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Abstract. Existence of weak solutions to a phase field model for solidification of alloys
is studied. The model consists of balance equations for the energy and the concentra-
tions of the alloy components which are coupled to a system of Allen-Cahn equations
describing the motion of phase and grain boundaries. The system is stated in terms of
thermodynamic potentials corresponding to (inverse) temperature and chemical poten-
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and difficulties arise from the growth properties. The existence proof is based on a per-
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properties. After, appropriate estimates are derived in order to let the perturbation van-
ish.
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1 Introduction

The existence of weak solution to a system of nonlinear parabolic differential equations
of the structure

Opu(w, @) = V-L(Yu(u, @), ¢)Vu (1)
w(@, Vo)oip = V-ave(d, Vo) —ae(d, Vo) —we(d)—1e(u,d) (2)

for vector valued functions u and ¢ on a bounded domain €2 in a finite time interval I =
(0,7) will be shown. The equations result from a phase field model for the solidification
process of multi-component alloys that has been developed in [6].

The first set (1) is a system of balance equations for the internal energy and the
concentrations of the alloy components. The function ¢ is convex in u so that its partial
derivative 1 ,, with respect to « is monotone in w. In ¢, the function v and its derivatives
with respect to uw and ¢ are bounded. The right hand side is a diffusion term with a
positive semi-definite coefficient matrix L = (L;;); ; of real-valued functions of ¢ ,, and ¢.

The second set (2) of the equations is of a gradient flow structure based on an entropy
functional involving a portion of Ginzburg-Landau type [12]. The real-valued function w
is uniformly positive in its arguments. The function a is two-homogeneous and convex
in V¢ so that the partial derivative a y¢ is monotone in V¢. Finally, w is a multi-well
potential that could be split into a convex part and a bounded non-convex part.

When analyzing the system (1), (2), the main difficulties arise from the growth prop-
erties of the function ¢ which are due to thermodynamically motivated choices for certain

potentials. Writing u = (uy, ..., uy), first, ¢ can contain an additive term of the form
g(ug) = —log(—up) so that v /" oo if ug " 0. Second, 1) can be of linear growth in
@ = (uy,...,un) so that ¢ 44 — 0 as ||u|| — oco. To precise the problems arising from

these growth properties, suppose that the existence of solutions to approximating prob-
lems can be shown (indeed, here, a perturbation method will be used). In order to obtain
a solution to the original problem from the approximations, in general, convergence in cer-
tain LP spaces is necessary, i.e., estimates of differences of the form f(t+s,z+h)— f(t,x)
for small (s,h) are needed. In the case of parabolic differential equations the term with
the time derivative yields a control of terms involving time differences, but in the present
case only for v¢,,, and the above stated growth properties make it difficult to deduce a
control of time differences for w itself.

Not only the time differences impose difficulties. Standard estimates gained by testing
(1) with w and (2) with 9;¢ yield a bound for Vu in L? from the diffusion term. But
the weak growth of ¥ in w provides no estimate of w itself. In order to overcome this
problem, suitable boundary conditions are imposed, namely Robin boundary conditions
of the form

—L(¢u(u, @), §)Vu - Ve = B(u — up) (3)

where v, is the external unit normal on 02 and B = (f3;;);; is a positive semi-definite
coefficient matrix of real-valued functions. Such boundary conditions can provide an L?
estimate of w on the boundary of the domain, whence the Poincaré inequality gives the
desired control.

The procedure applied in the present work is as follows. First, a function v of quadratic
growth in w is considered. Existence of weak solutions is shown using a Galerkin method.



Thanks to the quadratic growth, the above stated difficulties do not arise, and generically
derived estimates are sufficient for the limiting procedure.

The idea to solve the equations for a potential ¢ of linear growth is then to approximate
it by potentials of the form ¢®) (u) := 1 (u) + v|u|? and let v \, 0. Applying methods of
Alt and Luckhaus [2], this procedure successfully delivers a weak solution to the limiting
problem. A related work is the one of Eck [4] where existence, uniqueness, and regularity
of weak solutions to a model for two alloy components, i.e., N = 2, is shown. There,
the model is formulated in terms of ¢ := ¢, and ¢, and the nonlinearities are located
in v = u(c, ). Degenerate diffusion coefficients L,; then are used that simplify the
treatment of (1).

Under a strong assumption on the diffusion matrix, namely, the exclusion of certain
cross effects in the diffusion, it is also possible to manage the terms of the structure
99 (ug) := —log(—ug) appearing additively in 1. Here, an approximation g™ (ug) of
quadratic growth is used, and ideas of Alt and Pawlow [3] are applied when letting n “\, 0.
Unfortunately, the last limiting procedure is only possible for potentials 1) of quadratic
growth in the other variables w, the combined problem is still open. The reason is that
mixed terms of the form |ug(t + h) — ug(t)||w(t + h) — w(t)| appear and cannot be ap-
propriately estimated. It should be remarked that Luckhaus and Visintin [13] can show
existence of a weak solution in this case, but without coupling to a system of equations
as (2). Their work is based on [2], and they use an approximation of ¢(® with a function
of linear growth. A strong assumption on the energy flux is used to obtain uy < 0 in the
limit of the approximation.

The focus of this work lies on handling w and 1. The functions for the system (2), w,
a, and w, are chosen such that the managing of ¢ is kept simple. The boundary conditions
for ¢ read

&7v¢(¢, V¢) *Vext = 0. (4)

Special difficulties do not appear except perhaps in the coupling term 4. In works of
Colli, Gajewski, Krejci, Sprekels, Zheng et al. (for instance, cf. [11], but see also the
references therein), non-local models for ¢ are considered where again the difficulties due
to the logarithmic term in uy appear, but multiple conserved quantities are not taken into
account so that Moser type iterations can be applied. Concerning the famous Penrose-Fife
model [14], which is the simplest model involving the above stated difficulties, the articles
of Horn et al. and Klein [9, 10] are worth to be mentioned.
Given initial data

clearly must fulfill consistency conditions. For example, when considering the problem
involving ¢(® = —log(—u) the initial value for uy should satisfy Ug,ie < 0.

The article is organized as follows. In the following section a brief description of the
model leading to equations of the form (1) and (2) is presented, and also the mentioned
growth properties of i) are motivated. The existence results are stated in the section
after in form of three theorems, including precise statements on the notation and the
assumption on the data. In the subsequent sections, the theorems then are proved.



2 Phase field modeling of alloy solidification

2.1 Notation

Throughout this article, @ C R, d € {1,2, 3}, is an open bounded domain with Lipschitz
boundary, and I = (0,7) C R is a time interval. For a number K € N define the sets
HYK = {v = (v1,...,vx) € RE : 3K 0, =1} and ¥K == {v € HXK . v, > 0 Vi}.
The tangent space T,HXX on HXX in some point v € HXX can naturally be identified
with the subspace TEX := {w € RX : 38 w; = 0}. Hence, if f is a real-valued function
defined on HXX then its gradient in some point on HXX will be identified with an element
of TYX. And if g : R — HXK is a differentiable function then ¢'(r) € TEX, r € R. Let
YV .= RxTEY. Elements y € YV sometimes will be written in the form y = (3o, ) with
Yo €ERand g = (y1,...,yn) € TEN. The tangent space of YV in some point y € Y can
be identified with YV again. With Bilin(Y",Y?) the bilinear forms on YV are denoted.

To integrate functions on 92 the notation dH?! is used for the surface area element,
H%! being the Hausdorff measure of dimension d — 1. Integration with respect to the
bulk uses dz = d£¢ with the d-dimensional Lebesgue measure £¢. Analogously, dt = d£!
appears when integrating with respect to time. With LP, 1 < p < oo, the space of measur-
able functions with the pth moment being Lebesgue integrable is denoted. The space WP
then denotes the measurable functions such that weak derivatives up to order m exit with
their pth moment being integrable. In the case p = 2 the notation H™ = H™? = W™? will
be used. Moreover, the isometric isomorphisms LP(I x Q) = LP(I; L*(Q2)), 1 < p < oo,
often are implicitly applied. The notation C"* stands for functions with continuous
derivative up to order m that are Holder continuous of order . The index o = 0 some-
times is omitted, i.e., C™ = C™VY.

Numerous estimates will appear involving constants independent of variables but de-
pendent only on given data as the considered domain 2, the time interval I = (0,7)
etc. In spite of the fact that they may change from line to line they remain denoted by
C. When applying compactness methods, convergence results in general only hold for
subsequences. For shorter presentation, this is usually not explicitly stated, and it was
abstained from an indication on the indexes.

Several theorems and results common to specialists in partial differential equations are
used without explicit reference. For instance, concerning results on Dirac sequences, the
Picard-Lindelof theorem, the Riesz compactness theorem in L? spaces, the Lebesgue dom-
inated convergence theorem, the Vitali convergence theorem, the Fatou lemma, Rellich
and Sobolev embeddings, the trace theorem for Sobolev functions, the Poincaré inequal-
ity, and the Gronwall lemma the book of Alt [1] is an appropriate reference. Concerning
compactness results involving spaces of functions mapping real intervals to Banach spaces
confer the books of Zeidler [16] (in particular, book II), and the article of Simon [15].

As has already been done in the introduction, partial derivatives are denoted by sub-
scripts after a comma except with respect to space and time. For example, s 4(c, @) is
the derivative of the function s = s(e¢, ¢) in a point (¢, ¢) with respect to the variables
represented by ¢.



2.2 Phase field model

A general framework based on the phase field approach to model the microstructure
formation during alloy solidification has been developed in [6] and results in a system
of nonlinear parabolic partial differential equations of the form (1), (2). A derivation of
the equations governing the evolution is briefly sketched since this motivates the growth
assumptions mentioned in the introduction and helps to interpret several terms in the
estimates that will be derived later on.

Introducing phase field variables and defining a Ginzburg-Landau type entropy, the
evolution of the phase fields is defined by an L? gradient flow. That system is coupled
to a set of balance equations for the internal energy and concentrations of the alloy
components. To take kinetic anisotropy of the phase interfaces into account, a deviation
from the gradient flow structure is allowed by introducing a positive kinetic coefficient
depending on the phase fields and their gradients.

A system with M possible phases and N components is considered. The entropy
functions reads

S(e.#) = [ (s(e.8) = (a(8.96) + w(9))).

The vector ¢ = (¢,)), consists of phase field variables. Each variable ¢, describes the
local fraction of the corresponding phase «. They are required to fulfill the constraint

M
d ta=1 & ¢eHZ (6)
a=1

By e or ¢y the internal energy density and by ¢;, 1 < ¢ < N, the concentration of
component ¢ is denoted. Also the concentrations fulfill a constraint:

C — (Co,Cl,...CN) GRXZN. (7)

The bulk entropy contribution s(c, ) is concave in c¢. The function a : HEM x
(TYM)d — R is a gradient energy density which is non-negative and homogeneous of
degree two in the second variable, i.e.,

a(¢p,X)>0 and a(g,rX)=r%a(¢p,X) V(¢,X)ec XM x (TES)? rcRT. (8)

The multi-well potential w : HEM — R is a non-negative function with exactly M global
minima at the points es = (,5)2L,, 1 < 3 < M, with w(eg) =0, i.e.,

w(¢p) >0, and w(¢p) =0« ¢ = e for some e {1,...,M}. 9)

In the original formulation of the model in [6] the ¢, are demanded to be non-negative,
i.e., ¢ € ¥™. But since they have no physical meaning and only are a mathematical
device to describe the phase interface motion this assumption can be dropped. From an
analytical point of view, the smooth potentials w used in the following cannot guarantee
non-negativity in general, in contrast to to potentials of obstacle type (e.g., see [7]).

To define the evolution of the phase field variables a weighted L? product is defined.
Given a sufficiently smooth field ¢ : Q — HXM let

(W, V)yp = / w(p,V)w -v Yw,v € L*(Q;TEM).
Q



The function w is positive and homogeneous of degree zero in the second variable away
from zero, i.e.,

w(p,X) >0 and w(¢,rX)=w(¢,X) V(¢ X) e XM xR"M >y (10)

with some small ry > 0. For possible choices of a, w, and w see [7]. The above structural
assumptions will later on be supplemented with growth and regularity assumptions.
The evolution of the system with respect to the phase field variables is defined by

S(c, ¢ + dv) Yo € C°(Q, TEM).

d
(0r, 'U)w@ T ) 50

Applying the boundary conditions (4) on {2 the definition yields for all sufficiently smooth
functions v : Q — TEM that

| (0.V8)06 -0 = [ (V-a5o(6.96) 0,46, T6) = ws(@) + (e ) 0. (1)

The balance equations for the conserved quantities read
atci =-V- ji(cv d)u VU(C, ¢))7 0 < i < N7 (12>

with fluxes of the form
N
jile.d. Vu(e,d)) = > Lij(c, d)V(~u;(c, ¢)).
§=0

The thermodynamic potentials u are defined to be
w = (up, Uy, ..., uy) = —sq(c, @) € YV

The matrix L(c, ¢) = (Lij(c, ¢))f;—, of diffusion coefficients is symmetric and positive
semi-definite. It can be shown that this together with the gradient flow structure for
the evolution of the ¢ yields thermodynamic consistency in the sense that the entropy
production is non-negative. In order to maintain (7) during the evolution there is the
condition

N
> Lij(c,¢)=0, 1<j<N. (13)

It is worth to remark that the balance equations (12) can be interpreted as a gradient
flow of the entropy with respect to a weighted H~!-product.
On the boundary 02 of the domain the fluxes are assumed to fulfill (3), i.e.,

N
ji(c> ¢)a VU(C, ¢))) *Vegt = — Z ,](C ¢))vuj C, ¢ Vegt = Zﬁzy ubcy (14)
7=0
where the coefficient matrix B = (3;;);; is positive semi-definite and, similarly to (13),
satisfies vazl Bij =0,1<j <N, and up. = (Upc,0; - - - Ube,v) s an appropriate function
mapping to Y.



