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The static and dynamic properties of ring polymers in concentrated
solutions remains one of the last deep unsolved questions in
polymer physics. At the same time, the nature of the glass transi-
tion in polymeric systems is also not well understood. In this work,
we study a novel glass transition in systems made of circular poly-
mers by exploiting the topological constraints that are conjectured
to populate concentrated solutions of rings. We show that such
rings strongly interpenetrate through one another, generating an
extensive network of topological interactions that dramatically
affects their dynamics. We show that a kinetically arrested state
can be induced by randomly pinning a small fraction of the rings.
This occurs well above the classical glass transition temperature
at which microscopic mobility is lost. Our work both demonstrates
the existence of long-lived inter-ring penetrations and realizes a
novel, topologically induced, glass transition.

glass transition | ring polymers | topology | topological glass |
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The physics of ring polymers remains one of the last big
mysteries in polymer physics (1). Concentrated systems of

ring polymers have been observed, in both simulations and ex-
periments, to display unique features that are not easily recon-
ciled with the standard reptation theory of linear polymers (2–6).
The main reason for this is that ring polymers do not possess free
terminal segments, or ends, essential for end-directed curvilinear
diffusion. In contrast, ring polymers possess a closed contour,
which leads to markedly different relaxation and diffusion mech-
anisms. Recently, there has been much improvement in the pro-
duction of purified systems of rings (6–8), with the consequent result
that more and more experimental puzzling evidence requires a
deeper understanding of their motion in concentrated solutions and
melts from a theoretical point of view.
Recently, it has been conjectured that ring polymers assume

crumpled, segregated conformations in concentrated solution or
the melt (5). On the other hand, numerical and experimental
findings (5, 6) suggest that rings exhibit strong intercoil corre-
lations, which have proved difficult to address in simplified
theoretical models (9–12). Because of this, there have been many
recent attempts to rigorously characterize these interchains’
interactions (13–16), although a precise definition and un-
ambiguous identification of these “threadings” in concentrated
solutions of rings remains elusive. The primary reason for this is
that the rings are assumed to remain strictly topologically un-
linked from one another throughout if synthesized in this state.
In the case of concentrated solutions of rings embedded in a

gel, a method to identify these interpenetrating threadings has
recently been proposed (13). Here it was shown that the number
of threadings scales extensively in the polymer length (or mass)
and can therefore be numerous for long rings, creating a hier-
archical sequence of constraints that can span the entire system.
It has also been conjectured that a kinetically frozen state, or a
“topological glass” (17) can emerge, because such an extensive
network of constraints can eventually suppress the translational
degrees of freedom of the rings. However, the molten, or highly
concentrated, state does differ from that of polymers embedded
in a gel and so whether a similar jamming transition occurs for
long enough polymers or even whether threadings are present in

the absence of a gel remain open problems and are the main
questions addressed in this study. An example of interthreaded
ring configuration is shown in Fig. 1. A spherical region (Fig. 1B)
is carved from the configuration depicted in Fig. 1A, which rep-
resents a typical system studied in this work. The degree of in-
terpenetration between the different coils is readily appreciable
from the figure, and it can be boiled down even further into
a network representation (13). The uncrossability constraint be-
tween chains transforms the threadings into topological hindrance
in the motion of the coils, which we conjecture to form the basis
for a dramatic slowing down in the dynamics of long enough coils.
Glass-forming systems exhibit degrees of freedom that become

constrained as the temperature, or the density, of the system
approaches the glass transition temperature Tg or the critical
jamming density ρc, thereby (super)exponentially increasing the
viscosity of the system (18). Understanding the origin of these
constraints, being kinetic or thermodynamic in nature, is still an
open topic that animates intense research (19, 20).
Recently, a novel and promising theoretical approach to study

the glass transition in glass-forming liquids has been advanced: It
involves perturbing a system by randomly pinning some fraction
of the constituents and by observing the behavior of the unfrozen
fraction. This method introduces a field of “quenched” disorder
by freezing in space and time a subset of the system (21–27).
Inspired by this approach, we focus our attention on a con-

centrated solution of rings and apply a similar protocol: We
freeze in space and time a fraction of polymers in the system and
observe the response of the unfrozen constituents. We find that,
although linear polymers are substantially insensitive to this
perturbation, ring polymers become irreversibly trapped in a
network of intercoil constraints (threadings), which, in the limit
of long rings, allows us to drive a kinetically arrested state with
only a small fraction of permanently frozen chains. We conjec-
ture that a spontaneous glassy state might therefore emerge in

Significance

The glass transition is commonly associated with a reduction in
the temperature of liquids or by an increase in density of
granular materials. In this work, we propose a radically dif-
ferent approach to study dynamical arrest that relies on the
topology of the components. We find that a concentrated so-
lution of ring polymers can be driven to a kinetically arrested
state by randomly pinning a small fraction of rings, a transition
not observed in linear polymers. We attribute this jamming to
topological interactions, called “threadings,” that populate
solutions of rings. Our work provides the first evidence for
these threadings and suggests that very long rings may be
expected to be kinetically arrested even as the fraction of
pinned rings approaches zero.

Author contributions: D.M. and M.S.T. designed research; D.M. performed research; D.M.
analyzed data; and D.M. and M.S.T. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence may be addressed. Email: davide.michieletto@ed.ac.uk or
m.s.turner@warwick.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1520665113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1520665113 PNAS | May 10, 2016 | vol. 113 | no. 19 | 5195–5200

PH
YS

IC
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1520665113&domain=pdf
mailto:davide.michieletto@ed.ac.uk
mailto:m.s.turner@warwick.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520665113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520665113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1520665113


the long chain limit, even as the fraction of explicitly pinned
chains goes to zero. Because these constraints are topological in
nature, originating from noncrossability of the chains, this glassy
state has the potential to be produced at arbitrary temperature
or monomer density, provided only that these intercoil topo-
logical interactions remain abundant in the system, i.e., the rings
are sufficiently long and not too dilute. This system is therefore a
candidate for a novel kind of glass transition in systems made of
polymers or other elements with nontrivial topology.

