte-
grated by parts. Defining

A(Γ,c;ξ,ζ) :=
∫

Γ
∇Γζ :∇Γξ

for fields ζ,ξ : Γ→R
3, a weak formulation of (1.8) reads

A(Γ,c;ξ,x)+N (Γ,c;ξ,κ)=0

for all test functions ξ : Γ→R
3.

For the weak formulation of the phase separation equation (1.7) we introduce the
forms

M(Γ,c;φ,χ) :=
∫

Γ
χφ,

J (Γ,c;φ,χ) :=
∫

Γ
εσ∇Γχ·∇Γφ+

σ

ε
2(c2−1)+χφ,

S(Γ,c;φ) :=
∫

Γ

σ

ε
2(1−c2)+cφ− 1

2
(κ−κs(c))2k′κ(c)φ

+
∫

Γ
kκ(c)(κ−κs(c))κ′s(c)φ−gk′g(c)φ,

P(Γ,c;φ) :=
∫

Γ
h′(c)φ,
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where f + := max{ f ,0} for any real quantity f . We remark that the above forms use
the splitting ψ′(c)=2c(c2−1)+−2c(1−c2)+ which corresponds to a splitting of ψ into a
convex and non convex parts. We finally obtain

εωM(Γ,c;φ,∂•t c)+J (Γ,c;φ,c)=S(Γ,c;φ)−λcP(Γ,c;φ)

for all test functions φ : Γ→R.

Problem 2.3 (Variational Relaxation Flow). Suppose that an initial phase field surface
(Γ0,c0), Γ0 enclosing a domain Ω0, is given such that |Ω0|=V, |Γ0|=A1+A2, and

∫

Γ0 h(c0)=
A1−A2. Find a family {(Γ(t),κ(t),c(t))}t∈[0,∞) with Γ(0) = Γ0, c(0) = c0 and functions
λi : [0,∞)→R, i∈I , such that at each time t∈ [0,∞)

N (Γ,c;∂tx,χ)−C(Γ,c;χ,κ)=B(Γ,c;χ) (2.16)

−λVL(Γ,c;χ)−λAK(Γ,c;χ)−λcH(Γ,c;χ)

A(Γ,c;ξ,x)+N (Γ,c;ξ,κ)=0, (2.17)

εωM(Γ,c;φ,∂•t c)+J (Γ,c;φ,c)=S(Γ,c;φ)−λcP(Γ,c;φ) (2.18)

for all test functions χ,φ : Γ→R, ξ : Γ→R
3 and such that 0=Ci(Γ(t),c(t)), i∈{V,A,c}, at

each time t∈ [0,∞).

3 Numerical Scheme

The discretization of the governing equations in Problem 2.3 is based on approximating
the membrane Γ by triangulated surfaces Γh and using SFEs. For the geometric evolution
equation (2.16) we employ ideas that date back to the work of Dziuk (e.g., [18, 19], see
also the review in [16]). In order to avoid explicit coordinates on or parameterizations of
the evolving surface, the surface at a subsequent time is computed via a parameterization
over the actual surface. Since the present evolution equation is of fourth order the mean
curvature is kept as an additional unknown quantity allowing for a splitting into two
second order equations. Appropriate variational formulations involve only first order
gradients so that H1 conforming finite element spaces are sufficient. The specific scheme
for the geometric evolution law we use is based on the approach of [4].

3.1 Surface finite elements

Triangulated surfaces and isoparametric quadratic SFEs are carefully described in [9, 17,
29] and we give a short introduction only. A triangulated polyhedral surface Γ̃h is a polyhe-
dron with planar triangular faces,

Γ̃h =
⋃

T̃∈T̃h

T̃

where T̃h consists of a finite number of closed, non-degenerate triangles T̃ such that the
intersection of two different triangles is either empty or a common edge or a common
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vertex and such that each triangle has at least one edge in common with another triangle.
Given a triangulated polyhedral surface Γ̃h, a quadratic triangulated surface Γh over Γ̃h is of
the form

Γh =
⋃

T∈Th

T

where there exists a homeomorphism F : Γ̃h→Γh such that

• for each T∈Th there is a T̃∈T̃h with T =F(T̃),

• F|T̃ is a quadratic polynomial on each T̃∈T̃h,

• F leaves vertices unchanged.

It follows that each triangle T∈Th can be parameterized by a quadratic polynomial ΦT :
T̂→T where T̂ :={λ∈R

3 |λi≥0,∑i λi=1} is a fixed reference triangle. Denoting the space
of polynomials of degree two by P

2(·) we have that ΦT ∈P
2(T̂).

Given a quadratic triangulated surface Γh, the isoparametric quadratic SFE space is de-
fined by

Sh(Γh) :=
{

φ∈C0(Γh)
∣

∣φ|T◦ΦT ∈P
2(T̂) on each T∈Th

}

.

The nodal variables are the evaluations at the vertices and at the midpoints of the edges.

We denote the coordinates of these points by {xi}Nh
i=1. Thus, Nh is the dimension of Sh.

We denote the standard basis by {φi}Nh

i=1 characterized by φi(xj) = δij with δij being the
Kronecker symbol. Elements ζh∈Sh can uniquely be written in the form ζh(x)=∑i ζiφi(x)

with coefficients ζi = ζh(xi). We introduce the notation ζ =(ζi)
Nh

i=1 for the coefficient vec-

tor. For discrete versions of three-dimensional fields ξ = {ξk}3
k=1 we introduce the finite

element space Sh(Γh) :=S3
h(Γh). The standard basis of Sh is {φiek}Nh,3

i,k=1 where ek={δkj}3
j=1.

We will employ the notation ξ ={ξ i,k}Nh ,3
i,k=1 where ξi,k = ξh(xi)·ek. Generically, we denote

the identity map on Γh by xh and recall that the notion isoparametric refers to the fact that
xh∈Sh(Γh).

We now consider pairs (Γh,ch) where Γh is a quadratic triangulated surface that en-
closes a bounded domain Ωh together with a scalar field ch ∈Sh(Γh). For such objects we
denote the external unit normal of the enclosed Ωh by νh which is well-defined at each
point in the interior of each triangle T∈Th. The matrix Ph = I−νh⊗νh =∇Γh

xh stands for
the projection onto the tangential space of Γh and, as νh, is well-defined at each point in
the interior of each triangle T∈Th.