In the following strong formulation of the problem a Lagrange multiplier A appears
which is due to the constraint (6) and results from (11) when replacing v by test functions
mapping to R™. The notation of partial derivatives with respect to a single phase field
variable ¢, is used which, in view of (6), does not exist. But taking A into account one
observes that, effectively, the derivative in direction e, — ﬁl € TXM where e, = (5504)%4:1
and I = (1,...,1) € RM is on hand. Analogous facts hold for the partial derivatives with
respect to V.

Definition 2.1 Find functions
c:IxQ-RxEN, ¢ IxQ—HIM

that solve on I x § the system

Oc; = —V- ji(C> ?, V’U,(C, ¢)) =V (Z Lij (C’ ¢)VUj(C, ¢)> )

i=0

w(‘ﬁ? v¢) at¢o¢ = V. a,V¢a(¢’ v¢) - a7¢a(¢’ v¢) - w7¢a(¢) = S ¢a (Ca ¢) - )‘7

where 0 <1 < N and 1 < a < M and X is given by

1 M
A= (V- 096, (@, V) — a,(6, V) — w,(9) = 5.5,(c, 9))

B=1

subject to initial conditions (5) and boundary conditions (14) and

M
<a,V¢a(¢a Vo) — % Za,v%((ﬁ, V¢)) Vo = 0.
B=1

2.3 Reduced grand canonical potential

Instead of using densities of the conserved quantities as variables the thermodynamic
potentials w can be used. The good thermodynamic quantity to reformulate the diffusion
equations is the reduced grand canonical potential ¢/, defined to be the Legendre transform
(cf. [5]) of —s with respect to internal energy and concentrations. This transform is
carefully carried out in the following.

Assume that

R1 the function (—s) : C'— R is of the class C? on the convex open set C' C R x HELY
and strictly convex,

R2 its derivative —s . = D(—s) : C — U is a C'-diffeomorphism into a convex open set
UCRxTYV,

Assumption R1 implies that D?(—s)(c), acting on (R x TXY)?2 is positive and has full
rank so that, locally, assumption R2 is already satisfied.

In the following, the sets C' and U are considered as subsets of R¥*! and ¢ - w is the
standard scalar product on RV*! for elements ¢ € C' and u € U.



Lemma 2.1 With the assumptions R1 and R2 the Legendre transform of the entropy
density
(—s)"(u) :==sup{c-u+s(c)}, uel,
ceC

is a well-defined real valued function (—s)* : U — R. Besides
(=5)u(u) = D(=s)"(u) = c.

Proof: For a given u the quantity c(u) := (D(—s))"!(u) exists by assumption R2.
From the convexity of —s in assumption R1 it follows that this is the only critical point of
c — c-u+s(c), and that this is the global maximum. Hence (—s)*(u) := c¢(u)-u+s(c(u))
is well-defined. The identity for the derivative follows easily using D(—s)(c) = u. O

Definition 2.2 If the entropy density s satisfies the assumptions R1 and R2 then the
density of the reduced grand canonical potential is defined by

VU =R, P(u) = (=s)"(u) = c(u) - u+ s(c(u)) (15)
where ¢ as a function of w is given as the unique solution to D(—s)(c) = w.

Sufficient conditions to obtain —s from a given v read similar to the assumptions R1
and R2 and lead to the notation

—s(e) =v*(e) = c-u(c) — Y(u(e)) with u(e) solution to ¢ = Dy(u). (16)

Here and throughout this article, the object D1 will always be considered as mapping
to the space R x HYXY. Naturally, one would identify the tangential space on Y/ in
some u € YV with the linear space YV C R¥*! again, endowed with the standard
scalar product induced from R¥*1 and think of Dt (u) or, more precisely, the gradient
grad(y)(u) being an element of Y. The object c(u) is then obtained by adding the
vector I := +(0,1,...,1) € R x HEN € RV e, c(u) = grad(¥)(u) + 1 € R x HEV.
That this is the right object can be seen when looking at the derivative of ¥ in a direction
v € YV, Indeed, since ILY? it holds that

(D(u),v) = grady(u) - v = (gradi(u) +1) - v = ¢(u) - v.

To motivate the challenges by the growth of ¢ mentioned in the introduction an
example for a binary alloy of two components A and B is considered. The free energy
density
T —Tx T—-Tg

ci+Lpg

f(T7 (1, 02) = LA TA s

~ T
+ RT'(c11og(c1) 4 colog(cs)) — CUT<log(T )— 1)
ref
corresponds to the model of an ideal solution (cf. [8]) which is widely used in thermo-
dynamics and materials science. The L;, T;, and R, ¢,, and T,y are material constants
related, among others, to latent heats and melting temperatures. Using the relation
s = — f r the internal energy is linear in the temperature 7',

e=f+Ts=—Ljc; — Lgcy + ¢, T.



Inverting this relation enables to write —s as a function in ¢ = (e, ¢q, ¢o),

L L ~
—s(e) = (—Aq + —BCQ> + R(c1log(c1) 4 colog(ca)) — ¢, log ( (e + Lacy + L302)>.
TA TB Colref
Since u € Y3 it is clear that u; = —uy. Computing the derivative of s gives
c 1
= 80 — = — v = -,
Ho ( S)(C) 6—|—LA01 +LBCQ T
1 Cy 1 Cy ~ c1
2ur = Ly(o - )= Lo(7 - ) + Rlog(h),
“ A TA 6+LA01+LBCQ = TB 6+LA01+LBCQ g(CQ)

Using ¢, = 1 — ¢; the above functions can be inverted, and ¢ can be written as a function
in w. A short calculation yields

Co 1 1
6(“) = —u—o _LA1+ev1(u) - B1—|—6U2(u)’
1 1
c1(u) = 1+ ev(w)’ er(u) = 1+ ev2(w
where .
—va(u) = vy (ur) = = (Laluo = wa) = Li(uo — up) - 2u1)
with uy = ;—j and ug := ;—; The entropy density becomes
L L - rlog(1 + e log(1 + ev2(¥)
_ ( AlA BUB ) ( og(1+en™) log(l+e )) _ ¢y log(—uoThey).
1+ en(w) 14 ev2(v) 1+ evi(w) 1 + ev2(w)

Inserting this and ¢(w) into (15) gives the reduced grand canonical potential density

La(ua—wu Lp(up —u
@b(u):( Al AU uo) n B( BU u0)>
1+ ev1(®) 1+ ev2(w)
ur + Rlog(1 + e ™) uy+ Rlog(1 4 ™)
( T
1+ ev(w 1 + ev2(w)

) — ¢ (1 +log(~uoTrey))-
(17)

Up to the last term which tends to infinity as uy " 0 the growth in w is linear. It is
worth to remark that, once existence of a (weak) solution was established for the above
1, automatically values for the concentrations ¢; between zero and one and positivity of
the temperature would be ensured.

2.4 Strong formulation of the differential equations

The aim is now to write down the equations governing the evolution in terms of (u, ¢)
instead of (¢, @) as in Definition 2.1. For this purpose, the density of the reduced grand
canonical potential ¢ including its derivatives is used.

In the preceding subsection it is shown how the reduced grand canonical potential
density of a phase can be computed given the free energy density of the phase provided



Uy fixed ug fixed

Figure 1: Reduced grand canonical potential ¢ given by (17) with the values Ly = 1,
Lg=12,u4 =0.8, ug =1.4, R = 1, ¢, =1 and T,y = 1 as a function of uy and on the
line u; 4+ us = 0 respectively. The function 1 is strictly convex. On the right picture, the
slopeis ¥ 1 — Y2 =c1 —co € (—1,1) CR.

some structural conditions are satisfied. In a multi-phase system, assume the existence of
densities ¥ : U, — R, 1 < o < M, for the possible phases with U, C R x TX" defined
in assumption R2 in Section 2.3. Assume further that U = ﬂi/[:l U, is non-empty. The
function ¢ : U x HE™ — R is obtained as a suitable interpolation of the ¥ such that

(u, eq) = P (u),

i UXIY =R, g(u, @) = D (w)h(da)

a=1

with a function h : [0, 1] — [0, 1] satisfying h(¢) =0 if ¢ <0 and h(p) =1if ¢ > 1.
In view of (15) one may write

S(C(u> ¢)> ¢) = W’U/a ¢) - C(u> ¢) U (18)

where c(u, @) = ¢ ,(u, @) or, equivalently, —s.(c(u,®), ) = u (see Definition 2.2,
considering the ¢ just as parameters). If the dependence of ¥ on ¢ is smooth enough
(C?, as assumed in the following section, is sufficient) then varying ¢ is possible in (18).
The derivative of the left hand side of (18) in a direction ¢ € TEXM is

> o (sl | o = sl $).6) - Ganlus. @) ¢ + s ol @), 8) ¢

do,
= —u- ¢7u¢,(u, o)¢ + 3745(0(’“" ?),9)-¢

but the right hand side yields ¢ 4(u, @) - ¢ — - ¢ 4e(u, @){. Comparing finally furnishes
the relation (in the sense of gradients belonging to the space TXM)

S7¢(C, ¢) = —1/17*(1)(0, ¢) = wﬂﬁ(uv d)) where ¢ = Q/J’U(’U,, d)) (19>

a=1



Definition 2.3 The evolution is governed by the partial differential equations
Ohu,(w, @) = =V - 3, (Yu(u, @), ¢, Vu) (ZLU ¢)Vuj)> (20)

w(P, VP)Oipa =V - a vy, (. V) —ay, (6, VD) —wy, (d) + V4, (u, @) — A (21)
where 0 <1 < N and 1 < a < M with A given by

1 M

A= M Z (v ’ a,V(ﬁg(‘ﬁ, V¢) - a7¢ﬁ(¢’ v¢) - w7¢ﬁ(¢) + ¢,¢B (u> ¢)) .
B=1

The differential equations are subject to initial conditions
u(t=0) =ue, ¢=0)=a,

and boundary conditions

ji(¢,u(u7 d))? ¢7 vu *Vext = Zﬂzg quj ) 0<:< N,

3 Existence results

3.1 General assumptions

First, some assumptions are stated that are imposed for all following theorems. They
concern the nonlinearities in the phase field equations (21).

G1 In addition to the structural assumptions (9) w € CH1(HXM) satisfies

()] < wo(l+ @), [|we(d)] <wi(l+[p"™), w(e) = wa|d” —ws, (22)

for all o) 6 HYM where the w; are positive constants. Here, p > 2 is such that
1—% > —4 hence, the Sobolev embedding H'(Q) — LP(Q) is compact. Observe

that 1f o€ LP(I x Q; HEM) then w 4(¢p) € LF" (I x ; TEM) with the dual exponent
p* = 1% to p. The restriction to the growth of w is necessary in order to obtain
the strong convergence of the gradients of the phase field variables in Subsection
4.4. But it is not essential for the properties of the phase field model since for the
asymptotic analysis shown in [6] only the structure of w on and close to ¥ is of

interest.

G2 In addition to (8) the gradient term a € CH(HEM x (TLM)4) fulfills

aolX|* < a(¢, X) < ar(|]” + | X]%), (23)
(¢, X) < ar(|p] + |X]), ave(d, X) < as(lo] + |X]), (24)
(a.5v6(d. X) — av4(, X)) : (X — X) = as| X - XP, (25)

for all ¢ € HEM and X, X € (TEM)4 where the a; are positive constants.



G3 In addition to (10) the kinetic coefficient w € CO*(HXM x (TLM)?) satisfies
oo < w(, X) < wn, (26)
for all ¢ € HXM and X € (TXM)? where the w; are positive constants. Observe
that = € CO'(HEM x (TZM)4).
3.2 Reduced grand canonical potential of quadratic growth

Concerning the balance equations (20) and initial and boundary conditions assume the
following.

Q1 The reduced canonical potential ¢ € C%1(YN x HYM) satisfies

[(u, )| < k(1 + [uf*),  [dulu, @) v| < ks(1+ |ul)|v], (27)
VYU, @)0 > Koo, |w - Yuu(u, @)v| < Kijwv], (28)
[Vp(w, @) - | < ha(1+[ul),  |v-Pug(u, @)C| < ks|vl[C],  [¢(0,@)] < ks (29)

for all (u,¢) € YV x HEM v, w € YV, and ¢ € TEM where the k; are positive
constants. The assumption (28) implies that

(au() L € CONYN x HEM Bilin(YY, YY),
Q2 The matrix L = (L;;)Y;_, with coefficients
Lij € COYR x HXN x HEM) N LR x HEY x HYM)

uniformly in its arguments fulfills

L is symmetric and positive semi-definite, (30)
ker(L) = span{(0,1,...,1) € RV} = (yV)*4, (31)
v L(c,p)v > lov]’, w-L(e, ¢p)v < Lolw||v| (32)

for all w,v € YV, ¢ € R x HEY and ¢ € HXM where 0 < [y < L are constants.