Rings in Solution Assume Crumpled but Largely Overlapping
Conformations
The static properties of rings in solution have been studied for
some decades, and it is nowadays thought that rings assume
crumpled conformations characterized by a scaling law for their
gyration radius Rg ≈Mν   with  ν ’ 1=3 in the limit of rings with
large polymerization M (11, 28–31). On the other hand, they also
have been found to maintain numerous contacts with their
neighbors. This is often quantified by measuring the “contact
surface” of the polymers, which is defined as the number of
segments msurf in any one chain that are in contact with any
segment belonging to any other chain. This has been found to
scale nearly extensively with the size of rings (SI Appendix, Figs.
S1 and S2) msurf ≈Mβ   with  β ’ 0.98. This has been interpreted
as a clear signature of abundant interactions and coil overlap.
This picture is also supported by the fact that a coil’s pair correla-
tion function gðrÞ is peaked at rc < 2rmax ’ 2.6Rg (see SI Appendix,
Fig. S3), in light of which the coils can be viewed as interpenetrating
ultrasoft colloids of radius rmax ’ 1.3Rg (32–34).
The counterintuitive fact that rings have numerous intercoil

interactions while assuming a scaling exponent ν ’ 1=3 can be
understood within the fractal globule conjecture (11, 35) in
which the rings assume a fractal, hierarchical and virtually en-
tanglement-free, conformation that can accommodate near-
extensive interactions with other chains with a contact exponent
γ near unity (29) (SI Appendix, Fig. S3).
These interchain interactions may include threadings that have

been conjectured to be intimately related to the slow overall
diffusion of the rings’ center of mass (5, 8, 13, 16) (see also SI
Appendix, Fig. S4), an observation that is in apparent contrast
with the very fast stress relaxation (6, 7), characterized by a
power-law decay of the relaxation modulus GðtÞ and by a re-
markable absence of the entanglement plateau that characterizes
concentrated solutions of linear polymers. In light of these

findings, we believe that further investigation of the role of these
inter-ring interactions is crucial.

Contiguity Is Persistent for Longer Chains
To probe intercoil interactions, we first adopt a definition of
surface monomers where the ith monomer of chain I is a surface
monomer of that chain if its distance from a monomer j be-
longing to a different chain J is dij < ρ−1=3 where ρ= 0.1σ−3 is the
monomer concentration. We then define as “contiguous” two
coils that share surface monomers. From this definition, we
propose a method to track the exchange dynamics of contiguous
chains, I and J, by computing a dynamic N ×N matrix PðtÞ whose
elements are defined as

PIJðtÞ=
�
0 if   dij ≥ ρ−1=3∀  i, j
1 otherwise

. [1]

From this, it is straightforward to obtain the correlation function

φncðtÞ=
*
1
N

XN
J=1

  PIJðtÞPIJðt−ΔtÞ . . .PIJð0Þ
+

[2]

where h. . .i indicates the ensemble average over rings I and ini-
tial times. This function quantifies the exchange dynamics of
contiguous chains and tracks the time that the chains first be-
come noncontiguous, because it involves the product of PIJ over
all of the intermediate time steps up to time t. The behavior of
φncðtÞ is reported in Fig. 2. Eq. 2 gives a more strict measurement
of the interchain cooperativity than would be obtained from a
standard contiguity correlation function and, unlike the latter,
should decay to zero over time scales that are comparable with
the time taken for the chains’ centers of mass to diffuse away
from one another. Although, for short chains, this is well de-
scribed by a simple exponential, we observe that its behavior
for longer chains can be fitted for about two decades by stretched
exponentials

φnc = exp

"
−
�

t
τnc

�βnc
#

[3]

with an exponent βnc that varies from βnc = 1 for M = 256 to
βnc ’ 1=2 for the longest chains in the system (see SI Appendix,

A B C

Fig. 1. Networks of threadings. (A) Snapshot from a simulation representing a system with N= 50 chains M= 512 beads long. (B) Snapshot of a spherical
region and some of the rings from A. One can easily appreciate the interpenetration between the rings in the system (for instance, cyan through dark gray or
orange through blue). The sketched network in the top corner is obtained by visual inspection and depicts the penetrations of the rings. Two circles are
connected by a directed arrow when the former is threading through the latter (13) (see also Movie S1). (C) Lattice animal representation of a single ring
polymer surrounded by nonthreading rings (black dots) and penetrated by threading rings (colored dots). Adapted from ref. 6 with permission from Mac-
millan Publishers Ltd: Nature Materials, copyright 2008.
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Fig. S5). Even more striking is the exponential increase of the
typical time to become noncontiguous τnc, indicating a very slow
decorrelation between chains (or very long “exchange time”),
often interpreted as the onset of glassy dynamics (34). As φnc
shows fat tails at long times, we also compute Tnc as the (numer-
ical) integral of the correlation function. We find that the func-
tional behavior of Tnc is in agreement with τnc and shows an even
steeper increase (see Fig. 2, Inset). This is most likely due to the
fact that only the long-time tails show deviations from the
stretched exponential behavior, and these act to further increase
the exchange time of the coils.
These findings are a strong signature that rings display long-

lasting intercoil correlations that are present even after they have
traveled beyond their own size, in agreement with previous nu-
merical and experimental findings (5, 8). In addition, this is clear
evidence that the exchange dynamics of the rings becomes
slower, more glass-like (16, 36), as the polymerization M in-
creases. The increasingly stretched decay of φnc also implies that
the relaxation dynamics of the chains becomes more heteroge-
neous, i.e., some parts of the chains are much slower to separate
from one another than other parts. One might conjecture that
the increasingly slow and heterogeneous exchange dynamics will
eventually appear in the long-time dynamics of the ring dis-
placement because contiguity will ultimately constrain motion.
It is natural to now ask whether we can understand the nature