The weak formulation of (1.8) can be used to define a finite element function κh ∈
Sh(Γh) that serves to approximate the mean curvature vector κ=κν. It is defined via

∫

Γh

κh ·wh+∇Γh
xh :∇Γh

wh =0
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which has to hold for all wh ∈ Sh(Γh). Furthermore, we need an approximation to the
shape operator ∇Γν as appearing in the form B(Γ,c;χ). Partial integration on an admis-
sible phase field surface yields

∫

Γ
∇Γν : Z+ν·(∇Γ ·Z)=

∫

Γ
∇Γ ·(ZTν)=

∫

Γ
(ZTν)·κ

for any smooth test function Z :Γ→R
3×3. This motivates defining the tensor valued field

Qh∈S3×3
h (Γh) via

∫

Γh

Qh : Zh =−
∫

Γh

(∇Γh
·Zh)·νh+

∫

Γh

νh⊗κh : Zh

for all tensor-valued test fields Zh∈S3×3
h (Γh) in order to approximate the shape operator,

[29]. If Γh approximates a sufficiently smooth surface Γ by interpolation then, as shown
in [30], ‖Q̃h−∇Γν‖L2(Γ) =O(h) for quadratic SFEs where Q̃h is an appropriate lift of Qh

from Γh to Γ, see [30] for the details. Numerical experiments furthermore indicate that
this convergence also holds true in L∞(Γ) . Another possibility for approximating the
shape operator is to compute ∇Γh

νh on every T∈Th, see [17] for the details.

3.2 Spatial discretisation

For dynamic problems we consider families of triangulated surfaces {Γh(t)}t∈I where
each Γh(t) is a quadratic triangulated surface and the nodes xi(t) depend smoothly on
the relaxation time t. The velocity vh(t,x) := ∑i ∂txi(t)φi(t,x) is an element of Sh(Γh(t))
and is tacitly taken into account in the operator ∂•t whenever working on a triangulated
surface. We remark that (see [22])

∂•t φi =(∂t+vh ·∇)φi =0 ∀i=1,.. . ,Nh. (3.1)

Also the other t-dependent surface fields will become families of finite element functions,
e.g., {κh(t)}t where the t dependence concerns the coefficient vector κ(t) but also the
basis functions φi(t,·) of Sh(Γh(t)). Observe that by the transport property of the basis
functions (3.1) we have that

∂•t ch =∑
i

∂•t (ciφi)=∑
i

∂•t ci φi+ci ∂
•
t φi =∑

i

∂tci φi.

Inserting this into (2.18), a semi-discrete problem is derived from Problem 2.3 in a straight-
forward way:

Problem 3.1 (Semi-discrete Variational Relaxation Flow). Suppose that an initial quadratic
triangulated surface Γ0

h enclosing a domain Ω0
h and an initial order parameter c0

h∈Sh(Γ0
h)

are given such that |Ω0
h| = V, |Γ0

h| = A1+A2, and
∫

Γ0
h
h(ch) = A1−A2. Find a family
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{(Γh(t),κh(t),c(t))}t∈I with Γh(0)=Γ0
h, ch(0)=c0

h and find functions λV,h,λA,h,λc,h :[0,∞)→
R such that

N h(Γh,ch;∂txh,χh)−Ch(Γh,ch;χh,κh)=Bh(Γh,ch;χh)

−λV,hL(Γh,ch;χh)−λA,hKh(Γh,ch;χh)−λc,hHh(Γh,ch;χh) (3.2)

A(Γh,ch;ξh,xh)+N h(Γh,ch;ξh,κh)=0, (3.3)

εω
Nh

∑
i=1

M(Γh,ch;φh,φi)∂tci+J (Γh,ch;φh,ch)

=Sh(Γh,ch;φh)−λc,hP(Γh,ch;φh) (3.4)

for all test functions χh,φh∈Sh(Γh(t)) and ξh∈Sh(Γh(t)) and such that 0=Ci(Γh(t),ch(t)),
i∈{V,A,c}, at each time t∈ [0,∞).

In the above problem formulation, the forms N h, Ch, Bh, Kh, Hh, and Sh emerge from
N , C, B, K, H, and S by replacing ν, κ, and ∇Γν by νh, κh, and Qh, respectively. Some
of the forms also involve nonlinearities as kκ(c) or h(c) that are polynomials as long as
−1≤ch≤1 which we always observed in our simulations. Whenever we had to compute
the integrals we chose quadrature formulas that are exact for these polynomials.

3.3 Time discretisation

In order to discretize in time we consider times {tm}m∈N with tm ∈ [0,∞), tm
> tm−1, and

tm → ∞ as m → ∞ and set τm := tm+1−tm for the time steps. Quantities at time tm are
denoted with an upper index m. At any time tm the surface Γm

h is given by knowledge
of xm

h , the vertices of the triangulation. As mentioned before, the idea of discretizing
the geometric evolution equation (2.16) is to compute the surface at the subsequent time
tm+1 via parameterizing it over the already computed surface at time level m which is
achieved by computing xm+1

h as an element of Sh(Γm
h ). In the formula (3.5) below, with

a slight abuse of notation, xm
h stands for the identity on Γm

h (though, properly, being an

element of Sh(Γm−1
h )).

Problem 3.2 (Fully Discrete Variational Relaxation Flow). Suppose that an initial quadratic
triangulated surface Γ0

h enclosing a domain Ω0
h and an initial order parameter c0

h∈Sh(Γ0
h)

are given such that |Ω0
h| = V, |Γ0

h| = A1+A2, and
∫

Γ0
h
h(c0

h) = A1−A2. Find a family

{(Γm
h ,κm

h ,cm
h )}m∈N and series {λm

V,h,λm
A,h,λm

c,h}m∈N such that

N h(Γm
h ,cm

h ;xm+1
h ,χh)−τmCh(Γm

h ,cm
h ;χh,κm+1

h )

=N h(Γm
h ,cm

h ;xm
h ,χh)+τmBh(Γm

h ,cm
h ;χh)

−λm+1
V,h τmL(Γm

h ,cm
h ;χh)

−λm+1
A,h τmKh(Γm

h ,cm
h ;χh)

−λm+1
c,h τmHh(Γm

h ,cm
h ;χh) (3.5)
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A(Γm
h ,cm

h ;ξh,xm+1
h )+N h(Γm

h ,cm
h ;ξh,κm+1

h )

=0, (3.6)

εωM(Γm
h ,cm

h ;φh,cm+1
h )+τmJ (Γm

h ,cm
h ;φh,cm+1

h )

= εωM(Γm
h ,cm

h ;φh,cm
h )+τmSh(Γm

h ,cm
h ;φh)

−λm+1
c,h τmP(Γm

h ,cm
h ;φh) (3.7)

for all test functions χh,φh∈Sh(Γm
h ), ξ∈Sh(Γm

h ) and such that 0=Ci(Γm+1
h ,cm+1

h ), i∈{V,A,c}
for each m∈N∪{0}.