Q3 The initial data ;. € L2(Q; YY), ¢,. € H*(Q; M) are such that
/ [w,u(uica ¢zc) T Ujc — w(um ¢zc) + w(¢zc) + |v¢zc|2] dx = C. (33)
0

Observe that ¢;. € L>®(Q;XM), that w(¢,,) € L'(Q2) thanks to (22), and that
IV, |? € L}(Q), whence the two last terms could have been dropped.

Q4 The boundary data for w fulfill u,. € CO(I x 9Q; YY), Furthermore, the coefficient
matrix B = (3;;);— € C°(1 x 9Q; Bilin(Y",Y")) is symmetric and satisfies

ker(B) D span{(0,1,...,1) € R} = (YV)*+,

|lw - B(t, z)v| < f|wl||v|, v -B(t,x)v> ﬁo|fv|2 (34)

for all (t,z) € I x 9 and w,v € YV where 0 < 3, < /3, are constants.



Theorem 3.1 If the assumptions G1-G3 and Q1-Q4 are fulfilled then there are functions
w e LX(1; H (Q; YY), ¢ € HY(I x QHSM) N LP(I x Q; HEM)

such that
b(t,) = ¢ in LH(QHDY) ast N\, 0 (35)

and such that

/ / 0w (o, @) — w7u(uic,¢i6))+V'v:L(qb,u(u,qb),q’))Vu] dadt

+// v- B(u — wy.) dH T dt
1Joo

# [ [ [06.90006 ¢ + axa(@, T8 s VE] dact
[ [ [oa(@ 98¢+ uold)- ¢~ gl ) ¢] et (36)

for allv e HY(I x YY) with v(T) =0 and ¢ € H'(I x Q;TSM) N LP(I x Q; TSM),

Proof: The proof of the theorem is given in several steps, each one corresponding to one
of the subsections in Section 4.

4.1 For a Galerkin approximation, the existence of solutions (u(" q,’)( Jnen Mapping
the time interval into finite dimensional subspaces Y™ x X of H'(Q;YV) x
H(9; TEM) is shown.

4.2 Uniform estimates in n are derived. It is shown that for m < n and some C
independent of m,n

A

||u(n)||Loo(I;L2(Q§YN)) + ||Vu(n)||L2(I;L2(Q§(YN)d)) + ||at’u,(7L)||L2(I;(Y(m)))* < C,

16" || oo (.o umsiny + VO™ || oo L2 rminyay) + 110:0™ || 22 @ersiy < C.

4.3 The imposed regularity and growth assumptions enable to go to the limit as n — oo
in most of the terms in the weak formulation of the Galerkin problem.

4.4 Strong convergence of Vo™ — V¢ in L? has to be shown in order to handle
the terms involving w, a4, and aye. The idea is to use ¢ = ¢™ — ¢ as test
function for the Galerkin system and to use (25) to get |V¢™ — V| under control.
The fact that ¢™ is no admissible test function makes it necessary to construct an
approximation appropriately converging strongly to ¢.

4.5 To conclude the proof, assertion (35) is shown.



3.3 Reduced grand canonical potential of linear growth

Consider now a reduced grand canonical potentials of the form
M
U(w, @) = g(ug) + D h(¢a)A (u)
a=1

where h : R — [0, 1], the functions A are convex but only of linear growth in u, and g
is of quadratic growth. Because of the special structure of 1 it makes sense to split the
variable u. Recall the notation u = (ug, @) with ug € R and u € TXV.

The idea of solving the problem in Definition 2.3 is to approximate the above i with
potentials satisfying the assumption QQ1, namely

VO (u, @) = vial® + i (u, §).

After, compactness arguments are applied to the solutions in order to deduce a limiting
function which solves the differential equations with the original ¢). The arguments follow
the lines of [2] for the potentials w. The challenge is to tackle the problems due to the
coupling to the phase field variables ¢.

Given some small 7 > 0 assume the following:

L1 The functions g € C*'(R), A(® € C21(YN), and h € W3><(R) fulfill

l9(uo)| < go(1+ug), 19 (uo)l < g1(1+ |uol), 9" (uo)| < g2,

V- Y, @0 = Kolvo’,  [w - AG(w)v] < kifew|lo], (37)
A ()] < ko +ful), A (w) 0] < Eslol,  N(0)] <k,
h(r)=0ifr <0, h(r)=1ifr>1, 0<h'(r)<k;

for all w,v,w € YN, ¢ € HEM « € {1,..., M}, and r € R, where the g;, the k
and the k; are positive constants.

L2 The assumptions in Q2 remain fulfilled.

L3 For initial data (w., ¢;.) as in Q3

/ |:¢,('Z) (ui‘” d)zc) *UWie — ¢(V) (ui07 ¢zc) + w(d)zc) + ‘vd)ch dl’ S C
Q

holds with a constant C' independent of v as long as v € [0,7].

L4 The assumptions in Q4 are fulfilled. In addition it holds that Gy > 0, and the
boundary data . are such that for some C' > 0

108 (s, D) || 212007y < C - for all v € [0,7], ¢ € HY(I x Q;HEM).



In Theorem 3.1 one can allow for § = 0 which corresponds to no-flux or homogeneous
Neumann boundary conditions for w. In the proof a control of an approximating Galerkin
solution u(™ in L? is obtained from the quadratic growth of 1». But in the present situation
that estimate is not available any more in the limiting case v = 0 (more precisely, the
estimate (55) is not valid any more), whence the above stated Robin boundary conditions
with By > 0 are essential to get a control of w. For uy the condition could be relaxed
since, by assumption (37), the situation for ug is as in Theorem 3.1.

Theorem 3.2 If the assumptions G1-G3 and L1-L4 are fulfilled then there are functions
wc LA H (Q; YY), ¢ e HY(I x QHSM) N LP(I x Q; HEM)

such that
d(t,) = ¢ in LH(QHDY) ast N\, 0 (38)

and such that

/ / 0w (o, @) — w,u(uic,¢,.c))+w:L(zp,u(u,qb),gz))vu] dadt

+ //a v- B(u — wy.) dH dt
I Q
T / / (6, V)b +ava(eh, V) : V| dacl

[ [ L@ 96) ¢+ o) ¢~ V() ] o (39)

for allv e HY(I x Q; YY) with v(T) =0 and ¢ € H'(I x Q; TEM) N Lr(I x Q; TEM).

Proof: The proof of the theorem is given in several steps, each one corresponding to
one of the subsections in Section 5.

5.1 The perturbed reduced grand canonical potential *) fulfills the assumptions of
Theorem 3.1 yielding a solution (u®, ™)) and providing a set of useful estimates.
By functional analytical facts on the considered spaces candidates (u, ¢) for a so-
lution to the weak problem are obtained. It remains to handle the nonlinearities.

5.2 Several preparatory facts on ¥*) and its Legendre transform are shown which are
of technical nature.

5.3 The core of the proof is to show that the set of functions {1 (u®, ¢®)}, is
precompact in L!.

5.4 The results are sufficient to go to the limit in the weak formulation of the problem
for the perturbed potential 1*) as v — 0.

O



3.4 Reduced grand canonical potential with logarithmic term

In this subsection, a reduced grand canonical potential of the form

P i (—o0,1) x TSN x HYM — R,

D, @) = e, (1+log(Tres (1 — wg))) +oJal> + 3 h(6n) A (u)

a=1

=:9‘(rw)

is considered. The functions A® are convex and of linear growth in w. Observe that, in
contrast to the potential in the example in Subsection 2.3, there is a shift by 1 in ug. This
is done only for technical reasons, namely, to have a well defined value at w = 0.

Again, the idea is to approximate @ with potentials satisfying the conditions in as-
sumption Q1 in order to apply Theorem 3.1. After, apply compactness arguments to the
solutions in order to deduce a limiting function. To obtain convergence in wug, truncation
techniques as in [3] are used.

The approximation of the function g and, hence, 1 is done as follows. For n € [0,7]
with some small 77 > 0 let y, and 2, be the points such that ¢'(y,) = % and ¢'(z,) = .
The points exist if 77 is small enough since ¢’ is continuous, ¢'(ug) — oo as ug /" 1 and
g'(up) — 0 as ug N\, —oo. Clearly y, — 1 and 2z, — oo as  — 0. Uniqueness follows from
the fact that g is strictly convex, hence, ¢’ is strictly monotone increasing.

Let g/ : R — R be the unique polynomial of degree 2 such that g, (y,) = g(y,),
(9:5) () = g'(yn), and (g;7)"(y,) = g"(yy). Analogously, let g, : R — R be the unique
quadratic polynomial such that g, (2,) = g(2,), (9,) (24) = 9'(2,) and (g;,)" () = 9" (2y)-
Define

g;(u())v Yn S U,
9" (uo) := { gluo), 2y < ug < Yy,
g;(u0)> ug < Zn,

and then ™ € C*(YN x HEM) by

M
VO (u, ) = 9" (o) + vlal® + Y h(@a)A (u).
a=1

Observe that, in this part of the article, n varies but v is a fixed positive constant. Letting
n — 0 it must be shown that a solution (u(™, d)(")) to the perturbed problem converges
to a function (u, ¢) with uy < 1 almost everywhere. For this purpose, an estimate of the
form

[ (w, ¢) |12 < €

will be derived. Since ¢'(ug) = —cvﬁ this enables to get the desired result. Unfortu-
nately, in order to obtain that estimate, additional assumptions on the coefficients L;;
and the boundary conditions have to be imposed. Cross effects between mass and energy
diffusion have to be neglected, and Robin boundary conditions are only imposed for the
flux of ug while it is assumed that there is no flux of the wu;, ¢ > 1, across the external
boundary.

The precise assumptions are:



B1

B2

B3

B4

The functions ™ € C21(YN), \@ € C21(YN), and h € W3*(R) fulfill

v 0 (w, @) > kold,  |w - NG (w)v] < ki fwl|v], (40)
M) < (14 u)), NP (w) v <kslol, [AD(0)] <k,
hr)y=0ifr <0, h(r)=1ifr>1, 0<h(r)<ks

for allp € [0,7], w,v,w e YN, ¢ e HEM a e {1,..., M}, and r € R, where the k
and k; are positive constants. Moreover, there is a small 65 > 0 and a constant kg
such that

w%(u, ¢) > K, (up — 1) — ks whenever uy > 1 — (41)

with 0 < K, — oo as n — 0.

The coefficients L;; are as in assumption Q2 but, in addition, fulfill

The initial data (u;., ¢;.) are as in assumption Q3 and, in addition, such that

P (Wie, Di) = (Wi, D) and [V (wie, d3,) |12y < C for all n € [0,7)], (43)
/ [?ﬂ,(ﬂ) (uiC> ¢zc) " Ujc — w(n) (uic> ¢zc) + w(¢zc) + |V¢zc|2] dx < ¢
Q

for all n € [0,7] with C' independent of 7. Observe that the first assumption means
that ;.o € L>(€2) is bounded away from —oo and 1.

For the energy flux the boundary condition
Jo * Veat = Boo(uo — ch,o)
is imposed with a continuous function Fyy : I x €2 — R satisfying
0 < B < Boolt,r) < B
and a function uy.o € C(I x 9 YN) N L2(I; L*(09Q; YY) such that
145 (g0, @, @) || 2(1;12(509) < C

for all sets {@™ },cjom C TEN, {¢™ },e0m € HEM with

Sl[lp] (||¢(n)||L2(I;L2(8Q;HZ]M)) + ||’&'(n)||L2(I;L2(8Q;HEN))> <C. (44)
nelon

For the mass no-flux boundary conditions are imposed:

ji'VethO’ 7;:17...7]\[.



Theorem 3.3 If the assumptions G1-G3 and B1-Bj are fulfilled then there are functions
w e LX(I; H(Q; YY), ¢ e HY(I x QHSM) N LP(1 x Q; HEM)

such that
ug < 1 almost everywhere, 45
o(t,) — ¢, in L*(QHEM) ast N\, 0, (45)
and such that
// — Oy w(U, @) — Y u(Wic, @d0)) + VU 1 L(Y(u, @), ¢))V'u,] dzdt
+ [/{;Q Vo - ﬁoo(Uo — quo) de_ldt
+ // w(@p,V)orp- ¢+ ave(d, Vo) : VC] dadt
[ [ L@ 96) ¢ +wo(d) - ¢ ~ V() - ¢] o (46)

for allv e HY(I x Q; YY) with v(T) =0 and ¢ € H'(I x Q; TEM) N LP(I x Q; TEM).

Proof: The proof of the theorem is given in several steps, each one corresponding to
one of the subsections in Section 6.