of these correlations, and the heterogenity in the relaxation dy-
namics observed in Fig. 2, as being directly related to the
threadings recently proved to exist in concentrated solution of
rings embedded in gels (13, 14). In the case of pure solutions of
rings, such threadings have never been rigorously identified.
Our approach consists in artificially immobilizing (“freezing”),

in space and time, a fraction c of randomly selected rings from
equilibrated configurations and then tracking the dynamics of
the “unfrozen” fraction. This protocol is inspired by recent the-
oretical and experimental studies on the nature of glass transi-
tions and idealizes the case in which a fraction c of polymers in
the system might be arbitrarily frozen, perhaps by mixing two
polymeric species with different Tg or by using optical tweezers
(24, 25), although the primary interest in this work is in its role as
a conceptual tool.
If the rings are mutually threaded, perhaps in a way that re-

sembles the threaded lattice animal in Fig. 1C, then one would
expect those unfrozen rings that are threaded by frozen ones to
have their mobility substantially limited. They would appear to

be immobilized within effective “cages,” being the region of space
that they can explore limited by the threadings that they experi-
ence. In the alternative picture where rings remain unthreaded, as
is often envisaged in simplified models, the mobility would be
substantially unaffected by the presence of frozen chains.
A primary result of the present work, discussed in Randomly

Pinning Rings Induces a Kinetically Arrested State, is that we do
indeed observe immobilization of the unfrozen fraction. We
believe that this represents excellent evidence for the existence
of threadings in concentrated solutions of rings, something that
has not previously been demonstrated.

Randomly Pinning Rings Induces a Kinetically Arrested State
Starting from an equilibrated configuration, we perturb the sys-
tem by randomly freezing, in space and time, a fraction c of coils.
As a comparison, we first consider a system of linear polymers with
one unfrozen linear “probe” chain diffusing through cN =N − 1
artificially immobilized (frozen) linear polymers. The same pertur-
bation is then applied to a dense solution of ring polymers, and the
two cases are compared in Fig. 3. This figure shows that the long-
time dynamics of the unfrozen linear chain (green circles) is
substantially insensitive to the presence of frozen neighbors. This
is because the linear polymer can undergo reptation and simply
snake through the frozen surroundings. [There is a weak cor-
relation effect due to the lack of mass relaxation in the frozen
chains, leaving a “hole” (and corresponding “bump”) in the density
as the mobile chain moves. We find that this only weakly affects the
reptative dynamics.] On the other hand, when we repeated this
procedure on a corresponding system of rings, we observed the
probe ring’s diffusion to be arrested, with it becoming irreversibly
trapped within a region of space of size somewhat smaller than its
gyration radius Rg (see red squares in Fig. 3).
Because nothing other than the topology of the polymers was

changed, this dramatically different dynamical response should
be attributed to the presence of topological interactions between
ring polymers, which we identify as the threadings. This imme-
diately implies that the equilibrated state of the rings in our
systems is one in which threadings constrain the free diffusion of
the rings (see sketch in Fig. 1C), therefore limiting their motion
and, in the extreme case, leading to caged diffusion when
neighboring rings that thread them are permanently frozen. The
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constraints provided by threading between rings in the un-
perturbed (c= 0) solution will be transient to a greater or lesser
extent, but they must nonetheless exist. Our results therefore
represent, to our knowledge, the first unambiguous evidence for
inter-ring threading in dense solutions of rings.
It is also worth stressing that the measurement that we per-

form should be interpreted as carrying a statistical meaning:
With enough attempts, one will always be able to find a ring that
is not caged, however unlikely that might be. When we in-
terrogate the rings regarding their state, caged or free, we are
implicitly drawing from a binomial distribution, and, therefore,
we can calculate the probability p of observing a noncaged ring in
any one test for a given fraction of frozen rings. Having per-
formed 10 tries freezing N − 1 rings and having observed 10
caged rings, we can set a 95% confidence bound on the fact that
p ’ 0.26, although the precise values are not particularly im-
portant and any statistical confidence criterion will give quali-
tatively similar results in what follows.
Given that, for all systems studied here, we observe a regime in

which all of the unfrozen rings are caged in regions smaller than
their sizes (2Rg) for the whole simulation run time, it is natural to
ask how the behavior crosses over from the unperturbed system
(c= 0), in which all of the rings are free to diffuse and none are
explicitly frozen, to the case in which enough rings are explicitly
frozen to implicitly pin, or cage, the others (at some level of
statistical confidence).
We study this transition by tracking the behavior of each

chain’s center of mass diffusion g3ðtÞ, averaged over the unfrozen
rings. The observed behavior of g3ðtÞ is reported in Fig. 4: For
all systems, there exists a critical frozen fraction (c†) for which
every single unfrozen polymer is permanently trapped by the
network of threadings. In other words, at c= c†, the systems
exhibit a transition from (at least partially) liquid, or diffusive,
behavior to a glassy state in which the unfrozen chains, al-
though free to rearrange their conformations to some extent,
are all irreversibly caged.
More practically, one can define c† by introducing the effective

diffusion coefficient (37)

DeffðcÞ≡ lim
t→∞

hg3ðtÞi
6t

[4]

whose average is taken over the unfrozen rings and vanishes
when all of the unfrozen rings are “caged” by the topological
interactions. It is therefore natural to identify c† as the value of c
at which Deff = 0. In practice, we run the simulations for a time
much longer than the relaxation time of the rings measured at
c= 0 (see also SI Appendix, Fig. S4) and define as caged all of the
systems that display a Deff 50 times smaller than the diffusion
coefficient of the unperturbed (c= 0) case, D0 (see Fig. 4F).
From this figure, one can notice that the decay of the Deff
becomes increasingly steeper as the rings become longer, sug-
gesting that the systems with long chains are more susceptible to
small contaminations of frozen chains, whereas, from Fig. 4F,
Inset, one can also appreciate the nearly exponential decay of
Deff with c (27).
Although the diffusion coefficient of the center of mass of the

rings informs us about the overall diffusion of the chains, it is
also interesting to study the relaxation of the chains at different
length scales in response to this external perturbation. This can
be done by computing the dynamic scattering function