We remark that the splitting of ψ yields an approximation of ψ′(c) to be

2cn+1((cn)2−1)+−2cn(1−(cn)2)

which is a linearised version of the convex splitting method for double well potentials
introduced in [7,25]. The resulting discrete problem is a large linear system for the vector
{cm+1

h ,κm+1
h ,xm+1

h } coupled to a small nonlinear system for the Lagrange multipliers. To
solve the discrete problem occurring in each time step we proceeded as described in [23].
However, for completeness, we state the solution algorithm in the Appendix. In short,
we used the direct method UMFPACK [15] to factorize the system matrix and solve a
few systems of linear equations (see Appendix A). After, a quasi-Newton iteration is
carried out to compute the new Lagrange multipliers and the new shape including mean
curvature and phase field variable (see Appendix B).

3.4 Damping of the tangential motion and stopping criterion

In contrast to the method used in [23] the discretization in Section 3.3 leads to updates
which also have tangential components ensuring good mesh properties, see [3] for de-
tails. However we have observed in our simulations that, in the long term, the tangential
motion usually becomes dominating, i.e., the geometry of the shape merely changes but
the nodes almost only move in tangential direction. Then the total relaxation time be-
comes unnecessarily large and, thus, we want to damp the tangential motion.

For this purpose, we extended the method from [4], Section 2.4, from linear to quadratic
surface finite elements. On a quadratic triangulated surface Γh let τµ,h, µ = 1,2, denote

vector fields such that {νh,τ1,h,τ2,h} form an orthonormal basis of R
3. In practice, we

used the surface gradient of one of the barycentric coordinates to define τ1,h and then
computed τ2,h from the vector product νh∧τ1,h. In analogy to N we define the forms

Tµ(Γh,ch;ξh,χh) :=
∫

Γh

ξh ·τµ,hχh, µ=1,2

for ξh∈Sh(Γh), χh ∈Sh(Γh).
Let αm

>0 be a sequence of damping parameters which initially are small and towards
the end of the simulation may increase (its adaptive choice will be discussed later on).
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We now augment the scheme in Problem 3.2 by two additional equations and change the
curvature equation (3.6). Apart from xm+1

h ,κm+1
h ,cm+1

h we now have to find βm+1
µ,h ∈Sh(Γm

h ),

µ=1,2, such that

A(Γm
h ,cm

h ;ξh,xm+1
h )+N h(Γm

h ,cm
h ;ξh,κm+1

h )

+αmT1(Γm
h ,cm

h ;ξh,βm+1
1,h )+αmT2(Γm

h ,cm
h ;ξh,βm+1

2,h )=0, (3.8)

Tµ(Γm
h ,cm

h ;xm+1
h ,ηµ,h)−τmM(Γm

h ,cm
h ;ηµ,h,βm+1

µ,h )

=Tµ(Γm
h ,cm

h ;xm
h ,ηµ,h), µ=1,2 (3.9)

for all test functions ξ ∈ Sh(Γm
h ), ηµ,h ∈ Sh(Γm

h ), µ = 1,2, in addition to (3.5), (3.7) and the
side constraints. The identities (3.9) mean that the tangential motion in the directions τµ,h

is stored in the βµ,h. The coupling in (3.8) is such that the tangential motion that would
emerge from its original equation (3.6) is reduced by τmαmτµ,h.

In our simulations we do not fix the damping parameters but rather choose them in
dependence on the velocities of vertices. Setting

vm
h :=

xm
h −xm−1

h

τm−1

we compute the L2 norms of the normal and the tangential portion

v̄m
ν :=

(

∫

Γm
h

(

νm
h ·vm

h

)2
)1/2

, v̄m
τ :=

(

∫

Γm
h

(

vm
h −(νm

h ·vm
h )νm

h

)2
)1/2

.

The aim is to keep the tangential portion in a certain range with respect to the normal
portion, i.e., cvv̄m

ν ≤ v̄m
τ ≤Cvv̄m

ν where 0< cv <Cv are two constants. As long as this holds
true we just keep the damping parameter, αm+1=αm. If it turns out that v̄m

τ is too big then
we increase the damping parameter, αm+1

> αm, so that the damping is enforced in the
next time step. Similarly, we decrease it if the tangential portion is too small where we
recall that some tangential motion is desired in order to keep a nice mesh. In practice,
we usually set cv = 0.1 and Cv = 0.5, and the increase or decrease of αm was realized by
multiplying with or dividing by a factor of 10.0. Additionally, we imposed lower and
upper limits for αm, usually of 10−6 and 104.

The criterion for stopping the computations and accepting a final surface as the equi-
librium is based on the size of the computed normal velocity (and, hence, of the tangential
velocity) and whether no Newton iteration steps are required any more to update the La-
grange multipliers. We usually stopped if the L2 norm of the normal velocity normalised
by the characteristic radius (4.1), i.e. ‖v̄m

ν ‖L2(Γm
h )/Rc, reached a value of 10−3 and no New-

ton iteration steps had been carried out during the preceding 10 time steps where we
typically required an accuracy of 10−8 for the constraints.
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3.5 Mesh adaption

In order to reduce computation time it is desirable to adaptively refine and coarsen the
grid. We use ideas as proposed in [23], Section 3.3.4, but for convenience describe it here.
The employed finite element software ALBERTA [39] requires a marking function that
provides an integer for each triangle indicating how many times it has to be refined (=
bisected) or how many times it may be coarsened (if the integer is negative). We want
to ensure that the interfacial layers are resolved by the mesh but also demand that the
strongly curved regions contain sufficient numbers of nodes. For the latter regions we
consider the quantity |∇Γν|2=κ2−2g=κ2

1 +κ2
2 where κ1 and κ2 are the principal curvaure.

As an approximation on a quadratic polyhedral surface we consider the finite element
function sκ ∈Sh(Γh) with the nodal values sκ,i = |Qh(xi)|2.

Our marking strategy consists of three positive numbers (Nin,No f f ,Nκ) with the fol-
lowing meaning: The diameter of an element in the interfacial layer shall be smaller than
ε/Nin, and if the element belongs to one of the bulk phases then the diameter shall be
smaller than ε/No f f , and throughout the element diameter shall be smaller than Nκ/Iκ

where Iκ is the arithmetic mean of the values of
√

sκ,h in the nodes belonging to the ele-
ment. If a triangle fails to meet any of these criteria then it is marked for one refinement.
In turn, if its diameter is smaller than half the desired diameter then it is marked for one
coarsening.

We perform an explicit mesh adaption strategy and execute the marking algorithm
usually at the beginning of about every fifth time step, followed by the mesh adaption.
These routines involve interpolation and restriction operations to obtain the values in the
new nodes as described in [39]. In general, this leads to an increase of the total energy
and, in particular, the surface data are no longer consistent in the following sense. For a
triangulated surface in (or close to) equilibrium equation (3.3) is fulfilled and relates xh

and κh but mesh adaption typically destroys this relation. We observed that this usually
increases the nodal velocity, and for this reason we perform a couple of time steps before
considering another mesh adaptation. We further observed in the late stage of the sim-
ulation when the system has almost relaxed that mesh changes are no longer required.
Altogether, this mesh adaption procedure does not ensure that the above mentioned cri-
teria are fulfilled during the whole relaxation but they are satisfied in the long run and,
hence, for the final shapes that we are essentially interested in.