6.1 The perturbed potential ¢/ fulfills the assumptions of Theorem 3.1. Since the other
assumptions are satisfied, too, there is a weak solution (u(, (;Z)(”)) to the perturbed
problem with additional estimates independent of 7.

6.2 An estimate for the wfﬂ) (u™, (;Z)(”)) is derived. Together with the other estimates, a
candidate (u, ¢) for a solution to (46) can be obtained, and it can be shown that the
candidate satisfies ug < 1. A subsequence of the ¢,(Z)(u("), qb(”)) converges weakly
to some limiting function b in L?.

6.3 The function b has to be identified with 1 ,,(u, ¢). In order to go to the limit in the
coupling term in the phase field equation @Df;)(u(”), qb(")) strong convergence of the
u™ to u will be shown. The main task is to get a control of time differences of the
form |u )(t+5)— u((]") (t)|. The images of the functions u((]") are projected to a compact
interval where the second derivatives of the ¢ with respect to uy are bounded from
below by a positive constant independent of 7. A control of time differences of the
truncated functions is obtained from the standard estimates. Moreover, the error
due to the truncation, measured in the norm of the space L!(I x ), can be made
arbitrarily small.

6.4 Collecting the obtained convergence results it is possible to let  — 0 in the weak
formulation of the perturbed problem and to show that the candidate (u, ¢) in fact
is a solution to (46). In particular, it is shown that the solution fulfills uy < 1 almost
everywhere.

O



4 Proof of Theorem 3.1

4.1 Galerkin approximation

Let the set {€, }neny C L(; YY) be a Schauder basis of H'(2; Y) such that the matrix
((ei,ej)LZ(Q;yN))ZjZO is regular for each n € N. Similarly, let {b,},eny C L®(Q; TEM)
be a Schauder basis of H'(€; TEM) such that ((b;, bj)LZ(Q;TEIVI))Z
Given some n € N define the finite dimensional Galerkin spaces

=0 is regular, n € N.

Y™ .= span{e,,,0 <m <n}, X® :=gspan{b,,,0<m <n}.
The Galerkin ansatz reads
u(tz) =Y u(ter(x), ¢ (tx) =17+ ¢ (t)by(x)
k=0 =0

with functions u*™ € CY(I), ¢™ € CY(I). The aim is to solve the following problem:
Find (u™, ¢™) e CY(I; Y™) x CH(I; X™) such that

n

u(") (t = 0) = 'U;Z(ZL) = Z (ui07 ek)L2(Q;yN)ek7 (47)
k=0
d)(n) (t = 0) = ¢£Z) = Z (d)im bl)L2(Q;TEM)bla (48>

=0
and such that for each t € I
0— / 0 - (4 (0, $) B + ., ¢(u<">,¢<">)8t¢<">)} e
Q L
- / Vo™ Lo (u™, p™), qb("))V'u,(")} dz + / [v(") - B(u™ — ) | dH!
ol

o0

n / [w(¢™ Vo™)E™ . 9,6 + VM < a g ¢(¢(n>,v¢<n>)} d
oL

+ / € (a.0(6, V™) +ws(@") = p(u, )] da (49)
Q L
for all test functions of the form
o™ — Z v(k’")ek, C(n) — Z C(l’n)bl (50)
k=0 1=0

with real coefficients v*™ and (™).
By assumption (28) and the properties of the basis functions {ey} it holds that

n 2 n
/ Z €m, ~¢,uu(u("), q’)("))ek dr > kO/ Zek dr = ko Z / e;-e;dx > 0.
Q Q

Q| k=0 i,j=0




Similarly, assumption (26) and the properties of the {b;}; imply

[3 w0 o

ma,l=0 =0

dx > 0.

))bm2 -bydz > wo/Q

Therefore, choosing v™ = ey, k =0,...,n, and ¢™ =b,, 1 =0,...,n, in (49) yields a
system for the coefficients functions u*™, ¢™ with matrices before the vectors d,(u*™),
and 0;(¢*™); that can be inverted. By the regularity assumptions on the occurring
functions, namely in G1, G2, G3, Q1, Q2, and Q4 all terms in (49) are Lipschitz continuous
with respect to the coefficient functions ™ (t) and ¢ (t), and continuous with respect
to t. Applying standard results for ordinary differential equations (e.g., the theorem of
Picard-Lindel6f) there is a unique solution (u™, ™) € C1(I; Y™ x X)) to (49) subject
to the initial data (u("”, @) given in (52).

Using test functions (0™ ¢™)) of the form (50) with n replaced by m and coefficient
functions v*™) € C(I) fulfilling v*™ (7)) = 0 and ¢(“™ € C°(I), equation (49) becomes
after partially integrating with respect to t over I for n > m

_ / / 0™ - (1w (™, ™) — (™, 1)) durdt
/ / Vo L((u™, ™), ™)) : V™ dzdt
o L B w0
+ /I /Q [v¢<m>:a,v¢(¢<n>’v¢<n>) L g ¢(¢(”)’V¢(n))} dodt
[ [ e o) = ¢ vgful®, 6] s -

4.2 Uniform estimates

The goal is now to derive appropriate estimates to let n — oo in (51). For this purpose,
test (49) WithN'v(") = u™ and ¢™ = §,0™ and integrate with respect to ¢ over some
time interval I = (0,t), ¢ <7 to find

[ 00t 6) - u®) — . )| dad
IJat
[ (n) (n) (n)
+/I/Q O (a(6™, V™) + w(¢ ))] dadt
+// :W(¢(")7V¢("))|8t¢(n)|2+Vu(n) . L(Qﬁ’u(u(n)’d)(n))’¢(n))vu(n)] dedt

// B(u™ — )} dr4—tdt.
o9




Here, the regularity assumptions on w, a, and 1 were used again.
Thanks to properties of the basis functions {ey}, and {b;}; clearly as n — oo
(n)

¢)§") — ¢,, almost everywhere, in H*(Q; HZM) and in LP(Q; HEM).

C

u;” — u;.  almost everywhere and in L*(Q; YY),

(52)

This yields, using the Lebesgue convergence theorem and the growth properties (27), (22),
and (23), that

ba(u, ) = (e, di) in (YY), (ul”, @) — (i, ¢y.) in L)

w(l) — w(ey.) in LY(Q)  a(dy), Véi) — a(y. V) in L'(<).
(53)

By (47), (48), and assumption (33) it follows that
/Q [w,u(u(")@), @™ (1)) - u™ (1) — p(ul(D), ¢("’(5))] dz
+ [ [w@"(@) + a(e @), Vo @) da
Q

/ [w(¢("),v¢(”))|8t¢(”)|2 4 v L(zp,u(u(m,¢<">),¢<">)vu<“>] dudt

Q
/ [u(") -ﬂ(u(") - ch)] dH4de

Q
W, o) - ul) — vl o) + w(@l) + a(gl), Vo) d
u(ui07 d)zc) * Uie — ¢(ui67 ¢zc) + w(d)zc) + a(d)ic’ v¢zc>i| dz S C. (54>

Assumption (28) gives
¢,u(u("), ¢(")) cu™ — (u™, ¢(n))

1
= [ aOu ) 6ul — (6u, ) d — 0(0, ")
0

B /%“ﬁ”wmﬁﬁﬂ¢wmwww—wm¢w)
0

v

2
50|u(")|2 — ky. (55)

By assumption (34) and using Young’s inequality with a small ¢ (later specified)

// [u(") . Bu™ — 4™ ~Bubc] dHtde
IJon

ﬂo/ \u(”)|2de‘1dt—61/ ™| || dHA AL
1Jo0Q I1JoQ

v

> (fo— o) / [ |2 0 dE — C(B1,6) / el . (56)



Now, the estimate (54) yields thanks to the assumptions (32), (22), (23), and (26)

[ [ OF + 0l OF + ol V6 (0] az
Q
+// [wo\atgz’)("w—i—lowu(")ﬂ dxdt—// SPrlu™MPPdnrdt < . (57)
I1JQ I1Jo0

By the trace theorem for Sobolev functions there is a constant Cy, such that
_561/ [w™ > dH* At > 63, Cr, // [u™|? 4 |[Vu™ | dzdt.
IJoQ IJa

Choose § > 0 so small such that lo — §3;Cp, > 0. Then (57) gives

i
/ Bolu™(t,2))?de < C + / / 661 Crrp|u™ (t, )|? dzdt.
Q o Ja
Applying the Gronwall Lemma to ¢ +— [, |u™ (¢, z)|*dz then yields with (57)
||u(n) ||L°°(I;L2(Q;YN) + ||¢(n) ||L°°(I;LP(Q;HZM)) + ||V¢(n) ||L°°(I;L2(Q;(TZM)d))
+ 100" |2 (2 @remy) + IV 22y < C. (58)

Choose now time dependent coefficients v*™(¢) in (49) and integrate with respect to
t over I. With the assumptions (32) and (34) and with estimate (58) it follows that

[ [0 ot 6

‘ / / Vo™ Lt (u™, ™), ™) Vu™ drdt
1JQ

+ // o™ ~B(u(") — Upe) dH4 1 de
1Jo0

< Lol Vo™ (|2 osrman V™ [l 2z g0y
+ Bullo ™| 2z o)) (1™ | ez 0o vy) + [wsell L2200

< Cllo™| 2 @y
so that for all natural numbers n > m with some constant C'(m) independent of n
’|at¢,u(u(n)a¢(n))||L2(1,(Y<m>)*) < C(m). (59)

By (28) and (29) |9, o (u™, ¢™)| > ko|Oyu'™ | — ks|0,0™|, hence from (58) and (59) for
n > m with some C(m) independent of n

10 || 2 v myy < C(m). (60)



4.3 First convergence results

Since the Hilbert spaces L*(I; H'(; YY), L*(I; L*(09; YY), and HY(I x Q; HEM) are
reflexive, in view of (58), there are functions w and ¢ such that for a subsequence as
n — oo (as mentioned previously already, whenever there are convergence statements in
the following, in general, they are only valid for subsequences which are relabeled with n
again)

P — in H'(I x Q; HXM), (61)
ul™ — in L2(I; HY(Q; YY) and in L*(I; L*(9Q; YN)). (62)

By the compactness of the embedding
{c c LP(I; H(Q; HEM)) @ 0,¢ € LA(I; L*(%; HEM))} — LP(I; LP(Q; HEM))
with p as in assumption G(1) the results (58) and (61) lead to
¢™ — ¢ almost everywhere and in L(I x Q; HEM) (63)

for ¢ =2 and ¢ = p. Also the embedding
{ee L2 m@y™),a8 e L))} — LALIAGYY)  (64)

exists and is compact. The estimates (58) and (60) therefore imply that there is some
@ € L*(I; L2(; YY) such that u™ — @ almost everywhere and in L2(I; L(€;YN)).
By (62) (the weak limit is unique) @ = u, hence

u™ — w almost everywhere and in L*(I; L*(Q; YN)). (65)

By assumptions (28) and (29) and using (58) the functions Vi), (u™, ¢™) are uni-
formly bounded in L2(I; L*(Q; (YV)?)), and thanks to assumption (27) also the functions
Yu(u™, ¢™) € L2(I; L2(Q;YN)). The estimate (59) and (64) yield precompactness of
the 1, (u™, ™) in L2(I; L*(Q; Y'N)). Thanks to (63) and (65) this furnishes

Y u(u™, ™) = 4y (u, ) almost everywhere and in L*(I; L*(Q; YV)). (66)
In the preceding subsection it was already demonstrated that

V(™ @) = 1y (wie, Py.) almost everywhere and in L2(€; YV). (67)

ic ) Fic

By the assumptions on L in Q2 the functions L(t,(u™, ¢™), ™ )Vo™ converge to
L(p,(u, @), ) Vo™ almost everywhere and strongly in L(I; L*(€; (Y™)?)). With (62)
this implies

Vo™ . L(wu(u(n)7 (]5(7@))7 qb(”))Vu(")
— Vo' : LYy (u, @), d)Vu in L1(I; LHQ)). (68)



Using (63), (65), the first growth assumption in (29), and (58) it holds that
Y p(ul™ d™) = 1 g(u, @) ae. and in L*(I; L*(Q; YY), (69)

Similarly, by (63) w4(@™) — wg(p) almost everywhere. By (22) |w4(p™)P" <
C(wy)(1+ |¢™P). With (63) and the theorem of dominated convergence

w4(@™) = w 4(p) a.e. and in LP" (I x Q; TEM). (70)

To go to the limit in the terms involving a and w strong convergence of ¢™ — ¢ is
necessary.

4.4 Strong convergence of the gradients of the phase fields

The first goal is to construct functions strongly converging to ¢ in H'(I x Q; HXM) and in
LP(I'x$; HEM) which are admissible test functions in (51). After, the strong monotonicity
(25) of a is used to obtain the desired result.

Let P(I; HY(Q; HXM)) be the set of polynomials q : [0, 7] — H'(; HEM). By stan-
dard density results these polynomials are dense in H'(I x Q;HXM) and in LP(I x
Q; HEXM) with p as in assumption (22). Let {g, }nen be a sequence of polynomials in
P(I; HY(; HEM)) with

q, — ¢ in H'(I x Q;HEM) and in LP(I x Q;HEM) asn — oo.