Scðq, tÞ= 1
ScðqÞ

*
1

f  N

X
I

′
 
1
M

X
ij∈I

  eiq½riðtÞ−rjð0Þ�
!+

, [5]

where
P

′ stands for the summation over the ð1− cÞN = fN non-
frozen chains and the average is performed over time and ori-
entations of q. In Fig. 5 (and SI Appendix, Figs. S6−S8), we
report the behavior of this quantity computed for two choices
of wave vector q probing length scales (l= 2π=q) comparable to
the rings’ diameter 2Rg. We observe that Scð2=Rg, tÞ decays
much more slowly than the scattering function measured at
q= 4=Rg. To compare their behavior, we choose an arbitrarily
long time (t= 107 τBr) at which we evaluate the scattering func-
tion and report their difference ΔSc for a range of values of c
and rings’ length (see Fig. 5, and see SI Appendix for different
choices of t).
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The increasing trend of ΔSc suggests that length scales longer
than the diameter of the rings are more susceptible to the
freezing procedure. This is consistent with the fact that thread-
ings between ring polymers constrain their translational degrees
of freedom on length scales comparable to the size of the rings
whereas there can exist internal modes that are left unhindered
and free to relax. In addition, we observe that the systems with
longer chains require a smaller value of c to significantly slow
down the relaxation of the scattering function with respect to
systems with shorter chains. This observation is, in turn, in
agreement with the fact that threadings are more numerous for
systems with longer chains (13), and therefore a smaller fraction
of frozen rings is sufficient to achieve a similar slowing down.
Fig. 5 also suggests that although coils are strongly constrained

by the presence of frozen rings, the configurations can still par-
tially relax by internal rearrangements, and this allows rings to
relax their internal stress. The picture that emerges is rather
different from that for linear polymers, where the center of mass
diffusion is intimately related to its ability to undergo any and all
conformational rearrangements. In the latter case, motion is only
arrested by the onset of a microscopically glassy state for T <Tg.
In the case of ring polymers, given their closed topology,
threadings instead decouple the dynamics involved in displacing
the center of mass and those involved in the internal rear-
rangement. Any glassy jamming that emerges in this work is
unusual in that it is not associated with arrest of microscopic
degrees of freedom but rather with the topological arrest of low
wavenumber modes, including that associated with the motion of

the center of mass. This is the reason why an entanglement plateau
is absent. It also means that the slowing down of the dynamics in
systems of rings might not be clearly captured by the stress re-
laxation function GðtÞ frequently studied in the literature (6–8, 30),
which is mostly dominated by the unconstrained internal modes,
but rather by the mean square displacement of the unfrozen rings
(as in Fig. 4) or the dynamic scattering function Scðq, tÞ.
Phase Diagram of the System
The behavior of both the effective diffusion coefficient Deff and
ΔSc show an increasingly steeper dependence on the freezing pa-
rameter c as the length of the rings increases (see Figs. 4F and 5B).
This implies that systems made of long chains become extremely
sensitive to very small perturbations. Indeed, one can think of these
observables as quantifying a form of susceptibility that captures
how the dynamic mobility of the system responds to the freezing of
(very few) threading constraints by chain immobilization.
Finally, in Fig. 6, we show the transition line c= c† in the space

of parameters ð1=M, cÞ. The colored data points represent the
position of the simulated systems in the phase space and whether
their behavior was liquid-like (finite Deff–red) or solid-like
(vanishing Deff–blue). The diagram in Fig. 6 is reminiscent of
that observed in more traditional glass-forming systems subject
to random pinning fields (22) where the temperature T is here
replaced by the inverse length 1=M; a substitution not unfamiliar
to field-theoretic treatments of polymer systems (2). Along the
transition line, we also report the value of the probability p of finding
an uncaged ring in any one sample as obtained from the binomial
distribution at 95% confidence interval ð1− pÞð1−c†ÞN = 0.05. It is
also worth noticing that the curve is well fitted by an exponential
function of the form M†ðcÞ=Mge−3.3c with Mg ’ 3,500. Computa-
tional limitations forbid a thorough exploration of the small c region.
Nonetheless, and somewhat remarkably, our results show that the
number of caged chains per explicitly frozen ring is exponential in
the ring length (see SI Appendix, Fig. S9B). This would seem to mean
that an arbitrarily large fraction of caged chains can be achieved
from an arbitrarily small fraction of frozen rings provided that the
rings are long enough. This raises the possibility that a glassy state
could emerge spontaneously in the critical regime near c= 0 in the
(universal) limit of large M.
From these results, it is clear that concentrated solutions of

long rings are extremely sensitive to a small external pinning field
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Fig. 5. The freezing procedure affects long length scales more strongly
than short ones. (A) Behavior of the dynamic scattering function Scðq, tÞ for
the system with M= 2,048 and for q=2=Rg (l= πRg) (symbols) and q= 4=Rg