3.6 Remeshing

The method that we use for the geometric evolution equation in general leads to a good
mesh behavior by moving the vertices in tangential direction in an appropriate way,
see [3]. Nevertheless, when the deformations became strong even this incorporated tan-
gential vertex motion turned out to be insufficient. In particular, when necks formed then
triangles became somewhat elongated such that the ratio of the longest edge to the short-
est one became large. For this reason we employ the global remeshing method presented
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Figure 2: Example for the remeshing method described in Section 3.6. On the left the mesh before remeshing
wich a quality of q≈ 0.29. In our simulations we never the mesh degenerate that much, this is for illustration
purpose only. In the middle the mesh after applying the global remeshing method, q≈0.47. Often, some mesh
adaption (here a rather severe one) is necessary after remeshing. On the right we display the mesh after this
adaption.

in [21]. It is based on computing a conformal map to a reference manifold on which a nice
mesh is given. Then this nice mesh is mapped to the actual triangulated surface using
the inverse of the computed map . Since the inverse is conformal, too, the new surface
mesh is of the same quality as the mesh on the reference manifold. We have employed
this method only to surfaces of spherical topology so far. The reference manifold is the
two-sphere S2 in the following short description.

As a quality measure q(Γh) of the a triangulated polyhedral surface Γh we have used
the minimal value of the sinus of the interior angles of the elements,

q(Γh) :=min{qT |T∈T (Γh)}, qT :=min{sin(α)|α inner angle of T}. (3.10)

With inner angles we mean all the angles of the four flat triangles formed by neighboring
nodes. Recalling that any T∈Th has six nodes, three of them corresponding to the vertices
and three located on the edges, we consider the three planar triangles formed by a vertex
and the nodes on the adjacent edges and the triangle formed by the nodes on the edges.

One will expect that the mesh quality essentially depends on the triangulated polyhe-
dral surface Γ̃h underlying a quadratic triangulated surface Γh (as introduced in Section
3.1). For this reason, it should be sufficient to work with linear SFEs, which has the fur-
ther advantage to be cheaper, and this indeed turned out to be practical. We introduce
the space

S̃h(Γ̃h) :=
{

φ∈C0(Γ̃h)
∣

∣φ is linear on each T̃∈T̃h

}

of dimension Ñh and denote its vector valued variant by S̃h(Γ̃h). We remark that Γ̃m
h is

obtained from a computed Γm
h by restricting the corresponding identity map xm

h to S̃h(Γ̃h)
as this yields the identity map on Γ̃m

h (intuitively, we drop the edge midpoints and linearly

interpolate between the remaining vertices). The vertices of Γ̃h are denoted by {x̃i}Ñh
i=1,

and let us introduce the notation ũ=(ũh(x̃i))
Ñh

i=1 for a function ũh ∈ S̃h(Γ̃h).
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We assume that the nice mesh on S2 that we want to map to Γ̃h is given in terms
of a finite element function ỹh ∈ S̃h(Γ̃h). In practice, initial meshes usually have been
obtained by deforming a mesh on S2, and ỹ just contains the vertex positions before the
deformation. We remark that the grid adaption introduced in Section 3.5 also involves
refinement and coarsening of the mesh defined by ỹh where new vertices are projected to
S2.

The method described in [21] consists of computing a minimizer of the Dirichlet inte-
gral among the functions mapping to S2. The latter constraint is taken into account with
Lagrange multipliers ρi, i=1,.. . ,Ñh, leading to the functional

F(ũ,ρ) :=
1

2

∫

Γ̃h

∣

∣∇Γ̃h
ũh

∣

∣

2
+

Nh

∑
i=1

ρi

(

|ũh(x̃i)|2−1
)

(3.11)

where ρ = (ρi)
Ñh

i=1. The problem then is to solve 0 = F′(ũ,ρ) for which we employ the
Newton method where we use (ỹ,0) as an initial guess. To compute the new search di-

rection (F′′(·))−1F′(·) a linear system of saddle point structure needs to be solved, and
there we apply the generalized minimal residual method, GMRES. We remark that con-
formal maps are only unique up to the conformal group. To ensure uniqueness one could
’divide by this group’. These further constraints could be taken into account by augment-
ing (3.11) with further terms and Lagrange multipliers as described in [21]. But the above
method of computing an approximation to any solution has turned out to be sufficient
for our purpose.

As mentioned, the goal is to map the vertices {ỹh(x̃i)}i including their connections
to Γ̃h by ũ−1

h in order to obtain a nice mesh there. The function ũh defines another mesh
ũh(Γh) with vertices on S2, and the first step is to project the vertices {ỹh(x̃i)}i to ũh(Γh).
By the piecewise linearity of ũh it is then straightforward to apply ũ−1

h to the projected
vertices. The upshot is a new triangulated surface Γ̃new

h with a mesh of the same topology
but almost the same quality as the mesh of ỹh(Γ̃h) – almost because of the involved pro-
jections and numerical errors arising from minimizing (3.11) with an iterative method.

In order to obtain a new quadratic triangulated surface Γnew
h we simply pick the edge

midpoints of Γ̃new
h as new vertices, i.e., we linearly interpolate. This is certainly no par-

ticularly sophisticated method yet recall that we are not that much interested in approxi-
mating the relaxation dynamics but rather in the final relaxed shapes.

In a similar simple fashion we deal with the surface fields cm
h , κm

h that are required
for the subsequent time step. One first projects the fields to the space S̃h(Γ̃m

h ) yielding
functions c̃m

h , κ̃m
h . The values in the vertices of the new mesh Γ̃

m,new
h then are computed

by evaluating c̃m
h and κ̃m

h there. And finally, new functions cm,new
h ,κm,new

h ∈ Sh(Γ
m,new
h )

are defined by finding the values in the edge midpoints by interpolation. In general,
Ci(Γ

m,new
h ,cm,new

h )=0, i∈{V,A,c}, is not fulfilled any more. But the errors have been small
enough in practice such that the Newton iteration in the subsequent time step has been
able to restore the constraints.
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Similar to mesh adaption, in practice, mesh smoothing is no longer required when the
system has almost relaxed in the late stage of the simulation. In particular, characteristic
values such as the energy and the Lagrange multipliers of the final shape are not affected
(modulo numerical errors) by the preceding mesh operations during the relaxation. This
has been checked by comparing results computed with and without the mesh operations
for problems where the mesh did not degenerate too much. In Figure 2 we display some
meshes revealing the effect of our remeshing method.