The union of the Galerkin spaces X ) := ] _ X is dense in H'(Q; HEM) and
LP(Q; HEM). By projection of the coefficients of the polynomials q,, to the spaces X ™

for each n € N there are polynomials {g\™ Ve € P(T; X™) with
g™ — q, inP(I; HY(QHSM)) and in P(1; LP(Q; HEM))  as m — oo.

Taking an appropriate diagonal sequence { f(")}neN = {q%n)}neN this means that there
are functions £f™ € C(I; X™) with

f = ¢ ae,in H'(I x Q;HEM) and in LP(I x Q;HEM) asn— oo (71)
and, in addition, thanks to (63), for ¢ =2 and g = p
16" = £ larxarsiy — 0 asn — oo, (72)

Now, let m = n in (51) and take v = 0 and ¢™ = (¢™ — ) as test function. The
functions w g(¢™) are bounded in L”" (I x Q; TEM) (cf. the remark in assumption G1).
Then by (58) and using the growth assumptions (29), (24), and (26), the convergence in



(72) implies

[ [[asel@. 96 (74 - w5 dxdt\
1JQ

IN

/ / (w(@™, V™)™ + a g™, Vo™)) - ¢ dxdt)
1JQ

i /z/g (wp(@™) = Y™, ) - ¢ dxdt‘

< w12 || 2tz @iy 1€ ™ L2 rxars

+ a2 (||| 2. r2 ey + VO™ 2 rn2 sy ) 1™ | 2 xamsny
+||w,¢(¢(n))HLP*(IxQ;TZM)HC(n)HLP(IxQ;TzM)
+ kaC (1 + [ | 22y ) ) IC™ 2 x sy
< O mrwamsmy + 1€ 2gxarsy)  — 0 asn— oo, (73)
By (71), (63) for ¢ = 2, and by assumption (24) a.ve(@™, VF™) — ave(e, V) in

L2(I; L2(€2; (TYM)4)). Since in addition V¢™ — 0 in L2(1; L2(Q; (TEM)4)) by (71) and
(61) is follows that

// ave(d™, VFM) : v¢M dedt — 0 asn — oco. (74)
I1JQ

The left hand side of (73) can be computed to

1JQ
— // (a7v¢(¢(n)’ V¢(")) _ a7v¢(¢(n)’ vf(n))) . (V¢(n) _ vf(n)) dzdt
1JQ
+ /I /Q ave(@™, VM) (Vo™ — VF™) dadt.

Assumption (25) applied on the first term on the right hand side now furnishes together
with the convergence results in (73) and (74) that

//|V¢)(")—Vf(")|2dxdt—>0asn—>oo
1Ja

which, in view of (61) and (71), means that
o — ¢ in L2(I; H'(Q; HEM)) and Vo™ — V¢ almost everywhere. (75)
Thanks to the growth and regularity assumptions in G2 this gives

ave(d™, Vo) — ave(d, V) in L*(I; L*(Q; (TSM))),

a,5(¢™, Vo) — a4(p, V) in L*(I; L*(; TEM)). (76)



Moreover, for arbitrary test functions ¢, by the assumptions in G3
w(@™, V™)™ — w(p, Vo)¢™ ace. and in L3(I; L*(; TEM)). (77)

Letting n — oo in (51), the convergence results (66), (67), (68), (62), (77), (76), (70),
and (69) yield that (u™, ¢™) can be replaced by (u, ¢):

0=— /I /Q [8tv(m) (Culu, @) —zp,u(uic,qbic))} dadt
|

I,
" //m [”(m) - B(u - ubc):| dH 1t

I
+ /I/Q [C(m) ~w(@, V)i, + VC(m) cave(P, V(p)} dadt

Vo™ © L(t(u, @), ¢)Vu} dadt

[ 16 (0o, 99) + (@) vlu.6)] dodt. (78)

Arbitrary test functions v € HY(I x Q;Y") with v(7) = 0 and ¢ € HY(I x Q; TEM) N
LP(I x Q: TYM) can be approximated by test functions (0™, ¢™) that are admissible
in (78) by a similar procedure as the definition of the ™. From (78) it then follows that
(u, ¢) is a solution to (36). To conclude the proof of Theorem 3.1, (35) must be proved.

4.5 Initial values for the phase fields

The embedding H'(I x Q;HXM) — CT; L?(; HXM)) is compact. The convergence
result (61) implies that

¢ — ¢ in C°T; L*(Q; HZM)).
In particular, at ¢ = 0 recalling (48) and (52)

||¢(07 ) - ¢ic||L2(Q;TEM) Hd)(o7 ) - ¢(n) (07 ')||L2(Q;TEM) + ||¢(n) (07 ) - ¢ic||L2(Q;TEM)

<
<l — 0"l o2y + 6% — el r2(ursan)
— 0 asn— oo.

This proves assertion (35) and, hence, Theorem 3.1.

4.6 Additional estimates

In addition to proving Theorem 3.1, the convergence results in the previous subsections
allow to deduce estimates for the solution (u, ¢) which will turn out to be useful in the
coming sections, namely, the so-called entropy estimate (79) (since, there, the entropy
) — 1), - w appears, cf. Definition 2.2), and the estimate (80) for time-differences.



Lemma 4.1 Assume that By > 0 in assumption (34) and let (u, @) be a weak solution
as in Theorem 3.1 that has been constructed with the Galerkin method presented in the
previous subsections. Then the following two estimates hold:

esSSUPj /Q [w,um(%), d(1)) - u(t) — P (u(t), d(2)) + ws|p(F) [P + @0|V¢(%)|2} dz
+/I/Q[w0|at¢|2+lo|Vu|2} dxdt+52/1 aQ|u|2cmd—1ohf < O, (79)

T—s
/0 /Q(u(t +5) —u(t) - (Vul(ult+s), o) — vau(ult), ¢(t)) dedt < sC.  (80)

Proof: Replacing I by I in (54) there is already the estimate

S~—
©
S
—~
1
SN—
SN—
—_
o,
=

S / [w,u<u<“><%>, BB (D)~ vl (i

/ / ™)) 19,0™)? + V'™ - L(w,u(uw,¢<">),¢<“>)vu<“>] dzdt
+// u" .- B u(”)—ubc)] dH'at < C. (81)
1J0o0)

By (65) and (66)

/ (™ (D), ¢ (1)) - u® () dz — [ (@), $(0)) - u(i) de (82)

Q

for almost every ¢ € I. By the last growth assumption in (27), the convergence results
(63) and (65) imply for almost every ¢ € I that

/Q H(F), 6 (7)) dz — / P(u(d), o) (33)

By (63) for ¢ = p and assumption (22) it holds for almost every ¢ € I that

lim inf /Q (6™ () dz > /Q wsld(B)P dx — C. (84)

n—oo

Similarly, by (75) and assumption (23)

lim inf /Q a(6™ (1), Vo™ (1)) du > / / 00| Vo (D) de, (85)

n—oo

the convergence result (61) with assumption (26) gives

lim inf / / " V™[0, dadt > / / wo|Opp|* dxdt, (86)

n—oo



and (62) with assumption (32) yields

n—oo

lim inf / / Vul™ : Lt (u™, ™), ")\ Vu'™ dzdt > / / lo|Vu|>dzdt.  (87)
I1JQ 1JQ

Finally, recalling (56) for I = I, by (62) and for § small enough (such that 8y := Go—33; >
0, remember that By > 0 is assumed for this subsection)

liminf// u™ — ) dHE 1dt>62/ lu|?dH*tdt —C. (88)
o0

Due to (82)—(88), in the limit as n — oo the estimate (81) yields the estimate (79).
Define now at times 0 < t; <ty <7 —  and small § > 0

) t & [ti,ta + 9],
(t —ty), t € [t1,t1 + 0],
: t € (t1 +0,t2),
—3(t—(t2+9)), tE[ta,ta+0].

= ol O

X(;(t) =

Since u € L*(H"?(Q;Y")) and

5 t € (t,t, +0),
Xs(t) =19 —3,  tE (tata+9),
0, t € (—o0,t1) U (t1 +6,12) U (t2 + 6,00),

it is clear that v(t, z) = xs(t)(w(te, ) —u(ty, z)) € HY*(I x Q; YV) for almost every ¢y, ta.
The properties of the convolution (the functions (5(t) = §x (1715 (L) Where x ;1,4 is the

characteristic function of the interval (, + §) constitute a Dirac sequence) and the fact
that ¢, (u, @) € L*(I; L*(Q; Y™N)) by (66) give

7[t+6/¢ dxdt—>/w (1) dz

for almost every ¢ € I. Inserting v and ¢ = 0 in (36) yields for almost every t;,t, in the
limit as § \, 0 (the dependence on x is dropped and L(t) := L(v . (u(t), ¢(t)), ¢(t)) was
set for shorter presentation)

= [ bt ) (D), 60)) — vl 6,)

+ / 2 /Q Lla(ty) — ulty)) - (tu(u(t), $(t)) — u(thic, dy.)) dardlt
. /t2+5/ Xs(O)V (u(ts) —u(ty)) - L(t)Vu(t) dadt
+ / 2 /;Q X5 tg - u(tl)) B(t)(u(t) _ ubc(t)) AR ae



— /Q(U(tz) —u(t1)) - (Vu(ults), @(t2) — Yululty), d(t1))) dz
+ /t 2 /QV(u(tg) —u(ty)) - L(t)Vu(t) dzdt
+ /t 2 /aQ(u(tQ) —u(ty)) - B(t)(w(t) — up(t)) dH dt.

For a small s > 0 such that 7 — s > 0 let ¢t = t; + s and integrate the above identity
with respect to t; from t; = 0 to t; =7 — s. By the convolution estimates

T—s t1+s
0 t1 I

T —s t1+s
/0 ]Kt [ B()(w(t) = wpe(t))|| L2(o0) didty < /IIIB(tl)(U(tl) = Upe(t1))]| £2(00) A

and by (79) it follows that

T—s

o< | [ [t +9) = u(t) - Galults+5). 900+ ) =~ vulu(ts), @) deds|
T —s t1ts

< 3/0 (||Vu<t1+s>HLz<m+||Vu(t1>HLz(m)][t | L(t)Vau(t)|| 120y dEdty

7T—s
+ 3/0 (lew(ts + 3) || L200) + ||u(t1)||L2(8Q))7[ | B(t)(w(t) — wpe(t))] 22 (a0 dtdty

t1

< s [ (2Ll Tutt) a0+ 26 u(t) 12 uts) — wne(t) o ) s (89)
1

where the last inequality holds thanks to (32) and the assumption on wy. in Q4. Using
(29), the first term on the right hand side can be estimated by

- ‘(u(tl + ) —u(h))

: /0 bugp(ults +5),00(t +5) + (1 = 0)@(t1))d0 - (P(t +5) — ¢<t1>>)
< ghslu(ts + ) —u(t)]|d(t + 5) — @(t)]-

Assumption (28) implies that 1, is monotone in w uniformly in ¢, hence from (89) and
the above computations the estimate (80) is obtained:

T—s
0 < /0 /Q(U(tl +5) —u(tr))  (Vulults + ), ¢(t1) — u(uts), d(t1))) dedty



)/T / ulty + 5) — ulth))

(Vaulults +5), ¢t +5) = Vulult), ¢(t1))) dadty

+)/T / ulty +5) — u(t))

(Dalults + ), §(tr + ) = lulty + 5), $(t)) dedt|

< s <2L0 ||VU’||2L2(I;L2(Q;(YN)d)) + 261 ||u||L2(I;L2(8Q;YN)) ||u - ch||L2(I;L2(8Q;YN)))

+ S<7€3||u||L2(1;L2(Q;YN)) H@¢HL2(I;L2(Q;YN))>
< 3C(HUHL2(I;H1»2(Q;YN))7 1wl L2122 90,y V), ||at¢||L2(1;L2(Q;T2M))>-

For the second last inequality it was used that

/Q /OT—S ¢<t+sz—¢<t> ’

5 Proof of Theorem 3.2

dtde < C|0;@[72(rx0,rsm)- (90)

5.1 Solution to the perturbed problem

By the assumptions on the functions g, h, and the A(®) the perturbed potential ¥)*) is of
the class C?! (observe that W3*°(R) — C*!(R)). The assumptions in L1 furthermore
imply that the 1) also fulfill the growth assumption stated in Q1. In particular, it holds
that

0 (u, @) - ¢| < ka1 + |ul) MEr[C], (91)
[0+ %, (w, $)¢| < [wls Ms[C], (92)
(0, @)| < Mk, (93)
[0 (w, @) < go(1 +ug) + v]@|* + MkC(1 + |ul?). (94)
With L3-L2, Theorem 3.1 furnishes functions
u e L2(I; HY(Q; YY), oW HY(I x Q;HEM)

such that
¢(t,) = ¢ in L(QHEM) as ¢\, 0

and such that
// @D(V (u®, ™)) — Q/, ) (e, ¢>w))] dzdt
: W) () AP HP) )
+/I/Q V”L(¢,u (u N )7¢ )Vu }dxdt

+ // v - B(’u,(”) — wye) ARt
1Joq



+ / / ©(6"), V)06 - ¢ + age(¢"), Vo) : VC| dedt
1JQ
+ /I /Q 0.6(07, Vo) - ¢+ wg(6") - ¢~ 0P (W, ¢) - ¢| drat (95)
for all v € H'(I x Q;YN) with v(7) = 0 and ¢ € H'(I x ;TEM) N LP(I x Q; TSM).