(l= πRg=2) (solid lines) (more examples can be found in SI Appendix, Figs. S7
and S8). The difference ΔSc = Scð2=Rg, tÞ− Scð4=Rg, tÞ is computed at an ar-
bitrary long time t = 107 τBr and reported in B for the different cases. From
this plot, it is clear that the relaxation of length scales longer than 2Rg is
slowed down more severely than the relaxation of shorter ones by the
pinning procedure. In turn, this suggests that threadings act mainly by
constraining low wavenumber modes.
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Fig. 6. The phase diagram of the system suggests a spontaneous vitrification
at large M. The figure shows the phase space (1/M, c) for systems of rings with
length M and in which a fraction c of rings are permanently frozen in space
and time. The transition line ð1=M†, c†Þ is shown together with an exponential
fit (dotted line). The colored data points in the diagram indicate whether the
system displays a finite diffusion coefficient at large times (red) or whether it is
irreversibly caged with vanishing Deff (blue). Along the transition line, we also
report the value of the probability p of finding an uncaged ring in any one test
performed at fixed c (see Phase Diagram of the System for details).
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that can drive the center of mass motion of the rings to become
glassy (jammed). We have here traced this phenomenon to the
unusual, topological constraints provided by the threadings be-
tween ring polymers. Although branched polymers also display
exponentially long relaxation times, the origin of this is not co-
operative in nature and would therefore be rather insensitive to
the freezing of some components. On the other hand, coopera-
tivity, such as the inter-ring threadings we study, is thought to be
an essential ingredient of a genuine glass transition (18).
Our work therefore elucidates the conformation of rings in

concentrated solutions and unambiguously characterizes, for the
first time to our knowledge, the presence of threadings between
rings. Furthermore, we show the dynamics of ring polymers to be
sensitive to these interactions, and, finally, we provide strong
evidence for the emergence of a kinetically arrested state solely
driven by topological constraints. This system is therefore a
novel instance of a glassy state induced through the topology of
the constituents.

Materials and Methods
We model the system by enclosing N semiflexible polymers modeled using
the standard Kremer−Grest model (38) and formed by M beads of nominal
size σ in a box with periodic boundary conditions of linear size L. The
monomer fraction is fixed at ρ=NM=L3 = 0.1σ−3, and we vary the length of
the polymers M as our main control parameter. The simulation time step is
denoted with τBr and corresponds to the time taken by a bead of size σ
experiencing a friction ξ to diffuse its size. The simulation is carried out in NVT
ensemble with the large-scale atomic/molecular massively parallel simulator
(LAMMPS) engine. Further computational details are described in SI Appendix.
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Movie S1. Animation showing a selection of rings from a spherical region from Fig. 1A. A static configuration (Fig. 1B) is viewed from a rotating viewpoint
showing the interthreaded organization of the rings in solution. This can be readily be translated into a network representation by assigning an arrow joining
the two threading rings and pointing to the ring that is threaded through the other (see Fig. 1).
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Movie S2. Animation showing a single unfrozen ring (red) in a solution of explicitly frozen rings (cN = N − 1) of which only few are shown. The snapshots are
taken to probe a time much longer than the relaxation time of a ring in an unperturbed solution (c = 0). In the unperturbed case, the ring would have traveled
far from its original position in the time probed by the video. In the perturbed case, shown here, the ring is caged within a space comparable to its own size for
the whole duration of the video, and we classify it as pinned.

Movie S2

Other Supporting Information Files
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Computational Details

We model the system by enclosing N = 50 semi-flexible bead-spring polymers formed by M beads in a box with periodic boundary
conditions of linear size L. The monomer density ρ = NM/L3 = 0.1σ−3 is fixed and we vary the length of the polymers and the size
of the box to keep the density constant. The chains are modelled via the Kremer-Grest worm-like chain model [1]. as follows: Let ri
and di,j ≡ rj − ri be respectively the position of the center of the i-th bead and the vector of length di,j between beads i and j, the
connectivity of the chain is treated within the finitely extensible non-linear elastic model with potential energy,

UFENE(i, i+ 1) = −k
2
R2

0 ln

[
1−

(
di,i+1

R0

)2
]

for di,i+1 < R0 and UFENE(i, i + 1) = ∞, otherwise; here we choose R0 = 1.6 σ and k = 30 ε/σ2 and the thermal energy kBT is
set to ε. The bending rigidity of the chain is captured with a standard Kratky-Porod potential,

Ub(i, i+ 1, i+ 2) =
kBT lp

2σ

[
1− di,i+1 · di+1,i+2

di,i+1di+1,i+2

]
,

where we set the persistence length lp = 5σ. The steric interaction between beads is taken into account by a truncated and shifted
Lennard-Jones (WCA) potential

ULJ(i, j) = 4ε

[(
σ

di,j

)12

−
(
σ

di,j

)6

+ 1/4

]
θ(21/6σ − di,j).

where θ(x) is the Heaviside function.
Denoting by U the total potential energy, the dynamic of the beads forming the rings is described by the following Langevin equation:

mr̈i = −ξṙi −∇U + η (1)

where ξ is the friction coefficient and η is the stochastic delta-correlated noise. The variance of each Cartesian component of the noise,
σ2
η satisfies the usual fluctuation dissipation relationship σ2

η = 2ξkBT .
As customary [1] we set m/ξ = τLJ = τBr, with the LJ time τLJ = σ

√
m/ε and the Brownian time τBr = σ/Db, where

Db = kBT/ξ is the diffusion coefficient of a bead of size σ, is chosen as simulation time step. From the Stokes friction coefficient of
spherical beads of diameters σ we have: ξ = 3πηsolσ where ηsol is the solution viscosity. It is possible to map this to real-time units
by using the nominal water viscosity, ηsol = 1 cP and setting T = 300 K and σ equal, for instance,to the diameter of hydrated B-DNA
(σ = 2.5 nm), for which one has τLJ = τBr = 3πηsolσ

3/ε ' 37 ns. The numerical integration of Eq. (1) is performed by using a
standard velocity-Verlet algorithm with time step ∆t = 0.01τBr and is implemented in the LAMMPS engine.

