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Abstract – We study the dynamics of concentrated, long, semi-flexible, unknotted and unlinked
ring polymers embedded in a gel by Monte Carlo simulation of a coarse-grained model. This
involves the ansatz that the rings compactify into a duplex structure where they can be modelled
as linear polymers. The classical polymer glass transition involves a rapid loss of microscopic
freedom within the polymer molecule as the temperature is reduced toward Tg. Here we are
interested in temperatures well above Tg where the polymers retain high microscopic mobility.
We analyse the slowing of stress relaxation originating from inter-ring penetrations (threadings).
For long polymers an extended network of quasi-topological penetrations forms. The longest
relaxation time appears to depend exponentially on the ring polymer contour length, reminiscent
of the usual exponential slowing (e.g., with temperature) in classical glasses. Finally, we discuss
how this represents a universality class for glassy dynamics.
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While a great deal of work continues to be published
on the glass transition, e.g., in colloids [1–3] and poly-
mers [4–6], a complete understanding of the transition
remains elusive. It is generally associated with the suppres-
sion of molecular motion due to jamming and/or cooling
where, as a result, the system can take an extremely long
time to reach equilibrium. The glass transition has several
characteristic properties, including a dramatic (exponen-
tial) slowing of dynamics as the temperature is reduced
towards a glass transition temperature Tg, combined with
the lack of any crystalline order or the thermodynamic
signatures of a true phase transition. Beyond these broad
features the glass transition appears to lack universality
in the sense that its properties depend on the microscopic
details of each system. There have been recent attempts
to understand this transition in terms of the pinning of a
fraction of components [7], which has close analogies with
the work we outline below.

In the present work we investigate a simplified theo-
retical model of the diffusive dynamics of high-molecular-
weight ring polymers, above the overlap concentration c!,
embedded in a polymer gel. This would correspond to the

same experimental system as would be employed for gel
electrophoresis of circular plasmid DNA (here without the
applied field) [8–11]; DNA electrophoresis is one of the core
techniques of molecular biology [12,13]. There is evidence
that open circular (ring) DNA can be “trapped” in agarose
gel, with exponential slowing-down of its migration. This
phenomenon is attributed to the presence of protruding
gel fibres, that thread through the ring-shaped DNA [14].
We neglect such ends protruding from the gel in what
follows but argue that similar penetrations can occur
between two ring polymers when one threads through the
other. If these penetrations are numerous, then they may
dramatically slow the diffusion of rings. It is this effect
that we are most interested in investigating. A few authors
have previously conjectured that such interpenetration of
rings may occur and that this might significantly slow the
dynamics [15,16]. However, no quantitative theory has
previously been proposed.

It is also possible to synthesise non-DNA ring polymers
with few knots and concatenations [17,18]. Their rheolog-
ical properties are now thought to be rather sensitive to
contamination from linear polymers [19,20] and, to a lesser
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extent, polydispersity. It is also challenging to measure
the rheology associated with the extreme (long-lived) tail
of the stress relaxation in these systems, this being the
regime of most interest to us here.

There is now a significant body of literature on ring
polymers, their static properties [21–24] and conforma-
tions in the entangled state [25–27]. Few formal theo-
retical results exist due to the difficulty in handling the
essential non-locality of the topological constraints. A
number of simulation studies have been performed on
highly concentrated rings (ring melts) [23–26], a somewhat
different system to that in which we are interested in here.
Here, there are hints that the chains may approach a fully
compact globular conformation in the long-chain limit. In
this case the scaling of the polymer radius of gyration
with the degree of polymerisation Rg ∼ Nν would
approach an exponent of exactly ν = 1/3, although this
remains unproven. As usual, computational simulations
involve inherent limits on the polymer contour length
L, and the total number of polymer chains Nc. They
are further hindered by the fact that the entanglement
length le (the average contour length of chain between
effective entanglements) can be ∼ 102 monomeric units, or
even more [23,28]. Computer simulations that explicitly
include realistic monomeric units are therefore effectively
handicapped by two orders of magnitude in polymer size,
due to the value of le, and hence at least six orders of
magnitude in time, assuming the dynamics are no slower
than reptative [29].

Our approach involves several simplifying assumptions
that mitigate this problem. Firstly we adopt the ansatz
that the ring polymer compactifies in such a way as to form
a duplex structure in which each segment of the “tube” of
entanglements that confines it [29] contains an outgoing
and a returning segment of the ring polymer. This is a
result of the rings not being able to cross through the gel
polymer [16,21,27]. We further assume that this compact,
duplex structure is linear, see fig. 1. This state is quite
different from the fully compact globule with ν = 1/3,
having an exponent closer to the random walk value ν =
1/2 although this value is moot given the way in which
we will later treat space. The effective length of the tube
is reduced by roughly a factor of two but such a chain is
now guaranteed to satisfy its topological constraints and
to remain unknotted and unlinked, the form in which it is
assumed to have been synthesised.