4 Simulation results

Shapes of two-phase vesicles are characterized by several dimensionsless numbers that
are computed from the physical parameters and to which we will refer in the subsequent
sections.

1. Reduced volume: Given a membrane area A1+A2, the characteristic radius of a sphere
of the same area,

Rc :=
√

(A1+A2)/4π, (4.1)

can serve as a length scale of the problem. The reduced volume is then defined as
the volume divided by the volume of a ball with radius Rc,

vr :=
V

4πR3
c /3

.

2. Relative domain size: The portion of the ’blue’ phase area,

xr :=
A2

A1+A2
.

3. Reduced line tension: The invagination length ξi := k
(1)
κ /σ̄ serves to characterize the

competition between bending and line tension. The reduced line tension is then the
ratio between the characteristic radius and the invagination length,

σ̄r :=
Rc

ξi
=

Rc

k
(1)
κ

σ̄.

4. Bending moduli ratio: Ratio of the mean curvature bending rigidities,

br :=
k
(2)
κ

k
(1)
κ

.
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Figure 3: Convergence in ε, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1.
We display the initial and the relaxed shape. The dark region indicates the phase interface position by means
of the zero level set of ch. The profiles of the relaxed dumbbell shapes around the necks with the phase
transition region for several values of ε are shown, too. More precisely, we intersected the shapes with the half
plane {x ∈R

3 |x2 = 0.5,x3 ≥ 0} and display the distance to the symmetry axis. In addition, we indicate the
position of the phase interface. For convenience we shifted the profiles along the symmetry axis such that the
phase interfaces are at the position 0 where we stress that the continuum energy (1.5) is invariant under such
operations.

5. Normalized saddle-splay moduli difference: Thanks to the continuity of hν and hd, equa-
tion (2.11) can be written as

0=
[

kκ(hν +hp−κs)
](2)

(1)
+

[

kg

](2)

(1)
hν,

and a short calculation shows that (2.13) may be written as

0=
[

kκ
2 (hν−hp−κs)

2
](2)

(1)
−[

kg

](2)

(1)
h2

d−σ̄hg+
[

λA

](2)

(1)
.

In view of (2.12) we see that the Gaussian curvature bending rigidities influence the

phase interface position only via their difference k
(1)
g −k

(2)
g . An appropriate dimen-

sionsless quantity is

∆g :=
k
(1)
g −k

(2)
g

k
(1)
κ

.

4.1 Convergence in ε

We have observed convergence of the method as the mesh has been refined, and the
time discretization error has been negligible in comparison with the spatial discretization
error, which is analogous to the results in [23], Section 4.3. We therefore confine ourselves
on reporting on the convergence as ε→0 only.
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Figure 4: Convergence in ε, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1.
We display the mean curvature and the bending moment q as defined in (4.6) along the profiles displayed in
Figure 3 for several values of ε. The shapes have been shifted along the symmetry axis such that the phase
interfaces are at the position.

ε Nh Fh eoc(Fh) λV,h eoc(λV,h)

0.3/20.0 01730 58.8500 — 27.20821 —
0.3/20.5 02738 58.8159 1.2273 27.24698 3.3533
0.3/21.0 03634 58.7935 1.2376 27.25911 2.1723
0.3/21.5 06274 58.7790 1.0641 27.26482 3.6868
0.3/22.0 09114 58.7689 1.3357 27.26641 3.5202
0.3/22.5 13458 58.7626 — 27.26688 —

Table 1: Convergence in ε, test with cigars relaxing to non-symmetric dumbbells as described in Section 4.1,
values of the discrete energy (4.3) and the Lagrange multiplier λV,h at time t = 0.45 as well as orders of
convergence computed according to (4.4).
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We studied a rotationally symmetric problem and relaxed cigars of (dimensionless)
length 4.0 and diameter 1.0 with spherical caps and symmetry axis {x = (x1,x2,x3)T ∈
R

3 |x2 = x3 = 0.5} to nonsymmetric dumbbells, see Figure 3. The initial grids were ob-
tained by glueing together four coarsely triangulated surfaces of unit cubes, refining and
projecting onto the surface. For this example, the enclosed volume and area are V≈2.88
and A1+A2 ≈12.57, respectively, and the area difference is defined to be A1−A2 =4.71.
Initial data for the order parameter are

c0(x)=











1 if 2.25≤ x1,

x1−1.25 if 0.25≤ x1 ≤2.25

−1 if x1≤0.25.

(4.2)

We chose the material parameters σ =1.0, k
(1)
κ =1.5, k

(2)
κ =1.0, κ

(1)
s = κ

(2)
s =0.0, and k

(1)
g =

k
(2)
g =0.0 and set the kinetic coefficient ω=0.1. With respect to mesh adaption, the strategy

(Nin,No f f ,Nκ)= (1.6,0.3,4.0) has been used where the value Nκ =4.0 is chosen such that
it does not impact on the grid, i.e., the mesh size is determined by ε only. The time step
was fixed at τ =(ε/30.0)2.

The values shown in Table 1 reveal convergence as ε→0. For instance, we display the
discrete energy

Fh =
∫

Γh

1

2
kκ(ch)

(

κh−κs(ch)
)2

+kg(ch)(κ2
h−|Qh|2)+

σε

2

∣

∣∇Γh
ch

∣

∣

2
+

σ

ε
ψ(ch) (4.3)

and the Lagrange multiplier for the volume constraint. The experimental order of con-
vergence for a quantity f that depends on ε is defined by

eoc( f )(ε)=
log(| f (

√
2ε)− f (ε)|/| f (ε)− f (ε/

√
2)|)

log(
√

2)
. (4.4)

In Figure 3 we see that also the shape profiles, displayed around the necks, converge.
Moreover, the transition points marking the zero level sets of ch are displayed and con-
verge also as ε→0.

The mean curvature is expected to jump in the limit because condition (2.11) reads

0= k
(2)
κ κ(2)−k

(1)
κ κ(1) ⇔ k

(1)
κ

k
(2)
κ

=
κ(1)

κ(2)
(4.5)

and we have that k
(1)
κ 6= k

(2)
κ . We computed the values of the mean curvature κ and of the

bending moment
q := kκ(c)κ (4.6)

along the profiles. In Figure 4 the values are displayed for several values of ε around
the phase interface position. We see that, as ε→0, a jump of the mean curvature indeed
emerges. In turn, the curves showing the bending moment q appear to converge to a
continuous curve, possibly with a kink.



24

Figure 5: Influence of the line tension with simulation parameters as described in Section 4.2. The profiles of
axisymmetric vesicles are shown for the values σ=6,24,192 which corresponds to σ̄r =8,32,256. The colors red
and blue indicate the pure phases whilst the phase interface, approximated by the zero-level-set of ch, is colored
in black. We also display the values of the mean curvature along the profiles from the top to the bottom.