System Preparation and Equilibration

The systems are prepared by placing the rings randomly in a very large box. The linking number between all pairs of rings is also
checked in order to avoid linked polymers. In addition, the rings are initialised as perfect circles in order to avoid self-knotting. The
desired monomer density is achieved by slowly shrinking the box until the target box size is reached (effectively applying a constant
pressure). At this stage, we checked for unwanted linked rings and found none. After this, we equilibrate the systems by performing
standard runs (with no rings artificially pinned) for at least the time need for the chains to displace their centres of mass of several Rg’s.
We observe that t = 107τBr time-steps are enough to obtain this condition. After the equilibration we performed another run in order
to study the free, i.e. unperturbed, behaviour of the system. The mean square displacement obtained from this run is reported in see
Fig. S4. The simulations in which we artificially pin some of the rings are then started from the late stages of this last run, so that the
initial configuration for these perturbed simulations were un-correlated from the initial system set up. The rings that are artificially
pinned are chosen at random among the N rings. Because the simulations are very computationally expensive, we only perform one
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FIG. S1: (a) Ensemble average of the radius of gyration 〈Rg〉 ≡ 〈R2
g〉1/2 and plotted against rings’ contour length s (main) and total length M (inset)

both in units of the bead size. As reported in the literature, the rings show a collapsed behaviour for large M . (b) Static scattering function S1(q)
plotted against qRg and normalised by the length of the rings M . This quantity indicates a complex arrangement of the rings internal structure, which
does not seem to follow a unique fractal dimension at all lengths.

simulation for each choice of c. For the longest chains reported here (M = 2048 beads) each run up to 2 107 τBr takes up to 4 weeks
when running in parallel over 64 processors. This time-window has to be run for every choice of the fraction of pinned chains c. As we
tested four choices of c, the results reported only for the system with M = 2048 (Fig. 3(e) in main text) take ∼ 4 months of 64 CPUs
time or, equivalently, ∼ 20 years of single CPU time.

The Size and Static Structure of Rings are in Agreement with the Crumpled Globule Behaviour

In agreement with results reported in the literature [2, 3] we observe (Fig. S1) that the radius of gyration of the rings scales as
Rg ∼ Mν with ν ' 1/3 in the limit of large polymerisation index M , while we observe ν ' 2/5 for shorter rings. This is supported
by the measurement of 〈R2

g〉 either for the whole rings or as a function of the contour length s. The values of the exponents are in
agreement with previously reported findings and we refer to previous works[2, 3] for dedicated measurements of ν. Another way of
investigating the conformation of the rings is by measuring the static structure factor. For wave-vectors in the range 1/Rg < q < 1/σ,
one should expect that S1(q) defined as

S1(q) =

〈
1

M

M∑
i,j∈I

eiq(ri(t)−rj(t))

〉
(2)

where the indexes i,j run over ring I , to give S1(q) ∼ q−DF [4], where DF is the fractal dimension of the chain at length scale 1/q
and it is related to the scaling exponent ν as DF = 1/ν. Linear chains in the melt display DF = 2 for a broad range of q’s [1] while
we observe the rings to have a more complex organisation with DF ranging from DF ' 3 to DF ' 1 at large q, in agreement with
previous findings [2] (see Fig. S1).

The Contact Surface of the Coils Grows Extensively with the Length of the Rings

In order to quantify the degree of interaction between coils, we investigate (i) the number of surface monomers, (ii) the number of
contiguous chains and (iii) the number of neighbouring chains.

(i) The number of surface monomers ms is computed by counting the number of beads forming the chains that are in contact
with beads forming any other chains, according to the contact matrix in eq. 3 of the main text, i.e. any two beads are in contact if
their position is closer than d = ρ−1/3, where 1/ρ = 10σ3 is the free volume per bead.

(ii) The number of contiguous chains nc is computed the number of chains that have surface beads that are in contact.

(iii) The number of neighbouring chains nn is instead defined as the number of coils that are closer than 2Rg to any one other
coil.

These quantities are reported in Fig. S2.
The surface monomers show a near extensive dependence to the length of the rings, as already observed in previous works [2], while the
number of contiguous and neighbouring chains show a similar scaling behaviour as a function ofM , although nc is found systematically
larger than nn. This may imply large fluctuations in the rings conformations, which bring distant coils in contact.
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FIG. S2: (a) The number of surface monomers ms shows a scaling ms ∼Mβc with βc ' 0.99 for the longest chains. (b) The number of contiguous
chains nc and number of neighbouring chains nn is shown. While their scaling behaviour is similar, the average number of chains in contact at
any time is systematically larger than the number of chains whose centre of mass is closer than 2Rg . This may imply large fluctuations in the rings
conformations that bring distant chains in contact with one another. In (b) we show two curves with exponents 0.33 and 0.27 as a guide for the eye but
refer to the literature and further studies for more precise estimates.

The Contact Probability Shows a Decay Consistent with the Mean-Field Estimate γ = 1

The contact probability is defined as

Pc(|i− j|) =

〈
1

M

M−1∑
i=1

M∑
j=i+1

Θ(a− |ri(t)− rj(t)|)

〉
(3)

where Θ(x) is the Heaviside function and a is the chosen cut-off. In Fig. S3 we report Pc for two value of a and for different chain
lengths. The behaviour of Pc(m) is expected to follow the crumpled globule scaling

Pc(m) ∼ m−γ (4)

with γ >∼ 1, and for which the mean field value γ = νd is a lower bound. We here observe γ ' 1.02−1.09 (see Fig. S3). The prediction
that fixes the sum of the contact exponent γ and the surface exponent βc equal to 2 in the case of crumpled globules (ν = 1/3), i.e.
βc + γ = 2 [5], is therefore here recovered within errors.

The Pair Correlation Function Suggest that the Coils are Largely Inter-Penetrating

In order to probe the inter-penetration of the coils one can also investigate the pair correlation function g(r) which we here defined
similarly to a recent work [6]

g(r) =
2

N(N − 1)

N−1∑
I=1

N∑
J=N+1

δ[|rCM,I(t)− rCM,J(t)| − r] (5)

where rCM,I indicates the position of the centre of mass of ring I .

This function has been used in a recent work [6] probing the glassy dynamics of polymers under confinement and we here find
well characterising the degree of overlap between coils. The behaviour of g(r) (reported in Fig. S3) in fact shows a distinct peak at
rc ' 1.8Rg for M = 256 and at rc ' 1.4Rg for M ≥ 512. This implies that the coils, although crumpled, are strongly overlapping.