These linear duplex states represent an explicit set
of microscopic configurations that rigorously satisfy all
topological constraints. Branching of this duplex structure
involves a free-energy penalty if the persistence length of
the chain lp is much greater than the mesh size of the
background gel ξ (see footnote 1). Here we aim to study

1An extremely crude estimate of the number of branches nb
can then be obtained by considering the free energy per chain F
and writing F − Ebranchnb # −kBTnb log nb/N , with Ebranch #
kBT lp/ξ and where we have assumed that the entropy of the
branched structure is polynomial in the number of branches. This

Fig. 1: A schematic diagram showing three unbranched
compactified ring polymers (solid curves) and the tubes (dash-
dotted curves) provided by their entanglements with a back-
ground gel and/or neighbouring rings (not shown). The labels
identify the nature of penetrations on polymer 1. Here polymer
2 has actively penetrated polymer 1, creating an associated
passive penetration in the corresponding tube segment of
polymer 1. Polymer 3 has been penetrated by polymer 1,
resulting in a passive penetration to chain 3 and an active
penetration to chain 1. The passive penetration on polymer
1 will remain until one end of polymer 2 has diffused through
that tube segment. Until that happens, the motion of polymer
1 is restricted by this penetration, which prevents either end
diffusing through the associated tube segment. The active
penetration on polymer 1 will be lost as soon as either of
its ends moves through the tube segment containing this
penetration, simultaneously annihilating the corresponding
passive penetration on polymer 3.

the effect of inter-ring penetrations perturbatively, where
they remain rare (as a fraction of all tube segments). It
is possible that the character of the glass-like slowing-
down that we analyse below will change if there is
branching of the duplex structure. Nonetheless, the role of
topological constraints arising from penetrations has not
been explored before and the non-branched case would
seem the natural starting point. We speculate that the
existence of the glass-like behaviour would not be lost in
the presence of branching, provided that the ring polymers
have sufficient interpenetrations.

A novel aspect of our approach is the way in which we
account for penetration events, see fig. 1. These do not vio-
late the overall topological constraints and can be thought

gives exponential suppression of branches when lp $ ξ according
to nb ∼ e−lp/ξ. If the rings were to be synthesised from DNA,
our analysis does not depend on whether or not the hairpins at
the ends of the linear duplex structure are denatured or remain B-
DNA. Furthermore, the DNA can still be driven into the gel by an
external field that will generate a force (roughly) extensive in the
DNA length that can therefore overcome even a very large constant
hairpin energy penalty, being associated with the two ends (only).

58005-p2



The topological glass in ring polymers

of as a perturbative relaxation of the compact chain ansatz
introduced above. The free energy (or statistical weight)
associated with these penetration events is difficult to
calculate a priori and depends on the monomer density,
the persistence length lp and other microscopic-level de-
tails of the physics employed, e.g., the inter-monomer
interaction potential(s). We do not attempt to compute
this from first principles but rather define a parameter
p to be the probability that the duplex chain’s primitive
path, the average trajectory of the duplex chain within
the tube of entanglements that confines it [29], penetrates
a neighbouring ring on diffusing one entanglement length
along the tube, roughly the Boltzmann factor associated
with the free energy of penetration. Provided p is non-zero
we may have many penetrations in the large N limit. As
we will show below, the onset of the glass-like transition
occurs when the number of penetrations per ring is only
of order unity.

Secondly, we coarse-grain the polymer on the scale of
the entanglement length le. Thus, in what follows, N
represents the number of entanglement lengths along the
duplex ring polymer, rather than the molecular degree
of polymerisation itself. We then study the curvilinear
diffusion of the primitive chain of the polymer within the
tube formed by the confinements provided by the fixed
obstacles [29] via a Monte Carlo (MC) algorithm. In this
way one unit of simulation time th is the “hop” time taken
for each duplex polymer to diffuse a mean squared distance
of unity (in units where le = 1). Here it might be helpful to
think of the curvilinear coordinates for each chain being
projected onto a straight line so that each chain can be
thought of as moving one unit to the right or left, at
random, per time step. The stress relaxation is therefore
proportional to the function G(t), corresponding to the
fraction of original (stressed) tube segments remaining
after time t, as usual [29]. In the absence of any
penetrations this algorithm correctly approximates the
Doi-Edwards expression for stress relation [29], with a
single characteristic stress relaxation time scale τ (0)

d =
π−2N2th. Here and in what follows, we work in units
of time in which th = l2e/(2Dc) with Dc = kBT/(ζN)
the curvilinear diffusion constant, ζ a microscopic friction
constant and kBT the thermal energy.