In addition, the following estimates resulting from (79) and (80) are fulfilled (recall that
Bo > 0 in consistence with the additional assumption in Lemma 4.1):

eSSSUDje; / 0 @ (@), ¢ (D) - ul) (1) = o (@ (D), ¢ ()
Q
|6 (D)7 + ag | Vo (D] da

+ / / [w0|8t¢(”)|2+l0|Vu(”)\2} dzdt + / luPdndt < O, (96)
1JQ I1JoQ

/0 T_S / (W) (¢ + ) — u(1))
@O (¢ 1 5), 6O () — PO @ (1), $O () dadt < Cs. (97)

5.2 Properties of the Legendre transform

For shorter presentation define the function
b YN x HEY S R, 09 (u, @) == o) (u, @) - u — 9 (u, ¢)

for every v € [0,7]. The following two lemmas were proved in [2] for functions ¥®) not
depending on additional parameters ¢ € HXM .

Lemma 5.1 For every 6 > 0 there is a constant C5 > 0 independent of v such that
03 (2.6)] < 0¥ (2,6) + C;
for all (z,€) € YN x HEM.
Proof: For arbitrary points z,2 € YV and &€ € HEM the convexity of ¢*) implies
b (2,€) —b"(2,8) = (05 (2.6) —v()(2,€)) - 2
Let e = %) (2,€) /4% (2,€)| € YN. Then

) (2,8)] = 5¢fz><z,s>-§
— S0 (E ey, E L5 (W W& £
OV (5:€) - = + 00 (2.€) — v (5. 8) - 5
S0 (E ey, €L 0w _ (€
< 6¢7u(5,£) §+5(b (2,6)—b (S,é))
5
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In view of (94), the assertion holds with C; := C max{go, Mks, 7}(1 + 5%) O

Lemma 5.2 For all = > 0 there is a function wg : [0,00) — [0,00) continuous in
zero with w=(0) = 0 so that for all v € [0,7] and all functions zy,z4,& € HY(Q) with
1l llz2ll s 1€l < 2, 10)(2,€) | pr@) < 2, i = 1,2, and

/Q () (21,€) — ) (20,€)) - (21 — 22) da < §

it holds that
/ }¢(V zla ) 22, ‘d[lf < (,U“((S)

Proof: Suppose the contrary, i.e., there are =, ¢ > 0 such that for all 6 > 0 there are
functions 2% € H'(Q; YN), € € H'(Q; HEM) and values vs € [0,7] such that

120 m <=, [1€9)m <E, [0 (=0 D) e <E, i=1,2,
/ () (2, 6@y — ) (22 £O)) . (20 — 2P de <o
Q

but
/ W vs) @DM (z2 L EW }dzx>5.

There are functions z;,& € H'(Q) and there is v € [0,7] such that, for a subsequence as
d — 0 (still indexed with ¢), it holds that vs — v, zl(-é) — z;in H', and ¢€©¥ — ¢ in H.
After eventually restricting again on a subsequence, it follows that (z@ DY = (z;,€)

in L? and almost everywhere. Hence wf,'j“)(zgé), 9y - wf,’j)(zi, £€) almost everywhere. By
the preceding lemma

[ 10N < 5 [ 0D, e0)d [ s
E ~ E E
< 5E+Cg£d(E)

for every 6 > 0 and every Borel set E C Q. Choosing first 6 small and then E such that
L4(E) becomes sufficiently small the Vitali convergence theorem yields @Z)%)(zgé), £ (6)) —

¢,(Z)(Zi, €) in L'(Q) whence
/}@b(” z1,€ ) (z9,€ }dx > €. (98)

Using the Fatou lemma and the monotonicity of w,(ff) in u one first obtains

0 = liminf / (W) (2",€7) =i (2, €) - (21 = 2)) da
Q

6—0

> / () (21, €) — V222, €)) - (21 — 22) da
Q

and from this w,( (21,€) = ¢ (zg, &) almost everywhere in contradiction to (98). O

The following lemma concerns the dependence of the 1/*) on ¢.



Lemma 5.3 Consider series {u™}en C YV, {qb(m)}meN C HXM, and {vp }men C
[0,7] such that ™ — ¢ in HEM , v,, \, 0, and there isu € YN such that

Pl (™, ) = o (u, )
asm — o0o. Then
qﬁ’(;m)(u(m), ¢(m)) - ¢,¢(u, ¢) as m — 00.
Proof: By (19) it must be shown that

(W) (™, ), ) = Uyl #).8) asm— oo (99)

The regularity assumptions on v in L1 provide that, for a given ¢ € HXM, the function

Y (-, @) is a C'-diffeomorphism mapping an open set Ug C Y to an open set Cy C

R x HXY. These sets may be proper subsets in contrast to the situation for 1/1,(1':7”)(-, o)

which, thanks to the quadratic growth in w, is defined on the total space YV and maps
onto the total space R x HXN.

Let ¢ (u) := vy,|@|>. The special structure of ¥®)(u, ) = ¢ (u) + ¥(u, @)
yields for all ¢ € Uy that

W) (e, @) = ¢“(e) + ¥*(c, ).

Furthermore, the regularity of 1 in ¢ implies that if ¢ € Cy then also ¢ € C for all @ in
a small ball around ¢. Hence, fixing ¢, variations with respect to ¢ are possible and give

(w(um))iﬁ(c’ d)) = ¢,*¢w(cv d))

Let now ¢ := ¢ 4(u, ¢). Since @™ — ¢ there are a small ¢ > 0 and m; € N such
that
Be(¢u(u, 9)) C Cyom C R HEY  for all m > m,y

where B (v) stands the ball of radius ¢ centered in v € Y. Therefore (1/))* (e, P =
V(e »'™) for all ¢ € B.(¢u(u, @) as long as m > m;.
Since wf,'jm)(u(m), ¢™) — Y (u, @) € Cyp there is some my € N, my > my, with
YU (™ p™)) € B.(¢ho(u, @) for all m > my

,u

whence

(W) (@l (u™, ¢tm), ™) =y, (blm) (ul™ $™), ¢ for all m > mo.

Since ¢, is continuous this gives the desired result (99). O



5.3 Compactness of the conserved quantities

As a first step to show precompactness of the set {v& (u), &)Y vepor in LI x Q;YN)
the convergence result (101) involving time differences wfﬂ)(u(”)(t +5), 0" (t + 5)) —
V& (u)(t), ") (t)) will be proved. Define the set

(1]

(1) <

ms

B ={ten.T-4:

. } (100)
e20t) = ([ ()| mayny + 1w+ )l @rn) + 109 @)l o
1
+ - /(u(”)(t +5) —u)(t))
Q

(W W (t 4 5), 0 (1) — 0 (u(2), (1)) do
" (t+s) — (1)
| |

S L2(Q;TSM)
+ B (WPt + 5), ) (t+ )| + 10¢ (™ (1), ¢ ()| ().

By (96) and (97) and using (90) there is a constant C' > 0 such that

T —s
02/ et ()dt:/
0 Eg“j

whence El(E( ) becomes arbitrarily small when choosing = sufficiently large. Applying
Lemma 5.2 of the previous subsection with § = s= gives

mS
TI] X

() dt + / el2(t)dt > 2LY(EL)
0,IN\EX ’

/[OT B /g [0 (W (t+5), (1) — ) (w) (1), ¢ (1)) | dedt < Tws(sZ).
Thanks to (92)
/ ( ) / ‘w(u t + 8) ¢(V)(t + 3)) — ¢,(Z)(u(”)(t + 8), ¢(V)(T,))} dudt
0,7 —s]\E,";

- /[07— }\Ew/g‘/o @w§5>(u<v>(t+s),e¢<”>(t+s)+<1—9)¢<”>(t1) d@‘dxdt

~~

5

- /m \E<u>/ ‘ / Vup(ul(t +5), 6) 6 - (¢(V)(t+8)—¢(u)(t))‘dxdt

) W)
< s/ /kng7)¢ (t+s)—o (t))dxdt < sC
0,7-s\EX Ja S

(1

For the last inequality it was used that, on bounded domains, the L' norm can be esti-
mated by the L? norm, and estimate (90) was applied. Altogether, using (96) and Lemma,



5.1 with 6 = 1:
T—s
/ /W Dt +s), ¢+ 5) — 0 (u (1), 9 (1))] dndlt
= [ [0, 0) — o w0, 90 i
50
* /m_ - /Q [0 (w4 5), 9t + 5)) = 0 (@ (1), 6 (1)) dadt

< esssup,.; / [ (W (1), ) (1)| dz L (EY)
+ /W” u (t+5), Y (t +5)) — P (WP (t + ), 9" ()| dadt
NE®

[0,7—s]\

®) (™) s) o™ — ) (g™ ) .
+/[077_8}\E<u>/ngu( (t+5),0" () — &) (u™ (1), ") (t))| dwdt

< 2<esssupt€1/ b (w®(t), o™ (1)) da + Ed(Q)Cl) £1(E§VE))) +sCE+ Tw=(s2)
0

< CLYEY)) +sCOZ + Tws(sE).

Choosing first = sufficiently large and, after, s sufficiently small, the right hand side
becomes arbitrarily small, independently of v € [0, 7], hence as = — 00, s — 0

7T—s
Viuopy/ /W” (u", ") (t +5) — v (u®, ¢"))(t)| dxdt — 0. (101)

In order to show precompactness of the /% in LYI x ;YN), to each k > 0 a finite

number of functions { f; }x has to be found such that the 1/1,(5) lie in the union of the balls
with radius x around the f,. The second step consists in showing that it is sufficient if

the set {y% (u®), #“)}eo. is precompact in L'(D; YV) for every D CC I x Q. To see
this, let x > 0 be given. Observe that for each f € L'(D;Y") by Lemma 5.1

2% (w™), ")) — xp Fll 1 (1xayv
= [ et + [ [, 6) - | dade
(Ix\D D
< / b (u), ")) dadt + C5L4((I x Q)\D)
IxQ
/ [ (u®), ¢™)) — f|dadt. (102)
Choosing ¢ small, thanks to (96) the first term becomes smaller than /3. After, choose
D appropriately so that the second term becomes smaller than /3, i.e., choose D such

that £4((I x Q) — D) < x/(3C5). Finally, use the assumption that there are functions
fiooo Frwpy € LN(D; YY) such that

{M) (u®), ¢<u>)}

ve(0,7]



where B:(f) = {g € LY(D;Y") : |lg — flloipy~) < €} to find a suitable f = f; €
LY(D;YN) such that the last term in (102) becomes smaller than /3, too.

The next step to show precompactness of the /% in LY(D;Y") for each D CcC I xQ
is to construct approximating step functions. Let K € N and s = 7 /K, and define the

functions )
) i v

o (t,z) = 4 00 T B,

elsewhere,

Y

@) ; (v)
C(V)(t7,];‘> — {¢ (t,]ﬁ'), if ¢ ¢ E&E,

elsewhere.

)

The step functions (with steps in time, not in space) are defined by

T\ =(t 2) = Z¢ o ¢ (i = 1)s + 7, 2) X155 (1)

where r € [0,s) will later be chosen appropriately. The following calculation is essential
for a control of the error between the original function and the step function. For times
t1 = jis and ty = jos with j1, 5, € {0,..., K}

7[/ U, $0)(t) - T=(0)
- >

i=j1+1

— i ][/ |00 @, )G = 1)s +7) - v (v C(”))((i—1)3+r)”lef7’dr

i=j1+1

: ”f/H

i=j1+1
e @®, )~ s + 1) — @O @) |

dedr
LYY N)

D, ) (1)~ (0, ) (G = Vs +7)|| | dtar

V@, 6 (i = s +7) =) W, ¢ ()| | diar

t2

drdt;

inserting ¢ =7+ (i — 1)s — ¢ € ((i — 1)s — t,is — t) this is estimated by

< dgdt

@, ) + ) - w0, ¢ @)

dgdt

IA

e @, )0 + @) - 8, ) @)
1 ta  ps ~ ~
+ ;/ /_S ‘¢fz)(u(y),¢(y))(t) _w}z)(v(u)’c(y))(t) )

D, ¢ (I + q) — 8 (@, (D)

) dgdt

dit
LY (Q; Y N)

dt.
LYY N)




The result (101) states that the first term on the right hand side tends to zero as s — 0.
Using Lemma 5.1 with § = 1, (93), and (96) the second term is estimated by

2L Eg”a) ) (esssupge I /

b (@i, 2), 6 (E2) de+C) < CLUEL)
Q

and becomes arbitrarily small when choosing = sufficiently large. Therefore, if a small
k > 0 is given then it is possible to choose some large =, some small s (by choosing K
big), and some r, € [0, s] for every v € [0,7] such that

to
/ 169 (@, $)(t) — T, (1) sy, dt < 5.

t1

Hence, if the set of step functions {Tgfsg}ye[oﬂ is precompact in L'(D) for every D CC

I xQ and every s, =, then choose s small enough such that D CC [0,7 — s] x Q and apply
the above result to get that the set {y% (u®), #“)}, e is precompact in L'(D; YV).
Finally, consider the set {7 557)875},,6[05] as a subset of L*(D;Y™) for some D CC I x (.
It remains to demonstrate that there is a function 7' € L'(D;Y") and a subsequence
(Vi)ren such that T¢%) _ — T in LY(D;Y"). Since K, s, and = are fixed now it re-

k
N
mains to examine whether the sets {1/1,(5) (v, ¢ ((i — 1)s +7,) }oejoz are precompact
in L'(D,; YN) for every D, CC Q,i=1,..., K. It holds that
) =(i—1)s+r,cE% = oM@ =0,
M eEZ = o) mmary <

and analogously for ¢™. Tt follows that for every sequence (v)peny C [0,7] there is
a subsequence, still denoted by (vy)g, there is 7 € [0,7], and there are functions v €
HY(D,; YY) and ¢ € HY(D,; HXM) such that v, — © and

v () - © weakly in H'(D,; YY), strongly in L*(D,; YY), and a.e.,

¢WR (1)) — ¢ weakly in HY(D,; TEM),  strongly in L3(D,; TEM),  and a.e.

as k — oo. The same arguments as in the proof of Lemma 5.2 in the previous subsection
yield the assertion:

U (o) ¢ () — @) (9, ) in LD, Y.