4.2 Increasing the line tension

We studied the influence of the surface tension parameter σ in an axisymmetric setting
as in Figure 4 B,C of [5]. Starting with a cigar again we have the values A1+A2=12.5664,

V ≈ 3.1835, A1−A2 ≈ 1.5080, and we set k
(1)
κ = k

(2)
κ = 1.0, k

(1)
g = k

(2)
g = 0.0, κ

(1)
s = κ

(2)
s = 0.0.

The dimensionless parameters are vr ≈0.76, xr ≈0.44, br =1.0, ∆g =0.0. Furthermore, we
set ω =0.1, ε=0.1.

We performed simulations for values of σ between 0.0 and 384.0 (or σ̄r between 0.0
and 512.0). Figure 5 shows the profiles of some relaxed shapes, i.e., the intersections
of the shape with the plane {x|x2 = 0.5} containing the symmetry axis. As σ increases
the neck becomes more and more pronounced. This is supported by the graph below
the profiles in Figure 5 showing the values of the mean curvature along one side of the
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Figure 6: Influence of the Gaussian curvature bending rigidities on the position of the phase interface, simulation
parameters as described in Section 4.3. We display the profiles of axisymmetric vesicles around the neck shown
for the values ∆g =−4,0,4 from left to right. The colors red and blue indicate the pure phases and the position
of the phase interface is black.

profiles where we see a peak emerging as σ increases. We also observe that the mean
curvature in the pure phases becomes nearly constant, i.e., the shapes of the pure phases
become spherical.

4.3 Impact of different Gaussian curvature bending rigidities

A difference of the Gaussian curvature bending rigidities effectively shifts the interface
out of the neck of a two-phase dumbbell as in Figure 3. Consider an axisymmetric set-
ting as in Figure 5 C,D of [5]. We started with an appropriate cigar as initial shape and
appropriate initial values for the phase field variable. Parameters were A1+A2=12.5664,

V≈3.1835, A1−A2≈1.5080, k
(1)
κ =k

(2)
κ =1.0, κ

(1)
s =κ

(2)
s =0.0, and σ=24.45 so that vr≈0.76,

xr ≈ 0.44, σ̄r = 32.6, and br = 1.0 in consistency with the data in [5]. Furthermore, we set

ω=0.1, ε=0.1. Changing ∆g :=k
(1)
g −k

(2)
g from −4.0 to 4.0, our method indeed reproduced

the predicted behavior of shifting the phase interface. Figure 6 shows some intersections
of the shapes with the plane {x|x2 = 0.5} that contains the symmetry axis around the
necks.

4.4 Stabilization of multiple domains

Many equilibrium vesicle shapes formed by two-phase membranes exhibit symmetries,
and some of them are even axisymmetric. The Euler-Lagrange equations in this setting
can be written as a system of ordinary differential equations, for instance see [14], that
are easier and cheaper to solve than the nonlinear partial differential equations in the
general setting. Our method may be used to investigate the phase diagram for arbitrary
equilibrium shapes, and in this section we present an example where the spontaneous
curvature causes the appearance of non-axisymmetric shapes.

In a first set of simulations we chose k
(1)
κ = k

(2)
κ =1.0, k

(1)
g = k

(2)
g =0.0, κ

(2)
s =0.0, σ=1.0,

and vary κ
(1)
s . We consider different initial shapes that are distinguished by the number

of red domains. Enclosed volume and area are fixed to V≈2.6226 and A1+A2 =12.5664,
and we set A1−A2≈2.4504. To be more precise with the initial shapes, we start with cigar
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Figure 7: Equilibrium shapes and their energy in dependence of the number of the spontaneous curvature κ
(1)
s

for the red phase and the number of red domains. Simulation parameters are as described in Section 4.4. In

particular, κ
(2)
s =0.0 in all cases. On top, four equilibrium shapes for spontaneous curvatures κ

(1)
s =−1.0 (top

left), κ
(1)
s =−2.0 (top right), κ

(1)
s =−3.0 (bottom left), κ

(1)
s =−4.0 (bottom right).
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Figure 8: Initial configuration and equilibrium shape for a vesicle with multiple rafts. Simulation parameters are
stated in Section 4.4.

shaped vesicles where on one or on both tips red phases appear, and we start with de-
formed spheres with three or four tips. The latter ones initially enclosed a larger volume
than the desired value because otherwise the quality of the initial grid would have been
too bad. We then started the method in combination with a deflation process that leads to
the desired volume, i.e., the value V in (2.4) depends linearly on t until the desired value
is attained. The dimensionless parameters are vr ≈ 0.63, xr ≈ 0.4025, σ̄r ≈ 1.33, br = 1.0,
∆g =0.0. Furthermore, we set ω =0.01, ε=0.1.

In Figure 7 we show some relaxed shapes with one to four tips in the upper row. In

the graph below the energy is displayed in dependence of the spontaneous curvature κ
(1)
s

of the red phase. We see that for κ
(1)
s between 0 and about −1.7 the shape with one simply

connected red domain energetically is most favorable. If κ
(1)
s decreases until about −2.3,

the shape with two red tips attached to a blue bulged cylinder has less energy. Below that
value, three tips are favored, and at about −4.1 the regime with four tips starts to have
least energy.

The curves are based on trying to compute the equilibrium energy at points κ
(1)
s =

0.0,−0.2,−0.4,.. . ,−7.0. We were unable to do so for all configurations because of insta-

bilities. For instance, after increasing κ
(1)
s to −2.0 the configuration with four red tips

became unstable and the vesicle relaxed to a shape with three red tips, and after decreas-

ing κ
(1)
s to −7.6 a vesicle with six red tips emerged.

Different bending rigidities together with the spontaneous curvature can also stabilize
multiple domains of one phase embedded in another phase on vesicles close to spheres.

We set k
(1)
κ =1.0, k

(2)
κ =8.0, k

(1)
g =k

(2)
g =0.0, κ

(1)
s =−8.0, κ

(2)
s =0.0, and σ=1.0. The initial shape

was a slightly deformed icosahedron where the 12 tips are occupied by the first phase, see
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Figure 8 on the left. Further data are V≈3.8134, A1+A2=12.5664, and A1−A2≈−2.3894
so that vr ≈0.91, xr ≈0.595, σ̄r ≈1.33, br =8.0, ∆g =0.0. We also set ω =0.05, ε =0.1. The
relaxed shape is displayed in Figure 8 on the right. This two-phase membrane shape
turned out to be stable with respect to changes in ε, the mesh size, small perturbations of
the sizes of the domains of the first phase (the red one), and small perturbations of the
initial shape. In fact, in Figure 8 on the left we display a gently perturbed icosahedron
which can be spotted by comparing the distances between the red domains. We remark
that too large values for ε lead to coalescence of the red domains. If different material
parameters in the two phases are not taken into account then the red domains will merge
as well as has already been discovered in [44].