Our algorithm includes the effects of ring penetration
events as follows: We introduce Nc overlapping polymer
chains into the system. These all start in the unpene-
trated state. Each time step a randomly chosen polymer
attempts to move rightward or leftward by one unit of
length. This move is allowed, and the location of the poly-
mer is updated via an appropriate translation, provided
the chain does not contain a passive penetration in the
last (trailing) segment, preventing this move, see fig. 2. If
this occurs, the move fails, as shown in fig. 2(c). Thus, we
neglect tube length fluctuations throughout2. Each sweep

2This would seem reasonable given that i) these fluctuations only
give rise to changes in tube length that are a small fraction of the

Fig. 2: (Colour on-line) A diagram showing how our Monte
Carlo simulation operates. Panels (a)–(c) represent states of
the system at different times, starting with the state shown in
fig. 1 (a). The rings are labelled as in fig. 1, with passive
penetrations (red dot) and active penetrations (blue ring)
existing in pairs, indicated by connecting lines. Each “hop”
time step th every ring attempts to move, at random, one
entanglement length along their primitive path, here projected
to either left or right in a way that is analogous to the
curvilinear diffusion of classical reptation [29]. The ticks on the
axes represent these entanglement lengths. Thus, after a few
time steps, the rings have moved from the state shown in (a)
to (b). Each time a ring moves there is a probability p that it
penetrates another at random. This has just happened in (b),
where the new active penetration on the leading end of chain 3
is associated with its passive penetration of chain 2. A few time
steps later, the systems finds itself in state (c). Chain 2 has just
moved to the right, annihilating the trailing active penetration
associated with its passive penetration of chain 1. Chain 3
attempts a further move to the right. This move is rejected due
to the presence of passive penetration in its trailing segment.
The emergence of a glassy state can ultimately be traced to
the proliferation of such rejections (penetrations).

of Nc such moves corresponds to a physical hop time th.
Every polymer that successfully moves i) experiences a
corresponding reverse translation of all active and passive
penetrations, these being associated with the correspond-
ing tube segments, rather than the polymer itself (in our
code, as in the physical system, these penetrations remain
stationary and only the polymer position is updated),
see fig. 2(a); ii) if an active penetration was associated
with its trailing tube segment, this is annihilated, together
with the corresponding passive penetration through a tube
segment on another polymer, see fig. 2(c); iii) a new active-
passive penetration pair is created with the probability
p, see fig. 2(b). In this case the active penetration is
associated with the newly created leading tube segment on
the moving chain, the corresponding passive penetration

total tube length when N $ 1, and ii) the dynamics associated with
these fluctuations are fast compared with the slowest (reptative)
modes.
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Fig. 3: (Colour on-line). Penetrations significantly slow ring
polymer relaxation. The mean stress relaxation (disengage-
ment) time 〈τd〉 for a system containing Nc = 4 ring polymers
depends on their size N and on the penetration parameter p:
Shown is data for p = 0 (asterisks), 0.1 (squares), 0.2 (circles)
and 0.3 (triangles). The Doi-Edwards’ result τd/th = π−2N2

for linear polymers is shown as a (red) dotted straight line,
the lines connecting the data points are guides to the eye.
Error bars are shown but are often invisibly small. The
inset shows that, with N = 64, the mean stress relaxation
time 〈τd〉 increases with the number of rings Nc available to
interpenetrate, except for the red points (p = 0) where there
are no penetrations.

is associated with a randomly chosen tube segment on one
of the Nc polymers, unless the segment has already been
penetrated or it is the chain leading segment itself. This
leads to an initial increase in the number of penetration
pairs (from zero) and a slowing of stress relaxation due
to the constraints on the polymer dynamics associated
with passive penetrations, see fig. 3. Active penetrations
themselves do not hinder motion. The stress relaxation
function G(t) is obtained by monitoring the remaining
length of the original (stressed) tube of each chain3.

In our algorithm all rings are available to interpenetrate
with all the others, i.e., their coil volumes are assumed
to fully overlap. The maximum number Nc for which
this is appropriate will therefore be limited by the actual
chain number density and coil size in any real system. We
find that the system size, here Nc, can strongly control
the stress relaxation time, see the inset of fig. 3, noting
the log scale. We would explain this as follows: Since the
penetration dynamics is always time reversible, there is at
least one way to disentangle a system of penetrating rings.
Such routes to stress relaxation may be easily accessible if

3In each case we initially ran our MC code to perform ten
consecutive complete stress relaxation processes which were used to
calculate an estimated relaxation time t̃. Our simulations then ran
for a pre-equilibration period of 10t̃, followed by 150t̃ during which
the stress relaxation G(t) for all chains was recorded until the stress
in all had completely relaxed, whereupon the stress relation process
was (repeatedly) re-initiated. The mean stress relaxation time is
then 〈τd〉 = 〈

∫
tG(t)dt/

∫
G(t)dt〉.
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Fig. 4: (Colour on-line). The mean number of penetrations
〈m〉, normalised by the number of tube segments on each
polymer N , depends on the penetration probability p, for
N = 16 (blue circles) and 32 (green squares). The number
of chains Nc = 4 in these simulations. A crude mean-field
prediction (solid line) is in qualitative agreement with the
simulations, as discussed in the text.

there are few rings. However, if they are numerous (and
heavily interpenetrating) they can be obscure and only
rarely accessed by chance.