,u

Altogether, it was proved that

{@sz)(u(”), ¢>("))} C L'(I x ;Y") is precompact. (103)

ve(0,7]

5.4 Convergence statements

The aim of this section is to let ¥ — 0 in (95) in order to obtain (39).



Since the set of functions {||u®™|| L2(1;22(02;y V) Jrefo.7] 18 bounded the Poincaré inequal-
ity yields
1w\ 21120y < C.

By this, the other estimates in (96), and (103) there are functions w € L?(I; HY(Q; YY),
be L'(IxQYYN) and ¢ € HY(I x Q; HEM) so that for a subsequence as v — 0

o —~ ¢ in HY(I x Q; HxM),
u”) —~ in L2(1; H'(Q; YY) and in L*(I; L?(09; Y™)), (104)
W (), $") — b in LI x Q;YN). (105)

The second convergence result is already sufficient to obtain the second line of (39) from
the third line of (95) as long as the test function fulfills v € L?(I; L*(0Q;YY)).
With the same arguments as in Subsection 4.3

P — ¢ in LI(I x Q: HEM) and almost everywhere, (106)
for ¢ = 2 and ¢ = p the value in (22).
To identify b with ¢ ,(u, ¢) the monotonicity trick is applied. But the fact that ¢,

only converges in L' must be faced. Let for R > 0

v, if |v] <R,
Ry, if |v| > R.

El

Pr: YN — Br(0) c YN, Pgr(v) = {

Bu the convexity of ¢, the % are monotone in wu, hence for all v € L2(I x Q; YY)

0< [ [ Pa(u(0.6) — s, 6)) - (v~ ul”) dod.
I1JQ

The convergence in (106), (104), and (105) yields, thanks to the assumptions in L1 and
the Lebesgue convergence theorem,

0< /I/QPR (Vu(v, @) = b) - (v — u) dzdt.

Insert v = u + v with some v € L?(I x Q; YY), multiply by &, and let ¢ — 0 to obtain

og/I/QPR(zp,u(u, ¢) — b) - & dadt.

Since R > 0 and v are arbitrary one can conclude that b = ¢, (u, ¢) almost everywhere,
whence from (105)

@sz)(u(”), &) = a(u, @) in LI x QYY) and almost everywhere. (107)
Therefore, for every test function v : I x Q — Y such that v € L°°(I x ;YY)

Opv- (VW (u®, ") =) (wie, dy0)) — v+ (V,u(t, @)~ wu(Uic, By.)) in LM (IxQ). (108)



Similar arguments as have been used to obtain (68) give
Vo LY (u®, o), " )\Vul) — Vo : L(Y u(u, ¢),¢)Vu in L'(I x Q) (109)

if the test function fulfills v € L*(I; H'(Q;Y")). Taking (108) and (109) together, the
limit as ¥ — 0 in the first and second line of (95) in fact is the first line of (39).

The growth assumption on v, namely, d,v € L>®(I x Q; YY), can now be relaxed
to the assumption in Theorem 3.2. Indeed, once the limit (108) is established for suf-
ficient smooth test functions, the growth assumptions on v as stated in L1 resulting in
VY u(u, @) € L2(I x Q; YY) enable to approximate functions v € H'(I x Q; Y).

Also the terms involving the functions w, a, and w in the fourth and fifth line of (95)
can be handled as previously in Subsection 4.3 and 4.4. Observe that ¢ = ¢ — ¢ is
an admissible test function in (95). The following arguments of that subsection can be
applied again to show strong convergence of Vo) to V¢ in L2(I; L2(Q; (TEM)4)) and,
therefore, to let v — 0 in the terms involving w and a. For handling the w term, the
arguments around the result (70) can be applied again in view of (106) and (106). In
particular, the limiting terms are exactly those appearing in (39).

It remains to consider the last term in (95). The growth assumptions on w};) in L1,
more precisely (91), give, thanks to (96),

’W,(;)(U(V)a PN 212y < C(1+ [u | 220 vy) < C,
whence there is some ¢ € L?(I; L?(€; TEM)) such that
PG (), ¢®) = ¢ in L2(I; LA(; TEM)).
By (106) and (107) the assumptions in Lemma 5.3 are fulfilled almost everywhere, hence
¢f§,)(u(”), d")) — b 4(u,p) almost everywhere as v — 0.
Together this means that
P (W), ¢) = ¢ y(u, @) in LA(I; L*(Q; TEM))

which, as long as ¢ € L*(I; L*(Q; TXM)), is sufficient to go to the limit in the last term
of (95) and to obtain the last term of (39).

Assertion (38) can be derived with similar arguments as in Subsection 4.5 which con-
cludes the proof of Theorem 3.2.

6 Proof of Theorem 3.3

6.1 Solution to the perturbed problem

From the approximation of ¢ = ¢© by the ¢ it is obvious that there are functions k; (n)
and ko(n) with ki(n) > g,(ﬁguo (ug) > ko(n) > 0 for n > 0 where k1(n) — oo and ko(n) — 0
as 7 — 0. The assumptions in B1 furthermore imply that the perturbed potentials 1)



fulfill the properties stated in Q1. In view of B2-B4, the assumptions of Theorem 3.1 are
satisfied. Thus, there are functions

W e L2 HY (YY), o™ e HY(I x Q; HuM)

such that
() = by in LA(Q;HEM) as £\, 0

and such that
// atv (17 ¢(77> ¢ (uzmd) )) dzdt
+ / / Vo : L0 (u®, ), ") Vu dadt
1JQ

+// UO'ﬁoo(Ug?) — Upeo) dH At
1Jo0

n // [w@)(n)’ VoM™ - ¢ + ave(d, V) : VC} dade
1JQ
+ / / [a,¢(¢("’,v¢(">) ¢t wp(@™) - ¢ =P (W™, ¢™) c} dzdt  (110)
1JQ
for all test functions v € H*(I x Q; YY) with v(7) = 0 and ¢ € HY(I x Q; TEM)N LP(I x

Q; TEM). Estimate (79) for the solution (u, ™) looks slightly different with respect
to the boundary term, namely

esssupiey [ [0 (0,67 (E) - (D) — 6w (1), 67 (D)
Q
sl ¢ (D)F + oV (D] da

+// [w0|8t¢(”)|2+lo|Vu(”)|2] dxdt+ﬂ2/ WiPZartae < ¢ (111)
1JQ I1J0Q

Thanks to assumption (40) a computation similarly to (55) shows that

¢(n)(u(n)’ ¢(n)) ™ — ¢(n)(u(n)7 ¢(n)) >

, U

With (111) and applying the Poincaré inequality to u ) furnishes the estimate
||u(")||L2(I;Lz(Q)) S C  for all n c (O,ﬁ] (112)

Estimate (80) reads in the present situation

/T @9 - u)

(WD (Wt + ), (1) = P (uD (1), g7(1)) dadt < Cs. (113)



6.2 Estimate of the conserved quantities

Let x(t) := X (0,7 (t) be the characteristic function of the interval I =(0,1), and define

t+0
vs(t ) = f ()P (@l (s, ), ¢ (s, 2)) d.

The functions ¢s(s) = $X(—s0)(s) constitute a Dirac sequence. By the growth assumptions
in BI Vo' (u™, ¢ € L2(I; L2(92; (Y™)%)), and the properties of Dirac sequences yield

05 % XV (u, ¢") — W (u, ¢M) in L*(I; L2(Q; (YN)?))

in the limit as § \, 0. Since
(2s() % XV (@ (- ), ¢ (-, 2))) (1)
= [l = T (5.2, B (5,) s
t+6
= OV @ ) 6 s ds = T,
it is clear that Vwv; € L*(I; L?(Q2; (Y™)?)) and, hence,
Vos = x VD (u®, ¢") in L2 L2(Q; (™)),
Analogously vs — X@/}fﬂ)(u(m, o) in L2(1; L*(Q; YY), thus it holds that
vs — XU (W, ¢™) in LA(1; H' (2 YY), (114)
Define the forward and backward discrete time derivatives by
0 16) =5 (£ +0) = 1), 07 4(0) = 5 (7(6) ~ £(¢ ~9))
for a function f : R — Z mapping into some Banach space Z. Then
dvs(tw) = O (x()eD (W (), (- 2)) (1),

hence vs € H'(I x :YN)if § < T — 1.
Let ¢ = 0 and v = vs in (110) and suppose that § < 7 — . Then

// —0yvs - U(n ¢(”))—w,(ﬂ)(uic, ¢)zc)) dzdt

+ / / Vs : LW (u™, ), ) Vu dadt
1JQ

+// Vs,0 * ﬁoo(u(()n) - ubqo) de_ldt. (115)
I1J00Q



Extend (u™, qb(”)) for t € (=6,0) by (e, ¢,.). Using that y- (y — 2z) > %(|y|2 |z]?)
for all y, z € R¥*! a short calculation shows that

~ [ [ o D@D ) — 00 (s 1))
A @ 6) @@ 6) 8 a ,0)
> [ [ (0. 600~ D 0) 67 o)) doat
= §7€ [ (W™ (t), @ () 172wy At — —II@D( (Wies Bio) |22y v
Using again the properties of a convolution with a Dirac sequence it holds that
7{;||w,<z><u<"> (1), 8 (D) Pagaymy . — [0 (@ (B), 9 (D)2 gy )

for almost every ¢ € I, whence, thanks to (43), the first term in (115) can estimated

// Oyvs - ¢(77)) _ ¢,(Z)(Uic, ..)) dzdt

> 574 4 0(E), SO 3 vy = 5102 s 81

t

— ||w (W™ (1), ¢ (1) 220wy — C (116)

for almost every £ € I as § — 0.
Now, the second term of (115) will be estimated. Thanks to assumption (42)

u™ - w(n) (u("), (15(77))11(1@(3)(u(n)7 (]5(77))7 qb("))Vu(")
- \Vu“? 29 s (46" ) Loo (02 (™, 7)., )

+20 Y V- Ly (u, o), ¢ Vu?
+ Z h(gba)Vu(”) . )\(321(“(77))13(@5(2)(“(77)’ ¢(n))’ ¢(n))vu(n)

The positivity of L (see assumption (30)) implies that Loy > 0, therefore for the integral
of the first term

[ 19087 Pl (0 Lo (w?, 7), ) ddt > 0.
I1JQ



The integral of the second and third term can be estimated using (40), (32), and (111):

‘ / / 2yZvu (6™, g™, )Ty dxdt’
1

i,j=1
* ‘ / / > W)Vl - XD () LG (u™, ¢M), ")V dxdt‘
1JQ o
I1JQ

Moreover, using the estimate (111)

M) . M (D M OIRORFSONIPAC) ()
\/j/ﬂw 50 (), S L (), ), )Tl drat
< k3L0//%|V¢(")|2—I—|VU(")|2)dxdt < C.
Altogether, the second term of (115) is estimated as

/I/vi5 : L(wfg)(u(”),qb(”)),qb("))Vu(") dzdt
. / / AV (u®, M) - LD (u®, ), M) Te drdt
/ / u(n: () () OV W)(u(n),¢,<n>),¢<n>)v“<n>> dudt
[ [ (ve" :wf”u ! $NLW (G, )T ) drds
[ IV g, 087 LoD, ), )t — €. (117)

Considering the third term of the right hand side of (115) observe first that by (114)
and the trace theorem for Sobolev functions it holds that

vs0 — XU (u, ™) in L*(I; L2(0)).