4.5 Nonspherical Vesicles

Our method also allows for investigating non-spherical vesicles with phase separation.
As an example, we start with a torus with main radii 1.0 and 0.15 centered in x = 0 and
extended in directions x1 and x2. We want to investigate the effect of multiple phase
changes along the torus and, thus, initialize the order parameter such that the two phases
alternate. The parameters are V = 0.444083, A1+A2 = 5.921605, A1−A2 = −1.184321,

k
(1)
κ =1.0, k

(2)
κ =1.25, κ

(1)
s =κ

(2)
s =0.0, k

(1)
g =−0.83, k

(2)
g =−1.0375, and, if not otherwise stated,

σ = 0.2. The dimensionless parameters are xr ≈ 0.6 and br = 1.25 (vr and σ̄r require the
characteristic radius Rc which has been defined for spherical vesicles only). The material
parameters are comparable to those in [10]. Furthermore, we set ω =0.01, ε=0.05.

We have mainly been interested in the stability of multiple phase interfaces along the
torus and found that for the same simulation parameters different initial configurations
lead to different locally stable equilibria. In fact, four to eight red domains along the
torus appear to be stable which has been checked by slightly distorting the position of
the domains, enclosed volume, and ε. Interestingly, the shape with four domains has
less symmetry than the initial shape where the red domains were distributed at equal
distance. Figure 9 displays some relaxed shapes. We remark that when starting with
nine red domains we observed coarsening and ended up with six red domains.

We found that increasing the number of red domains leads to a growth of the total
energy which is almost linear. From the graph at the bottom of Figure 9 we infer that the
increase is essentially associated with the line energy which is almost proportional to the
number of phase interfaces across the torus since its radius does not change very much.
A small increase of the bending energy can be observed, too, which we link to the fact
that the shape is less able to deform if the number of red domains increases.

In another set of simulations each of the two phases are connected and we vary σ, see
Figure 10 on the left for the initial configuration and on the right for a relaxed shape. The
phase interfaces lead to indentions which, as expected, become more pronounced when
the line tension is increased. We remark that a configuration as in Figure 11 on the left
does not seem to lead to a stable shape. The torus shrinks reducing the lengths of the
phase interfaces and such that the blue phase (with the higher bending rigidity) becomes
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Figure 9: On top, relaxed shapes of tori differing in the number of phase transitions. Below we display the energy
over the number of red domains split up into the line energy and the bending energy (where we subtracted
150.0 from the latter one for an easier comparison). The simulation parameters are given in Section 4.5.
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Figure 10: Torus with phase separation, initial shape and relaxed shape for σ = 6.4. The other simulation
parameters are as described in Section 4.5.

Figure 11: Torus with phase separation, initial shape on the left. At time t = 0.02, the shape on the right is
obtained. Simulation parameters as described in Section 4.5.

flatter (see Figure 11 on the right). Both are favorable for the energy, and apparently
the increase of energy due to the increased bending of the red phase is compensated. In
fact, we even observed an acceleration of the shrinking process. Moreover, the energy
of the shape in Figure 11 on the right is 147.9562 and, thus, lower than the energy of the
relaxed shape obtained from the initial configuration as in Figure 10 on the left with the
same parameters, which is 152.9947. However, analyzing this behavior further requires
investigating the remeshing method described in Section 3.6 for non-spherical shapes
and is left for future research.

A Discrete system

In order to solve the fully discrete system in each time step we proceed in a similar way
to [23]. Let us define the matrices

Am =(Am
i,k,j,l)

Nh,3,Nh,3
i,k,j,l=1 , Am

i,k,j,l :=A(Γm
h ,cm

h ;φiek,φjel)

Nm =(Nm
i,k,j)

Nh,3,Nh

i,k,j=1 , Nm
i,k,j :=N h(Γm

h ,cm
h ;φiek,φj)

Tm
µ =(Tm

µ;i,k,j)
Nh,3,Nh

i,k,j=1 , Tm
µ;i,k,j :=Tµ(Γm

h ,cm
h ;φiek,φj), µ=1,2,



31

Mm =(Mm
i,j)

Nh

i,j=1, Mm
i,j :=M(Γm

h ,cm
h ;φi,φj),

Cm =(Cm
i,j)

Nh

i,j=1, Cm
i,j :=C(Γm

h ,cm
h ;φi,φj),

Im =(Im
i,j)

Nh

i,j=1, Im
i,j := εωM(Γm

h ,cm
h ;φi,φj)+τmJ (Γm

h ,cm
h ;φi,φj).

The objects Am, Nm, Tm
1 , and Tm

2 rather are tensors but they can be understood as matri-

ces in connection with coefficient vectors ξ = {ξ i,k}Nh ,3
i,k=1 and χ = {χi}Nh

i=1 of finite element

functions ξh ∈S(Γm
h ) and χh ∈Sh(Γm

h ). In fact, matrix-vector products like Amξ, (Nm)Tξ,
and Tm

µ χ are naturally defined by

(

Amξ
)

i,k
=

Nh,3

∑
j,l=1

Am
i,k,j,lξ j,l,

(

(Nm)Tξ
)

j
=

Nh,3

∑
i,k=1

Nm
i,k,jξi,k,

(

Tm
µ χ

)

i,k
=

Nh

∑
j=1

Tm
µ;i,k,jχj.

In the same spirit we define the vectors

bm ={bm
i }Nh

i=1, bm
i :=N h(Γm

h ,cm
h ;xm

h ,φi)+τmB(Γm
h ,cm

h ;φi),

lm ={lm
i }Nh

i=1, lm
i :=τmL(Γm

h ,cm
h ;φi),

km ={lm
i }Nh

i=1, km
i :=τmK(Γm

h ,cm
h ;φi),

hm ={lm
i }Nh

i=1, hm
i :=τmH(Γm

h ,cm
h ;φi),

tm
µ ={tm

µ;i}Nh

i=1, tm
µ;i :=τmTµ(Γm

h ,cm
h ;xm

h ,φi), µ=1,2,

sm ={sm
i }Nh

i=1, sm
i := εωM(Γm

h ,cm
h ;φi,c

m
h )+τmS(Γm

h ,cm
h ;φi),

pm ={lm
i }Nh

i=1, pm
i :=τmP(Γm

h ,cm
h ;φi).