The mean number of penetration per ring 〈m〉 is
controlled by p, see fig. 4. A mean-field estimate of this
can be constructed as follows. The number of active
penetrations (per ring) ma increases by one i) whenever
a polymer successfully diffuses, which occurs with prob-
ability 1 − 〈mp〉/N , ii) successfully attempts to create a
penetration, which occurs with probability p and iii) at-
tempts to introduce this somewhere not already occupied
by a penetration, which occurs with probability 1−〈m〉/N .
Similarly an active penetration is lost whenever a chain
diffuses through it, which occurs with probability 〈ma〉/N .
Hence

d〈ma〉
dt

% p

(
1 − 〈mp〉

N

) (
1 − 〈m〉

N

)
− 〈ma〉

N
= 0. (1)

Finally 〈ma〉 = 〈mp〉 = 〈m〉/2 which yields an equation
for the steady state with a physical root,

〈m〉
N

=
3p + 1 −

√
p2 + 6p + 1

2p
, (2)

This is compared with the simulation results in fig. 4. A
non-uniform spatio-temporal distribution of penetrations
is not captured by eq. (1) and this may be the cause of
the numerical discrepancy seen in fig. 4.

We now examine the variation of relaxation time with
the mean number of penetration per ring 〈m〉, rather
than the rescaled ring length N , see fig 5. Explicit N -
dependence is removed by rescaling the relaxation time
by the mean time to diffuse the mean squared distance
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Fig. 5: (Colour on-line). The mean stress relaxation (repta-
tion) time 〈τd〉, normalised by the mean time that a chain end
encounters a penetration τp, increases with the mean number
of penetrations 〈m〉, itself controlled by p, and with the number
of rings Nc available to interpenetrate: shown is data for
Nc = 4 (red circles), 8 (green squares), 12 (dark blue triangles),
16 (purple reversed triangles) and 20 (light blue diamonds).
For the largest values of Nc the relaxation is suggestive of
an exponential (dotted line) slowing-down with the number
of penetrations per ring. The inset shows that the same
normalised relaxation time starts to increase sharply above
O(1) penetrations per chain; here Nc = 4 with N = 16 (green
open circles) and N = 32 (red open squares) and Nc = 20 with
N = 64 (blue asterisks).

between penetrations,

τp =
τ (0)
d

(m + 1)2
, (3)

where τ (0)
d is the Doi-Edwards relaxation time for un-

penetrated chains, as before. A dramatic increase in
the relaxation time with the number of penetrations is
observed, consistent with an exponential rise in the largest
systems, see fig. 5. The emergence of exponential slowing
down of chain dynamics, and hence stress relaxation, due
to the effects of topological constraints is a primary result
of the present work. This glass-like behaviour occurs when
the average number of penetrations per chain 〈m〉 is at
least of order unity. Above this threshold a network of the
penetrations starts to form which must be disentangled
for stress to fully relax.

We believe that our model of quasi-topological entan-
glements in ring polymers defines a universality class for a
glassy dynamics. It is universal in the usual sense that all
scaling results are insensitive to i) the precise chemistry of
the polymers, provided they are long enough to contain
many entanglements, ii) the temperature, provided it
is above (the classical) Tg and iii) the concentration,
provided it is well above the overlap density in the gel.
In such a regime we have shown that our model of
compactified ring polymers can be coarse-grained and
analysed by including the role of inter-loop penetrations

into classical reptative diffusion, which is already well
known to be similarly universal [29].

Our model involves a number of simplifying assump-
tions. It includes space only in the sense that the
individual polymers move relative to a tube that is
implicitly embedded in space. It is also zero-dimensional,
insofar as all chains are assumed to overlap with each
other. A more thorough treatment would include spatial
effects so that each chain can interpenetrate only with
those neighbours with which its coil volume overlaps.
It may be that these “clusters” can then form a spa-
tially percolating network of penetrations, leading to true
system-size–dependent relaxation times. We have also
assumed that the rings reside in a background gel. Finally,
our most restrictive assumption is probably that the
polymer conformations remain perturbatively close to a
fully compactified, linear duplex chain. We believe that
this represents a sensible starting point for quantitative
analysis and, as discussed above, it seems consistent with
the limit lp & ξ. The assumption that the chains
compactify to a linear structure may be harder to justify
in the melt (or concentrated solution).
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