The Mean Squared Displacement of the Unperturbed System is in Agreement with Previous Observations

In Fig. S4 we report the rings centre of mass mean square displacement g3(t) defined as

g3(t) =
〈

[rCM (t)− rCM (0)]
2
〉
, (6)
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FIG. S3: (a) The contact probability function Pc(m) (defined in eq. (3)) shows a scaling behaviour m−γ with γ slightly dependent on the choice of
the cut-off a but compatible with previous findings [2]. (b) Pair correlation function g(r) for the rings centre of mass as defined in eq. (5). The peak
position imply that the coils are largely overlapping. In the inset we report g(r) normalised by the ideal pair distribution function gI(r) = 4πρcr

2,
where ρc ≡ N/L3 is the coils’ density. The coils behave as ultra-soft sphere with large inter-penetrations.

along with the diffusion coefficient DCM ≡ limt→∞ g3(t)/6t and the relaxation time τR defined via the following condition

g3(τR) ≡ R2
g. (7)

As one can notice, the mean square displacement (MSD) of the centre of mass displays an intermediate sub-diffusive regime in which
g3(t) ∼ t3/4 before crossing over to a diffusive regime at large times. This is most evident for longer rings. The scaling of the diffusion
coefficient as a function of the rings length is comparable to the one found in Ref. [3] although slightly smaller, which is in agreement
with the lower monomer density considered in this work. This scales asymptotically as

DCM ∼M−2 (8)

as well as the relaxation time τR for which we find

τR ∼M2.3. (9)

Persistent Contiguous Chains show an Exponentially Slow Uncorrelation Time

In the main text we report the behaviour of the correlation function ϕnc(t), characterising the exchange dynamics of the coils. In
Fig. S5 we report the values of the relaxation time of the exchange dynamics τnc and the value of the stretching exponent βnc used to
fit the data to stretched exponentials of the form

ϕnc = exp

[
−
(

t

τnc

)βnc
]
. (10)

We also report the value of Tnc, which is here defined as

Tnc ≡
∫ ∞

0

ϕnc(t)dt. (11)

Both relaxation times τnc and Tnc are observed to grow exponentially in M . The stretching parameter βnc is found to reach values
close to 1/2 for the longest chains studied in this work. This implies that the exchange time of the rings becomes extremely slow in the
limit of large M and in turn this may suggest the onset of a glassy dynamics (see discussion of Fig. 2 in the main text).

The Overlap Parameter Shows an Arrested Decay Corresponding to Caged Length-Scales

The overlap parametersQmon
s (t) andQcoil

s (t) are useful to characterise the glassy dynamics [7]. We here define them here as follows:

Qmon(t; c) = 〈Θ(w − |ri(t)− ri(0)|)〉 (12)
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FIG. S4: (a) g3(t): Mean square displacement (MSD) of the rings centre of mass. The faint horizontal lines represent the square radius of gyration
〈R2

g(t)〉. (b) g3(t)/R2
g: MSD of the rings centre of mass divided by their squared gyration radius. The solid horizontal line in (b) marks the value

g3(t)/R2
g = 1 at which the rings have, on average, travelled once their own size. (c) and (d) Report the behaviour of the diffusion coefficient of the

centre of mass of the rings and the relaxation time τR (see eq. (7)), respectively. By fitting the last three data-points in order to obtain the asymptotic
values of DCM for large M we obtain −2± 0.1. By considering all data point we obtain a value for the exponent of DCM of around 1.8± 0.1.

FIG. S5: (a) Values of the relaxation times τnc and Tnc for the contiguous correlation function ϕnc(t) reported in Fig. 2 of the main text.We observe
an exponential increase of the typical exchange time for large M . (b) Value of the stretching exponent βnc, ranging from near unity for M = 256 to
around 1/2 for M = 2048.

and

Qcoil(t; c) = 〈Θ(w − |rCM (t)− rCM (0)|)〉 . (13)

Where the average is performed over monomers (coils) and initial times. The window parameter is chosen to be w = 2Rg being the
length-scale at which the glassy dynamics is conjectured to occur. In other words, we aim to average out all the jiggling of the coils
inside cages of size 2Rg and to capture the slowing down of the translational dynamics of the centre of mass of the coils. As shown in
Fig. S6, this two-point correlation function clearly reflects the arrested relaxation when c is increased toward c†. As discussed in the
main text, coils that are completely caged cannot escape and freely diffuse. This means that their centre of mass is confined in a cage
of linear size 2Rg at all times. The coils’ overlap parameter reflects the constraint by arresting its decay and in particular we find that

lim
t→∞

Qcoil(t; c†) ' 1 (14)

at any time.
One can also notice that the dynamics of the beads is less constrained than the dynamics of the centre of mass of the coils when

c→ c†. As observed, at c ' 0 one notices that the two correlation functions match in the limit of large t. On the contrary, at c > 0, their
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FIG. S6: Overlap parameters Qcoil (solid lines) and Qmon (dashed lines) for different values of c and for the 5 values of M considered: (a)M = 256,
(b)M = 512, (c)M = 1024, (d)M = 1512 and (e)M = 2048. In the inset the overlap parameter is plotted in linear scale to highlight the long time
flattening. (f) The value of the overlap parameter fov ≡ Qcoil(t = ti; c) is evaluated and reported at two arbitrary (long) times t1 = 5 106 τBr (solid
lines and data points) and t2 = 107 τBr (dashed lines), showing a consistent increased tendency to display an arrest of the decay at larger values.

FIG. S7: Scattering function Sc(q, t) computed at q = 4/Rg for different chain lengths: (a)M = 256, (b)M = 512, (c)M = 1024, (d)M = 1512
and (e)M = 2048. The last three set of curves are plotted in linear scale to highlight the behaviour at large times. (f) The value of the scattering
function at arbitrary time t̄, fc ≡ Sc(q, t̄) is plotted against c for two chosen values of time t̄: t = 5 106 τBr (solid lines and symbols), t = 107 τBr
(dashed lines) and for the different chain lengths.

difference remains finite at all times and this implies that the relaxation dynamics is decoupled by the topological constraints, which
suppress the degree of freedom of the centre of mass of the coils while leaving shorter segments along the chains relatively unhindered.