In each time step we have to solve the system consisting of (3.8), (3.5), (3.9), (3.7) plus
the constraints. With the above definitions, the system is equivalent to













Am Nm αmTm
1 αmTm

2 0
(Nm)T τmCm 0 0 0

αm(Tm
1 )T 0 −αmτm Mm 0 0

αm(Tm
2 )T 0 0 −αmτm Mm 0

0 0 0 0 Im



























xm+1

κm+1

βm+1

1

βm+1

2
cm+1















=













0
bm

tm
1

tm
1

sm













−λm+1
V,h













0
lm

0
0
0













−λm+1
A,h













0
km

0
0
0













−λm+1
c,h













0
hm

0
0

pm
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plus the constraints. Let us define

Jm :=













Am Nm αmTm
1 αmTm

2 0
(Nm)T τmCm 0 0 0

αm(Tm
1 )T 0 −αmτm Mm 0 0

αm(Tm
2 )T 0 0 −αmτm Mm 0

0 0 0 0 Im













,

ym+1 :=















xm+1

κm+1

βm+1

1

βm+1

2
cm+1















, rm :=(Jm)−1













0
bm

tm
1

tm
1

sm













,

dm
V :=













um
V

·
·
·
0













:=(Jm)−1













0
lm

0
0
0













, (A.1)

dm
A :=













um
A

·
·
·
0













:=(Jm)−1













0
km

0
0
0













, (A.2)

dm
c :=













um
c

·
·
·

ζm
c













:=(Jm)−1













0
hm

0
0

pm













, (A.3)

where we remark that the last Nh entries of dm
V and dm

A vanish and ζm
c

=(Im)−1pm because
of the block structure of Jm. In order to solve the above four linear systems we used a
direct method [15]. Computing the matrix factorisations of the two blocks of Jm turned
out to be the most costly part of the whole solution algorithm, typically requiring 80-90%
of the computation time.

We then obtain

ym+1 = rm−λm+1
V,h dm

V −λm+1
A,h dm

A−λm+1
c,h dm

c , (A.4)

and the Lagrange multipliers have to be such that

Ci(Γm+1
h ,cm+1

h )=0, i∈{V,A,c}. (A.5)
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B Solution algorithm

Equation (A.4) suggests to consider ym+1 and, hence, also Γm+1
h as a function of the un-

known λm+1
i which have to be a root of (A.5), i.e., we have to solve

0= f (λm+1) :=





C̃V(λm+1)
C̃A(λm+1)
C̃c(λm+1)



,

where λm+1 =(λm+1
V,h ,λm+1

A,h ,λm+1
c,h ) and

C̃i(λm+1) :=Ci(Γm+1
h (λm+1),cm+1

h (λm+1)), i∈{V,A,c}.

As proposed in [23] we perform a quasi-Newton iteration for this purpose. For the New-
ton method we would need the derivative of f . We see from (A.4) and (A.1) that a change
in λm+1

V,h corresponds to a deformation of Γm+1
h (λm+1) or, equivalently, xm+1(λm+1) in the

direction −um
V,h ∈ S(Γm+1

h (λm+1)) which is the finite element function corresponding to

−um
V . Hence, ∂λm+1

V,h
C̃V(λm+1) is the change of the volume enclosed by Γm+1

h (λm+1) when

deforming in direction −um
V,h. Identity (2.7) suggests that (see [23] for the details)

∂λm+1
V,h

C̃V(λm+1)=
∫

Γm+1
h (λm+1)

νm+1
h (λm+1)·

(

−um
V,h

)

.

Similarly, changes in λm+1
A,h and λm+1

c,h correspond to deformations in directions −um
A,h and

−um
c,h, respectively, so that

∂λm+1
A,h

C̃V(λm+1)=
∫

Γm+1
h (λm+1)

νm+1
h (λm+1)·(−um

A,h

)

,

∂λm+1
c,h

C̃V(λm+1)=
∫

Γm+1
h (λm+1)

νm+1
h (λm+1)·

(

−um
c,h

)

.

For computing ∂λm+1
i,h

C̃A(λm+1) we want to proceed analogously, using identity (2.8). But

instead of computing the variation of the area of a quadratic triangulated surface exactly
as in [23] we use the mean curvature κm+1

h (λm+1) which is contained in ym+1(λm+1) by
means of κm+1(λm+1):

∂λm+1
V,h

C̃A(λm+1)≈
∫

Γm+1
h (λm+1)

(

−κm+1
h (λm+1)νm+1

h (λm+1)
)

·
(

−um
V,h

)

,

∂λm+1
A,h

C̃A(λm+1)≈
∫

Γm+1
h (λm+1)

(

−κm+1
h (λm+1)νm+1

h (λm+1)
)

·
(

−um
A,h

)

,

∂λm+1
c,h

C̃A(λm+1)≈
∫

Γm+1
h (λm+1)

(

−κm+1
h (λm+1)νm+1

h (λm+1)
)

·
(

−um
c,h

)

.
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In order to approximate the partial derivatives of C̃c(λm+1), identity (2.9) suggests to use
κm+1

h (λm+1) again but also cm+1
h (λm+1). Recall that η in (2.9) is the variation of c along the

trajectories defined by the deformation field. From (A.1) and (A.2) we see if λm+1
V,h or λm+1

A,h
change then these variations of the order parameter vanish but, in view of (A.3) and (A.4),
changing λm+1

c,h leads to a variation of cm+1
h (λm+1) in direction −ζm

c,h ∈ Sh(Γm+1
h (λm+1))

which is the finite element function corresponding to the coefficient vector −ζm
c

. Hence,

∂λm+1
V,h

C̃c(λm+1)≈
∫

Γm+1
h (λm+1)

(

h(cm+1
h )κm+1

h νm+1
h

)

(λm+1)·um
V,h,

∂λm+1
A,h

C̃c(λm+1)≈
∫

Γm+1
h (λm+1)

(

h(cm+1
h )κm+1

h νm+1
h

)

(λm+1)·um
A,h,

∂λm+1
c,h

C̃c(λm+1)≈
∫

Γm+1
h (λm+1)

(

h(cm+1
h )κm+1

h νm+1
h

)

(λm+1)·um
c,h

−
∫

Γm+1
h (λm+1)

h′(cm+1
h (λm+1))ζm+1

h (λm+1).

We denote the approximation of D f (λm+1) by H(λm+1). The quasi-Newton iteration to
compute the values λm+1 reads

λm+1,k+1 =λm+1,k−
(

H(λm+1,k)
)−1

f (λm+1,k). (B.1)

The values λm+1,0=λm, λ0,0=0 have been taken as initial choice. We have stopped the iter-
ation when the values C̃V(λm+1,k+1)/V, C̃A(λm+1,k+1)/(A1+A2), and C̃c(λm+1,k+1)/(A1−
A2) were reduced below a given tolerance that usually was set to about 10−8. Damping
has never been required to ensure convergence of the quasi-Newton method.
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