This yields with the assumptions in B4 and since, by (111), condition (44) is satisfied

/ / Ua,oﬂoo(u(()m — Upe,0) dH*tat

0N

/ / XV (™, ) Goo (uf” — wpe0) dH 1t
o0

/ (D (i, @™, ¢ — 0 (uy g, @™, ™)) Goo (uf” — wpe0) dH1dt
o0

+ / O (U0, @7, ™) Boo(u” — upe o) dHI1dt
0 Joo



=Vbe,0

[ 1
= / / / i¢(3)(9“(()77) + (1= O)upeo, 1™, ¢) do - 600(ug7) — Upeo) dHdt
o JoaJo dO g > :

t
_— / [0 (0, @™, @[l — 0] AHI 1
0 o0

[ 1
> / / (u§” = tpeo) - ( / P (Vhep, @™, 97) d9> Boo(u§” — tpeo) dHI1dt
0 Jox 0
= a9 e, ) carzomiry (I8 araonrmy + ltseolaqrizziony )
> —C. (118)

To conclude, choosing (v, ) = (vs,0) in (110) yields as § — 0 thanks to the estimates
(116), (117), and (118) that

esssupgell\zﬂfﬂ)(u(”)(f), ¢(”)(¥))||2L2(Q;YN) <C  forallne (0,7 (119)

As a conclusion from (111), (112), and (119) there are functions u € L*(I; H*(Q; YY),
be L*(I; L2(Q; YY) and ¢ € HY(I x Q; HEM) N LP(T x Q; HEM) such that for a subse-
quence as 7 — 0

ul® — in L*(I; HY(Q; YN)) and in L*(I; L*(0Q; YY), (120)

VP (W, @) = in L1 L YY), (121)

oM —~ @ in H'(I x Q; HXM),

oM — ¢ in LI(I x Q; HXM) and almost everywhere, ¢ = 2,p.  (122)
The goal is to show that (u, ¢) is a solution to (46) by considering the limit of (110) as
n — 0. Strong convergence of V@ (n) to Ve in L2(I; L*(Q; (TEM)4)) can be shown as in
Subsection 4.4. As a consequence, (70), (76), and (77) hold true with ¢™ replaced by
¢ and ¢™ by ¢:

wp(d") = w (@) in L (I x Q; TEM),

av4(9", V") = ave(p, Vo) in L*(I; L*(; (TEM)?),

a.p(¢" V") = a4(¢. V) in L*(1; L*( TSM)),

w(@", V)¢ - 00" — w(p, V)¢ - 0 in L'(I; L'(2)).

(123)

It remains to identify b with 1 ,(u,¢) and to show ¢fg)(u("),¢(")) — Y4(u, @) in
L2(I; L*(Q; TXM)) and almost everywhere.
As a first step it is shown that uy < 1 almost everywhere. Define

Wy = {(t,x) € I x Q:ug(t,x) > 1}, |[Wy| = L&)



It follows from (119) and assumption (41) that

c > / W@ (u™, )| dzdt > / W@ (u™, )| dzdt
IxQ ’ IxQ ’
> / W@ (u™, )| dzdt > / Kl — 1) — ks| dadt
Wi ’ Wi
> K, [ |ul?” — 1| dedt — ks|Wy].
Wy

The weak lower semi-continuity of norms implies

C + kg|W-
/ (up — 1) dadt < liminf/ ud” — 1| dzdt < lim inf S EIWAL_
4%} n—0 Wh n—0 n
hence |W;| = 0 and
up < 1 almost everywhere. (124)

6.3 Strong convergence of temperature and chemical potentials

The goal of this subsection is to show strong convergence of the u™ to w in L'. Since
the phase field variables are not of interest here, the value qb(”) (t,x) at which 9™ and its
derivatives are evaluated is dropped for shorter presentation.

Set v := Ou™ (t + s) + (1 — O)u (¢). Using (40), it follows from (113) that

T—s 1
sC > / / (u(t 4+ s) —u™(1)) - / i¢<g>(v9)dedxdt
0 Q 0 de ™

> / o /Q kola™ (t + s) — @™ (t)|? dadt. (125)
0
Extending @™ by zero if t € R\(0,7) or if # € RO\, (125) and (112) yield
/ ) @ (t +s,2) —a"(t,z)>dzdt — 0 ass— 0.
R JR
To obtain an analogous result for differences in space consider
Q) = {xE]Rd Lr+0heQ Vo€ [0,1]}

for some h € R?. By the assumptions on €
LYO\Q) — 0 and £49(Q — h)\Q,) — 0 as |h| — 0

where Q —h = {z—h : x € Q} and L% is the Lebesgue measure of dimension d. By (111)
there is a upper bound for {||Va™ | 21,2 ;M )4)) Fne (0., hence

3

/ @D (2 + h) — a0 (4, 2)[2 dzdt
R JR4
T 1 d 2
= / ‘ / —a"(t,x +6h)dd| dzdt
o Ja,!Jo df

T
+ / / @ (t,z 4+ h) — @™ (t,z)|* dzdt
0 Jri\,



< / / \/w (t, 2 + Oh) - hd@) dzdt
Qp
/ / tx+h|2dxdt+/ / D(t, )| dadt
Q— h\Qh A\Qy
/ / / \Va'™ (t, x + 0h)|*d6 |h|* dzdt
Qp

+ C(LYQ = h)\) + LY\D))
— 0 as |h| — 0.

Thus, the set {@™}, is precompact in L*(I; L*(Q; TSY)). By (120)
@™ — @& almost everywhere and in L?(I; L*(Q; TSN)). (126)
Next, an appropriate convergence result u((]") — ug will be shown. Clearly
(ug” (t -+ 5) = g (D) (S0 (ug” (2 4 ), @ (¢ + 9)) = 90 (g (¢ + 5), 27 (1))
= WP(t+s)— g">( ))/ D (t+ ), 0ul” (t+s) + (1= 0)a™ (1)) do

'

= (" (t+5) —ug" (1)) /Olwﬂ’zzu( 0 (¢ + ), 8) 46 - (@7 (¢ + 5) —a (1)) (127)
Analogously
@ (¢ + ) — & (1) - (0D @t +5) — 0w (1))
= @+ 0) - a00) [ Vo) @O - u ) (129
Estimate (113) means that
50 = [ [0 - 0 (G4 9) v 0) v
b [ (@00 a0 0) RO+ ) o @ 0) s
_ /78/383 ) (1) (0 (u (¢ + 5)) — D (Wt + 5), @0 (8))) dadt
[ [ oy @R+ 9,50 0) o 0) s
-/ o [ s0rae) - (00 @ e+ 5) — D @0) .

Plugging the first and the last term of the right hand side to the other side yields with



(127) and (128) that

[ [
[
+/OS
.
o
i
2/T
e

In view of (125) and (112) this is for s <1

T—s 1/2
/ /|u (t+5) (t)|2dxdt)
T—s 1/2
/ /|u(’7 (t+s) —a ())\2dxdt> +sC

< \/EC(QHUO ||L2(I;L2(Q))) +sC < \/70 (129)
For § € (0,dy) define

(4 s) — ug” (0) (S5 (g (¢ + ), @ (1)) — 0 (w (1)) dedt

IA

sOsul / (g (t + s), 69)d9~sﬁf&(")(t)‘dxdt

sova (f) - / qp,gu(v(,)dﬁsafu(”)(t)‘dxdt +sC

IN

s ul” (t) / Zh (Pa)A uou Wt + s), ) d6 - sOFa™ (¢ )’ dzdt

s (1) / Zh o)A () d6 - 07 (”()’dxdt

o

sora™ (t) - / zyldN+Zh(%»fg;(w,)desa;am)(t)‘dxdt +sC
0 a=1

??w

A
M|§

ulP(t + 5) — uS (@) |a™ (¢ + s) — @ (2))] dedt

w|§
??w
Q

a(t 4 s) —a™ ()P dedt 4 sC.

1
uéng ‘= max ( 5 min (1 — 9, u(()"))> = K5O ug"), (130)

ie. u(()”) is projected to the interval [—3,1 — d] by the truncation function xs. Let

WH@,n) = {(t,z) € [ x Q:ul"(t,z) >1 -8}, |WHG,n)| = LT (W8, 7)),
which means that “o — o6 on W*(d,n). With (119) and (41)

c > / |¢(n (u(n ¢(n))| dadt
IxQ
> / Kol — 146 — 5) dadt — ke[ W5, )]
WH(5:m)

- K, |ul" u06|dxdt — (K0 + k7)|[WH(6,m)].
W+(6,m)



Since K, — oo as n — 0 and as |[W™(d,n)| is bounded by £ (I x Q) for all § and 5
there exists 77(9) and C' > 0 independent of ¢ such that for all n < 7(J)

0 _ 4zt < < 1 (54 L\ w60 < O
Jo i s < o (o Z )W)

On the set 1
W) = { (o) € Tx @l (t0) < —5 |

it holds that |ul” — uéng < (- ul)2. As by (112) Hug/])HLZ([;LZ(Q)) is bounded by a
constant independent of n

/ Jug” — u| dzdt < C'6,
W= (6m)

and since u" and u(77 agree on I x Q\(W*(4,n) UW(4,n)), altogether the following
convergence result is obtamed (for an appropriate diagonal sequence):

1JQ
Observe that
D W (t + ), @ (1), 7 () — 00 (ul (), @ (£), ) (£))
1
- z/(iw D(Oug? (t+ 5) + (1 — 0)ui? (), 4™ (), ¢ (1)) A
0 7,

-~

=:0,0

:./mmmm D), (1)) - (ug (t + 5) — ug”(t)) db
(n) (t+s)
= / P o (o0, w7 (t), @1 (1)) dugp.

u(")(t)

Thus the estimate (129) reads

T—s (n) (t+s)
CVs > / // uouo er,u(")(t),gb(”)(t))dvoﬂ (u (n)(t+8) (t))d:cdt.

(’U)(t

By the convexity of ¥ clearly @Duouo > 0. Replacing u by u can therefore only lower
the right side of the above inequality which leads to

T-s u(n) t+s)
Cys > / // 0.5( uouo vog,u(")(t),¢)(")(t))dv079 (u (")(t+s) u(()"g( 1)) dedt.

(W)(t

But then vy € [—%, 1 — 6] where, for i small enough, ¥ coincides with . In particular,
there is a constant cg(d) > 0 such that w(ﬁguo (v, @™ (t)) > ¢o(6). Therefore

T—s
Cvs > / /co |u (t+s)— ué7§(t)|2d:£dt.



Since |u0 5| < |u )|, by (112) there is an upper bound for ||U(()?§||L2([;L2(Q)) independent of 1
and 6. Since by (130) uo 6 = /igou((]” where 15 € W1H(R), the chain rule for Sobolev func-
tions and (111) gives that there is also an upper bound for the set {||Vu0 5 HLz LL2(RDY) I,

Applying analogous arguments as above for @™, for a given 4§, the set {uo 4§} 1s precom-
pact in L?(I; L?(2)), whence in L'(I; L*(9)), t00.

The convergence result (131) together with an argument involving diagonal sequences
(choose first § sufficient small and after choose an appropriate 1) implies with (120)

ul” — uy  almost everywhere and in L'(I; L'(€2)). (132)

6.4 Convergence statements
Consider the set
Wo:={(t,x) €I x Q:up(t,z) =1}, |[Wy|:= LT(W).
By (126), (132), and (122)
Mg (u™, ™) — 9 . (u, p) = co almost everywhere in W
But the estimate (119) gives in view of (121)
|0, (W, D) || L2y vy < ligl_%lf ||¢’(33(u(n)’ ¢(n))||L2(W0;YN) <,

(n)

therefore |Wy| = 0. As a conclusion, taking (124) into account, u,” — wuy < 1 almost

everywhere which proves the first assertion in (45).
If 4o < 1 the kind of way ¢ approximates v implies that w ( ) Y u(u, @) as

long as n is small enough. Therefore by (126), (132), and (122) e )(u(" MY 9 o (u, @)
almost everywhere. Recalling (121) b = ¢ ,(u, @), i.e

O (W, @) = Yu(u.¢) in L*(I; L*(Q)). (133)
Analogously as done in Subsection 4.4 for u(™ (cf. the result (68)) it can be derived that
Vo : LD (u®, o), ¢ Vul? — Vv : L(Yu(u, ¢),$)Vu in L'(I;L1(Q)). (134)

The assumptions Bl together with (112) yield that the de(g) (u™, d)(n))HLQ(I;LQ(Q;TZAI))
are bounded by a constant independent of 7 so that there is f € L2(I; L*(Q; TXM)) with

W (@ @) s f in LA(I; L3(Q; TSM)).

The special structure of ¢ implies that ¢(:¢7>) = 1) 4. Since P (u™ pM) — Y u(u, @)

and c,z’) — c,z’) almost everywhere Lemma 5.3 in Subsection 5.2 can be applied to show
that w(n (u™, ") — 9 4(u, p) almost everywhere, whence

D (W, ¢y 9 y(u, @) in L*(I; L3(Q; TEM)). (135)

The convergence results (123) and (43) together with (133)—(135) complete the list
necessary to let n — 0 in (110), i.e., (u, ¢) indeed solves (46). Since the second assertion
in (45) can be derived as in Subsection 4.5 the proof of Theorem 3.3 is complete.
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