Given the fact that the arrested decay of Qcoil(t; c) and Qmon(t; c) ends with an unambiguous flattening at a constant value at long
times only for small chains, we compare the behaviour of this correlation function by choosing two arbitrary (long) times (t1 and
t2)and plotting the value of fov ≡ Qcoil(t = ti; c) at those times in Fig. 6(f). One can clearly notice that by increasing c any system
becomes slower and for larger chains, a small contamination of frozen chains (c) is enough to dramatically arrest the decay of the
overlap function.
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FIG. S8: Scattering function Sc(q, t) computed at q = 2/Rg for different chain lengths: (a)M = 256, (b)M = 512, (c)M = 1024, (d)M = 1512
and (e)M = 2048. The last three set of curves are plotted in linear scale to highlight the behaviour at large times. (f) The value of the scattering
function at arbitrary time t̄, fc ≡ Sc(q, t̄) is plotted against c for two chosen values of time t̄: t1 = 5 106 τBr (solid lines and symbols), t2 = 107

τBr (dashed lines) and for the different chain lengths.

The Scattering Function Indicates Markedly Different Relaxation Times Above and Below the Average Size of a Coil

In this section we discuss the dynamic scattering function

Sc(q, t) =

〈
1

M

M∑
i,j∈I

eiq[ri(0)−rj(t)]

〉
, (15)

calculated for q1 = 4/Rg and q2 = 2/Rg . The latter explores length scales larger than the diameter of the coils (l2 = πRg > 2Rg)
twice as long of the former, which probes length scales shorter than the diameter of the coils (l1 = (π/2)Rg < 2Rg). As one can
notice from Fig. S7 and Fig. S8, these two dynamics are markedly different.

It is clear from Figs. S7 and S8 that length scales larger than 2Rg are much slower than the internal modes, probed by Sc(q = 4/Rg, t).
This is shows by the large-time value attained by Sc(q, t), defined as fc, in the two cases and reported in S7(f) and S8(f). In the figures,
we show fc computed for two arbitrarily long times (solid and dashed lines), as done for the overlap function. The way in which fc
grows steeper and steeper for q = 2/Rg and for increasing chain lengths as a function of c is indicative that the pinning procedure
affects large length scales more severely than shorter ones.

From these findings, as discussed in the main text, we argue that the relaxation of the long wave length modes is strongly hindered
by the pinned rings, while the short wavelength are relatively free to relax. This once again implies that the stronger effect of the
pinning of rings is experienced by the translational degrees of freedom of the rings while it leaves short segments of the rings able to
partially re-arrange their conformations.

The Efficiency of Freezing Grows Exponentially with the Chains’ Length

The freezing procedure described in the main text offers a pathway to generate glassy states by exploiting the topology of the
constituents. We show how the fraction of freely diffusing chains depends on the fraction of (non-)frozen chains in Fig. S9(a). This is
done by tracking the individual MSD of the coils centre of mass and by counting the number of these which have travelled more than
2Rg at the end of the simulation run time and by classifying these as freely diffusing. The dashed line represents the curve followed by
the data points if every non-explicitly frozen chain were free to diffuse. The deviation from this (zero pinning efficiency) line becomes
stronger as the chains become longer and readily show that long chain are very sensitive to a small amount of explicitly frozen chains.

Fig. S9(b) shows the number of caged chains as a function of rings’ length. Once again we identify the caged coils by tracking
the individual MSD of the centre of mass and by identifying as “caged” those which have not travelled more than 2Rg at the end of



FIG. S9: (a)Fraction of freely diffusing rings Φfd = nfd/(1 − c)N against the fraction of non-frozen chains 1 − c. The dotted line marks the case
in which all the non explicitly frozen chains are also freely diffusing. (b) The “efficiency” of the pinning procedure can be quantified by plotting the
number of caged rings per frozen chain as a function of the chains’ length and for the various c used. Here the points plotted mark the result from a
simulation for fixed c and M . Both the most and the least efficient cases (for a given rings length M ) show an exponential growth with M . (c)-(d)
Relaxation time of the systems computed as R2

g/Deff . The divergence of the relaxation as a function of the freezing fraction c is broadly captured by
a VFT function, i.e. τRelax = τ0 exp [Ac/(c0 − c)], where c0 is generally larger than c† defined using Deff (see main text).

the simulation. We repeat this analysis for every choice of c. We observe that not all simulations have the same caging “efficiency”
but, remarkably, we observe that both the least and the most efficient (highest and lowest number of caged rings per frozen one)
scale exponentially with M . This finding strongly encourages further computational and experimental studies of this system, as the
number of chains implicitly caged can become arbitrarily big depending on the choice of M . Because of this exponential increase,
fewer explicitly frozen chains will be needed to significantly slow down the system, raising the possibility that the system might
spontaneously vitrify.

Finally, we study the longest relaxation time of the perturbed systems by computing τRelax ≡ R2
g/Deff and we report the findings

in Figs. S9(c)-(d). The divergence of the relaxation time follows naturally from the fact that Deff is vanishing at c → c†. In addition,
we fitted the values of τRelax with an empirical function inspired to the standard Vogel-Fulcher-Tammann function used to describe the
relaxation of glass-forming systems

τRelax = τ0 exp

[
Dc0
c0 − c

]
. (16)

where here c replaces T . This result can be understood in terms of cooperativity of the chains: as one gets closer to the critical line
c†(M), the activation energy to re-arrange and relax the system becomes higher, as the number of topological constraints becomes
closer to the critical value for which all the translational degrees of freedom of the system are quenched. On the other hand, it is
important to notice that we can track the relaxation time of the chains only up to roughly two orders of magnitude larger than the
unperturbed relaxation time (τ0) and this is far too small a range to draw definite conclusions on the nature of this divergence.
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